
1 YEAR UPGRADE
B U Y E R P R O T E C T I O N P L A N

Develop and Deliver Enterprise-Critical Desktop and Web
Applications with C# .NET
• Complete Case Studies with Ready-to-Run Source Code and Full Explanations

• Hundreds of Developing & Deploying, Migrating, and Debugging Sidebars,
Security Alerts, and C# .NET FAQs

• Complete Coverage of Web Services and the Integrated Development
Environment (IDE)

Adrian Turtschi

DotThatCom.com

Jason Werry

Greg Hack

Joseph Albahari

Saurabh Nandu Technical Editor

Wei Meng Lee Series Editor

C # . N E T
We b D e ve l o p e r ’s G u i d e

solutions@s y n g r e s s . c o m

With more than 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we continue to look for ways we can better serve the
information needs of our readers. One way we do that is by listening.

Readers like yourself have been telling us they want an Internet-based ser-
vice that would extend and enhance the value of our books. Based on
reader feedback and our own strategic plan, we have created a Web site
that we hope will exceed your expectations.

Solutions@syngress.com is an interactive treasure trove of useful infor-
mation focusing on our book topics and related technologies. The site
offers the following features:

■ One-year warranty against content obsolescence due to vendor
product upgrades. You can access online updates for any affected
chapters.

■ “Ask the Author” customer query forms that enable you to post
questions to our authors and editors.

■ Exclusive monthly mailings in which our experts provide answers to
reader queries and clear explanations of complex material.

■ Regularly updated links to sites specially selected by our editors for
readers desiring additional reliable information on key topics.

Best of all, the book you’re now holding is your key to this amazing site.
Just go to www.syngress.com/solutions, and keep this book handy when
you register to verify your purchase.

Thank you for giving us the opportunity to serve your needs. And be sure
to let us know if there’s anything else we can do to help you get the
maximum value from your investment. We’re listening.

www.syngress.com/solutions

167_C#_FM.qxd 12/5/01 10:16 AM Page i

http://www.syngress.com/solutions

167_C#_FM.qxd 12/5/01 10:16 AM Page ii

1 YEAR UPGRADE
B U Y E R P R O T E C T I O N P L A N

Adrian Turtschi

DotThatCom.com

Jason Werry

Greg Hack

Joseph Albahari

Saurabh Nandu Technical Editor

Wei Meng Lee Series Editor

C # . N E T
We b D e ve l o p e r ’s G u i d e

167_C#_FM.qxd 12/5/01 10:16 AM Page iii

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or
production (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be
obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work is
sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®,“Career Advancement Through Skill Enhancement®,” and “Ask the Author
UPDATE®,” are registered trademarks of Syngress Publishing, Inc. “Mission Critical™,”“Hack Proofing™,”
and “The Only Way to Stop a Hacker is to Think Like One™” are trademarks of Syngress Publishing, Inc.
Brands and product names mentioned in this book are trademarks or service marks of their respective
companies.
KEY SERIAL NUMBER
001 CDFE48952P
002 NHBN9436KH
003 BAEN24P7BV
004 HY9W84UJTA
005 RTW9B39RE4
006 JSE4FAHT82
007 VTS8TYCGF2
008 AUTGFLDCWR
009 833K74SLAF
010 VFR4MHY3XW

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370
C# .NET Web Developer’s Guide

Copyright © 2002 by Syngress Publishing, Inc.All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher, with the exception that the program listings may be entered, stored,
and executed in a computer system, but they may not be reproduced for publication.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 0

ISBN: 1-928994-50-4
Technical Editor: Saurabh Nandu Freelance Editorial Manager: Maribeth Corona-Evans
Co-Publisher: Richard Kristof Cover Designer: Michael Kavish
Acquisitions Editor: Catherine B. Nolan Page Layout and Art by: Shannon Tozier
Developmental Editor: Kate Glennon Copy Editor: Darren Meiss
CD Production: Michael Donovan Indexer: Rich Carlson

Distributed by Publishers Group West in the United States and Jaguar Book Group in Canada.

167_C#_FM.qxd 12/5/01 10:16 AM Page iv

vv

We would like to acknowledge the following people for their kindness and support in
making this book possible:

Richard Kristof and Duncan Anderson of Global Knowledge, for their generous access
to the IT industry’s best courses, instructors, and training facilities.

Ralph Troupe, Rhonda St. John, and the team at Callisma for their invaluable insight into
the challenges of designing, deploying and supporting world-class enterprise networks.

Karen Cross, Lance Tilford, Meaghan Cunningham, Kim Wylie, Harry Kirchner, Kevin
Votel, Kent Anderson, and Frida Yara of Publishers Group West for sharing their
incredible marketing experience and expertise.

Mary Ging, Caroline Hird, Simon Beale, Caroline Wheeler,Victoria Fuller, Jonathan
Bunkell, and Klaus Beran of Harcourt International for making certain that our vision
remains worldwide in scope.

Annabel Dent of Harcourt Australia for all her help.

David Buckland,Wendi Wong, Marie Chieng, Lucy Chong, Leslie Lim,Audrey Gan, and
Joseph Chan of Transquest Publishers for the enthusiasm with which they receive our
books.

Kwon Sung June at Acorn Publishing for his support.

Ethan Atkin at Cranbury International for his help in expanding the Syngress program.

Jackie Gross, Gayle Vocey,Alexia Penny,Anik Robitaille, Craig Siddall, Darlene Morrow,
Iolanda Miller, Jane Mackay, and Marie Skelly at Jackie Gross & Associates for all their
help and enthusiasm representing our product in Canada.

Lois Fraser, Connie McMenemy, and the rest of the great folks at Jaguar Book Group for
their help with distribution of Syngress books in Canada.

Acknowledgments

167_C#_FM.qxd 12/5/01 10:16 AM Page v

Contributors

Todd Carrico (MCDBA, MCSE) is a Senior Database Engineer for
Match.com. Match.com is a singles portal for the digital age. In addition to its
primary Web site, Match.com provides back-end services to AOL, MSN, and
many other Web sites in its affiliate program.Todd specializes in design and
development of high-performance, high-availability data architectures primarily
on the Microsoft technology. His background includes designing, developing,
consulting, and project management for companies such as Fujitsu,Accenture,
International Paper, and GroceryWorks.com. In addition to his contribution to
C# .NET Web Developer’s Guide,Todd has also contributed chapters to other
books in the Syngress .NET Series including the ASP .NET Web Developer’s
Guide, and the VB .NET Developer’s Guide.Todd resides in Sachse,TX, with his
wife and two children.

Mark Tutt is a Senior Software Engineer with MICROS Systems. MICROS
provides complete information management solutions for the hospitality
industry, including software, hardware, enterprise systems integration, consulting,
and support. Mark is the principle designer of a number of software packages,
including Guest Service Solution, a customer relationship management system
for the MICROS Restaurant Enterprise Series platform. In addition to his
product development duties, Mark is a key contributor to the design and devel-
opment of system integration software and customer-specific product exten-
sions that allow MICROS clients to fully integrate MICROS products into
their overall technology plans. Mark currently resides in Baltimore, Maryland
with his wife Malinda and their twin sons, Fred and Jackson.

Jason Werry (MCSD) runs a consulting firm, Synergy Data Solutions, in
Australia. He currently provides strategic and technical consulting to his clients
and specializes in Windows-based enterprise systems development. Jason has an
extensive background using Microsoft technologies and is currently developing
state-of-the-art,Web-based applications on the .NET platform. His clients have
ranged from a Taiwanese multimedia company to various government depart-
ments and local startups.A natural born programmer, Jason started coding
Z80 processors in Assembly at age 13. Since then he has used most popular

vi

167_C#_FM.qxd 12/5/01 10:16 AM Page vi

vii

programming languages and presently enjoys working with SQL Server, MTS,
IIS,Visual Basic, and C#. Jason holds a bachelor’s degree in Mathematics/
Computer Science from The University of Queensland. He dedicates his
writing to his loving wife, LiHsing.

Patrick Coelho (MCP) is an Instructor at The University of Washington
Extension, North Seattle Community College, Puget Sound Center, and Seattle
Vocational Institute, where he teaches courses in Web Development (DHTML,
ASP, XML, XSLT, C#, and ASP .NET). Patrick is a Co-Founder of
DotThatCom.com, a company that provides consulting, online development
resources, and internships for students. He is currently working on a .NET
solution with contributing author David Jorgensen and nLogix. Patrick holds a
Bachelor’s of Science degree from the University of Washington, Bothell.
Patrick lives in Puyallup,WA with his wife Angela.

David Jorgensen (MCP) is an Instructor at North Seattle Community
College, University of Washington extension campus, and Puget Sound Centers.
He is also developing courses for Seattle Vocational Institute, which teaches
.NET and Web development to the underprivileged in the Seattle area. David
also provides internship opportunities through his company DotThatCom.com,
which does online sample classes and chapters of books. David holds a bach-
elor’s degree in Computer Science from St. Martin’s College and resides in
Puyallup,WA with his wife Lisa and their two sons Scott and Jacob.

Greg Hack is a Senior Software Engineer with Allscripts Healthcare Solutions.
Greg has over 15 years experience developing software on platforms ranging
from the mainframe to the desktop using a wide variety of languages and tech-
nologies. Recent work includes a Web-based application that allows patients to
view their medical records and a Pocket PC application that delivers clinical
information to physicians at the point of care.

Axel Goldbach is a Senior Consultant with modulo3 GmbH, a consulting
company based in Germany and specializing in project management consulting
throughout Europe. modulo3 is a process implementation specialist for the
major networking frameworks, including eXtreme Programming, MSF and
V Modell.Axel currently provides senior-level strategic and technical consulting
to all modulo3 clients in Germany and Central Europe. His duties include anal-
ysis and development of multi-tiered applications in heterogeneous environments.

167_C#_FM.qxd 12/5/01 10:16 AM Page vii

viii

Axel also works as a technical scout and trainer for modulo3. His training spe-
cialties include programming languages, networking, and academic fields such as
development methodology, parser- and interpreter-technology, theory of com-
plexity, and provable correct software.

Joseph Albahari is a freelance consultant and developer with over 10 years
experience in designing networked systems. He has led a string of successful
projects, from custom application frameworks for start-up companies, to high-
performance OLAP and data warehousing systems for telecommunications
giants. His knowledge in object-oriented user interface design has been called
upon in the planning or production of many large and complex systems, where
well-balanced abstractions are of key importance. Joseph is also experienced in
SQL Server database administration, and has developed high-performance solu-
tions for clients with specialized requirements—such as a replication system
providing field level synchronization, or a high-throughput bulk-copying agent.
Joseph holds a Bachelor’s degree in computer science and physics.

Adrian Turtschi (MCSE, MCSD) is Lead Architect Solution Development
with Avanade (Germany), where he is responsible for the solution offering in
the mobile computing space. He has been working on the Microsoft .NET
platform since fall 2000, specializing in developing enterprise systems using Web
Services. He is particularly interested in using Web Services to bridge platform
and system boundaries. Prior to joining Avanade,Adrian worked for KPMG’s
Global Knowledge Exchange in Boston, where he helped design and develop
KPMG's global knowledge management and collaboration solution, used by its
100,000 professionals world-wide.Adrian has work experience in Switzerland,
the Netherlands, and the US. He has degrees in Mathematics and Computer
Science. He currently lives in Berlin, Germany.

167_C#_FM.qxd 12/5/01 10:16 AM Page viii

ix

Technical Editor and Reviewer

Saurabh Nandu is the Founder of www.MasterCSharp.com which concen-
trates on teaching C# and .NET. He worked with HTML, JavaScript, Flash 5.0
before he started programming in Java. Saurabh has been impressed by the
power and flexibility of .NET. He is currently employed by YesSoftware Inc.
as Technical Evangelist.

Technical Editor’s Acknowledgements
I would like to thank my friend Nanu Jogi without whose direction I would
have never got into working on the .NET Platform. I would also like to thank
my family, especially my brother Pritesh, for their support.

Wei Meng Lee is Series Editor for Syngress Publishing’s .NET Developer
Series. He is currently lecturing at The Center for Computer Studies, Ngee
Ann Polytechnic, Singapore.Wei Meng is actively involved in Web development
work and conducts training for Web developers and Visual Basic programmers.
He has co-authored two books on WAP. He holds a Bachelor’s degree in
Information Systems and Computer Science from the National University of
Singapore.The first and second books of the .NET series, VB .NET Developer’s
Guide (ISBN: 1-928994-48-2), and ASP .NET Developer’s Guide (ISBN:
1-928994-51-2) are currently available from Syngress Publishing.

Series Editor

167_C#_FM.qxd 12/5/01 10:16 AM Page ix

x

This CD-ROM contains the code files that are used in each chapter of this book.The
code files for each chapter are located in a chXX directory (for example, the files for
Chapter 8 are in the ch08 directory).Any further directory structure depends on the pro-
jects that are presented within the chapter.

To work with the examples provided, you will need at least the Windows 2000 or
Windows XP Professional operating system with the latest service packs, IIS 5.x, and IE
6.0, since ASP.NET and Web Services (a part of ASP.NET) are not supported on earlier
operating systems such as Windows 9x/WindowsME/WindowsNT.Also needed is the
.NET SDK Beta2 (the latest public release available while writing this book) and the
Visual Studio.NET Beta2 IDE.

The C# .NET Web Developer’s Guide provides you with extensive examples that will
help solve the problems you might face while developing applications for the .NET
Platform rather than concentrating on the theory of C# and .NET programming.
Therefore code is the main feature of this book.

The chapters contain both code snippets and sample programs that illustrate the
principles discussed. Chapter 2 presents a series of sample programs that introduce con-
cepts in C# that are different from other object-oriented languages. Chapter 4 helps you
understand the basics of building Graphical User Interface (GUI)-rich Windows Forms
applications; the examples presented in this chapter are the launch pad for Windows
Forms applications used in other chapters. Similarly, code presented in Chapter 8 helps
you to interact with various databases using ADO.NET; again, this chapter acts as a foun-
dation for further chapters’ database coverage. Chapter 9 will acquaint you with using
.NET Class Libraries to interact with XML and its related technologies.

Chapters 5, 6, and 11 discuss technologies and Application Program Interfaces (APIs)
that help two applications to communicate and interact with each other. Chapter 5
focuses on enabling applications to communicate over the TCP and UDP protocols and
provides an overview of the techniques used to interact with Web pages programmatically.
Code examples in Chapter 6 and Chapter 11 concentrate on using Simple Object Access
Protocol (SOAP) and object serialization and deserialization.

About the CD

167_C#_FM.qxd 12/5/01 10:16 AM Page x

xi

Chapter 7 examples examine message delivery in distributed applications using
Microsoft Message Queuing (MSMQ). Chapter 10 takes a comprehensive look at
ASP.NET and helps you build various applications of increasing complexity and func-
tionality, starting with an XML Poll, progressing to a SQL-powered Message Board, and
ending with a Shopping Cart.

Lastly, to end on a lighter note, Chapter 12 takes you through building a Jokes Web
Service.The code in this chapter helps you build both the Jokes Web Service as well as
the Windows Forms Client for the service.

Look for this CD icon to obtain files used
in the book demonstrations.

167_C#_FM.qxd 12/5/01 10:16 AM Page xi

xii

From the Series Editor

For many years, C and C++ programmers have been searching for alternative pro-
gramming languages that offer the same kind of flexibility and power of C and C++,
but without the complexities and steep learning curve required for mastery of the
language.What many programmers desired was a language that would allow applica-
tions to be built rapidly, but at the same time giving them the ability to code at low
level.The search has finally ended with Microsoft’s new language—C#, a member of
the .NET Framework.

C# is the revolutionary new language from Microsoft, designed solely to run on
the .NET framework. Drawing experiences from C, C++, and Visual Basic, C# was
designed to be a simple and modern object oriented programming language.

But why learn C#? With the integration of C# and the Visual Studio.NET
(known as Visual C#), developing Windows and Web applications has been radically
simplified.With full access to the .NET Class Libraries, C# includes built-in support
for developing robust Web services and ASP.NET applications. (It was reportedly said
that Visual Studio.NET was built entirely using C# and that most of the examples in
MSDN were coded in C#.That in and of itself is a very good reason to learn C#!)
Besides this, C# enhances the productivity of programmers by eliminating common
errors often associated with C and C++.

While many of the earlier C# books have primarily focused on the language
syntax, The C# .NET Web Developer’s Guide illustrates the uses of C# for Web devel-
opers looking to harness the new functionality and ease of this powerful program-
ming language.The best way to learn a new language is by trying out the examples
while you are reading this book.Within many chapters, you will find numerous code
examples used in various practical situations; this hands-on, code-intensive approach
allows you to have a deeper understanding of issues involved in C# Web develop-
ment, and at the same time allows you to cut and paste portions of applicable code
into your current projects, thereby shortening development time.

We are constantly working hard to produce the best technical books needed by
professional programmers like you. I sincerely hope you will enjoy reading this book
as much as the authors did writing it!

Wei Meng Lee, Series Editor
Syngress .NET Developer Series

167_C#_FM.qxd 12/5/01 10:16 AM Page xii

Seldom in the history of computer software has any technology received such a posi-
tive response from developers and the industry, even while the technology is still in
its nascent beta stage.The .NET Beta2 SDK from Microsoft has already been down-
loaded by millions of developers all over the world.There have been dozens of pub-
lished books,Web sites and newsgroups devoted to the .NET platform, its related
technologies and languages.

Microsoft has invested billions of dollars and years of research in the creation of
.NET. .NET is a comprehensive strategy ,consisting of operating systems, database
servers, application servers, and the .NET Runtime, as well as managed languages
that operate over the .NET platform.

Many people see the .NET platform as the practical implementation of the pre-
viously formulated Windows DNA. Others see it as a response to developer woes
from working with previous technologies and languages. However, the common
opinion simply offers that .NET is a significant improvement over previous Microsoft
technologies.The .NET platform has been built from the ground up with numerous
goals in mind, including security, scalability, reliability, flexibility, and interoper-
ability—these goals have all been dealt with from the start to help to make the .NET
platform enterprise ready and developer-friendly.

The .NET platform displays a significant shift in Microsoft’s thinking.While
building the .NET platform, Microsoft has shown strong support for open standards
like XML, SOAP, and UDDI, rather than building its own proprietary standards and
technologies. Even the core part of the .NET platform—the Common Language
Infrastructure (CLI)—and the C# specifications have been placed before ECMA for
standardization.

C# is defined as a simple, modern, object-oriented, and type-safe programming
language derived from C and C++. Developed by Anders Hejlsberg of Microsoft
especially for the .NET platform, C# derives its features from a number of languages

xxi

Foreword

167_C#_fore.qxd 12/4/01 2:49 PM Page xxi

xxii Preface

like C, C++, and Java. Specifically written to offer the simplicity of Visual Basic and
power of C++ as an object-oriented language, C# makes it easier for developers to
create, debug, and deploy enterprise applications. It has also been predicted that C#
will become the favored language for developing applications on the .NET platform.

Visual Studio.NET, the next version of Visual Studio IDE, is also a key compo-
nent of the .NET strategy.The Visual Studio.NET IDE has also been given a facelift
and packed with a wide variety of new functionalities.A bitmap editor, debugger,
Web Forms designer,Windows Forms designer,Web Services designer, XML editor,
HTML editor,Web browser, Server Resources Explorer, and multi-language support
have all been packed into one single IDE.

The focus of The C#.NET Web Developer’s Guide is not on teaching you the core
C# language, but rather providing you with code examples that will help you
leverage the functionalities of the .NET Framework Class Libraries.The .NET
Framework collection of base classes cover many of the multiple APIs.Although
impossible for one book to cover all the features, in this book we have covered the
key concepts, libraries, and APIs of the .NET Framework that we feel will help you
easily create new applications using C#.

You have a whole host of features to learn and master, so why wait? Let’s get
started!!

—Saurabh Nandu,Technical Editor
Founder, www.MasterCSharp.com

www.syngress.com

167_C#_fore.qxd 12/4/01 2:49 PM Page xxii

xiii

Contents
Foreword xxi
Chapter 1 Introducing the Microsoft .NET Platform 1

Introduction 2
Introducing the.NET Platform 2

Microsoft .NET and Windows DNA 3
Microsoft .NET Architecture Hierarchy 4

Features of the .NET Platform 5
Multilanguage Development 5
Platform and Processor Independence 7
Automatic Memory Management 7
Versioning Support 8
Support for Open Standards 9
Easy Deployment 9
Distributed Architecture 10
Interoperability with Unmanaged Code 11
Security 12
Performance and Scalability 14

Components of the .NET Architecture 14
.NET Runtime 14
Managed/Unmanaged Code 14
Intermediate Language 15
Common Type System 15
.NET Base Class Library (BCL) 15
Assemblies 16
Metadata 16
Assemblies and Modules 17
Assembly Cache 18
Reflection 19
Just In Time Compilation 19
Garbage Collection 20

Exploring the Code Cycle 21
The Pursuit of Standardization 24
Summary/Solutions Fast Track/Frequently Asked Questions 26

Chapter 2 Introducing C# Programming 33
Introduction 34
Getting Started 35
Creating Your First C# Program 37

Compiling and Executing 38
Defining a Class 40
Declaring the Main Method 43
Organizing Libraries with Namespaces 43

167_C#_TOC.qxd 12/5/01 11:44 AM Page xiii

xiv Contents

Using the using Keyword 44
Adding Comments 45

Introducing Data Types 47
Value Types 47

Primitive Data Types 47
Reference Types 48

Explaining Control Structures 49
Using the if Statement 49
Using the if-else Statement 50
Using the switch case Statement 50
Using the for Statement 51
Using the while Statement 52
Using the do while Statement 52
Using the break Statement 52
Using the continue Statement 53
Using the return Statement 54
Using the goto Statement 55

Understanding Properties and Indexers 56
Using Properties 56

Get Accessor 59
Set Accessor 59

Accessing Lists with Indexers 60
Using Delegates and Events 69

Delegates 70
Single Cast 74
Multicast 75

Events 79
Using Exception Handling 85

Using the try Block 89
Using the catch Block 89
Using the finally Block 89
Using the throw Statement 89

Understanding Inheritance 90
Summary/Solutions Fast Track/Frequently Asked Questions 104

Chapter 3 Visual Studio.NET IDE 109
Introduction 110
Introducing Visual Studio.NET 110
Components of VS.NET 112

Design Window 112
Code Window 113
Server Explorer 114
Toolbox 116
Docking Windows 117
Properties Explorer 117
Solution Explorer 118
Object Browser 119
Dynamic Help 120
Task List Explorer 121

167_C#_TOC.qxd 12/5/01 11:44 AM Page xiv

Contents xv

Features of VS.NET 122
IntelliSense 122
XML Editor 124
Documentation Generation (XML Embedded Commenting) 127

Adding XML Document Comments to C# Pages 127
Customizing the IDE 129
Creating a Project 130

Projects 130
Creating a Project 130
Add Reference 131
Build the Project 131
Debugging a Project 132

Summary/Solutions Fast Track/Frequently Asked Questions 133

Chapter 4 Windows Forms 137
Introduction 138
Introducing Windows Forms 138
Writing a Simple Windows Forms Application 141

Adding Controls 142
Adding an Event Handler 145
Adding Controls at Runtime 147
Attaching an Event Handler at Runtime 152

Writing a Simple Text Editor 154
Starting the Project 154
Creating a Menu 155
Adding a New Form 157
Creating a Multiple Document Interface 159
Creating a Dialog Form 160
Using Form Inheritance 162
Adding a TabControl 164
Anchoring Controls 166

Changing the Startup Form 167
Connecting the Dialog 167

Using the ListView and TreeView Controls 170
Building an ImageList 170
Adding a ListView 172

Using the Details View 173
Attaching a Context Menu 174
Adding a TreeView 175
Adding a Splitter 177
Implementing Drag and Drop 178

Creating Controls 181
Creating a User Control 181

Adding a Property 182
Adding Functionality 182

Writing a Custom Control 183
Testing the Control 187
Enhancing the Control 189

Subclassing Controls 191

167_C#_TOC.qxd 12/5/01 11:44 AM Page xv

xvi Contents

Custom Controls in Internet Explorer 193
Setting Up IIS 193
Creating a Virtual Directory 193
Writing a Test Page 194

Summary/Solutions Fast Track/Frequently Asked Questions 196

Chapter 5 Network Programming:
Using TCP and UDP Protocols 203

Introduction 204
Introducing Networking and Sockets 204

Introduction to TCP 206
Introduction to UDP 208
Introduction to Ports 211
System.Net Namespace 212
System.Net.Sockets Namespace 213

Example TCP Command Transmission and Processing 214
General Usage of Needed .NET Classes 216
The Server 217
The Client 220
Compiling and Running the Example 226

Example UDP Command Transmission and Processing 227
General Usage of Needed .NET Classes 228
The Server 229
The Client 231
Compiling and Running the Example 234

Creating a News Ticker Using UDP Multicasting 235
General Usage of Needed .NET Classes 236
The Server 240
The Client 243
Compiling and Running the Example 250

Creating a UDP Client Server Chat Application 250
The TCPServerSession Class 253
The TCPServer Class 256
The Chat Protocol 260
The ChatServer Class 260
The ChatClient Class 265
Compiling and Running the Example 268

Creating a TCP P2P File Sharing Application 269
The Remote File Stream Protocol 271
The RemoteFileStreamServer Class 272
The RemoteFileStreamProxy Class 276
The FileSharingPeer Class 279
Compiling and Running the Example 283

Access to Web Resources 283
General Usage of Needed .NET Classes 284
A Web Access Client 285
Compiling and Running the Example 289
Request Method 290
Redirection 290

167_C#_TOC.qxd 12/5/01 11:44 AM Page xvi

Contents xvii

Authentication 291
Cookies 291

Summary/Solutions Fast Track/Frequently Asked Questions 292

Chapter 6 Remoting 299
Introduction 300
Introducing Remoting 301

Remoting Architecture 302
Creating a Simple Remoting Client Server 303

Creating the Remote Server Object 303
Creating the Hosting Application 305
Creating the Client Application 306
Understanding the Remoting Code 308
Improving the Sample Application 310

Adding Event Logging and Error Handling 310
Using the soapsuds Tool 312
Using Configuration Files 313
Updating Configuration Files Using the .NET

Framework Configuration Tool 318
Changing the Hosting Application to a Service 319
Using the TCP Channel with the Binary Formatter 321
Summary of the Improved Sample Application 321

Creating an Intranet Application 321
Object Lifetime and Leasing 321

Creating the CountServer Project 322
Creating the CountHost Project 325
Creating the CountClient Project 326
Understanding the Leasing and Sponsorship Code 329
Client Activated Objects 331
Sending and Receiving Objects by Value 332
Sending and Receiving Objects by Reference 333

Creating Service-Based Applications 334
Building a Versioned Remoting Application 334

Creating the VersionHost Project 336
Creating the VersionClient Project 337
Testing Side-By-Side Execution of Remote Objects 339

Summary/Solution Fast Track/Frequently Asked Questions 340

Chapter 7 Message Queuing Using MSMQ 345
Introduction 346
Introducing MSMQ 346

MSMQ Architecture 348
Installing MSMQ 349

Using Visual Studio to Manage Queues 349
Creating a Simple Application 349

Understanding the Messaging Code 353
Sending Messages 353
Message Formats 355
Sending and Receiving Messages with Complex Objects 356
Storing Files within Messages 360

167_C#_TOC.qxd 12/5/01 11:44 AM Page xvii

xviii Contents

Setting Queue Options 364
Creating a Complex Application 365

Creating the MSMQGraphics Drawing Library 366
Creating the DrawingSender Project 369
Creating the DrawingReceiver Project 373

Creating an Asynchronous Application 376
Using Public Queues While Disconnected from the Network 378

Summary/Solutions Fast Track/Frequently Asked Questions 379

Chapter 8 ADO.NET 383
Introduction 384
Introducing ADO.NET 384

ADO.NET Architecture 386
Understanding the Connection Object 388
Building the Connection String 389
Understanding the Command Object 391
Understanding DataReaders 396
Understanding DataSets and DataAdapters 396

DataTable 398
DataColumn 398
DataRow 402

Differences between DataReader Model and DataSet Model 405
Understanding the DataView Object 406

Working with System.Data.OleDb 408
Using DataReaders 408
Using DataSets 414

Working with SQL.NET 418
Using Stored Procedures 419

Working with Odbc.NET 422
Using DSN Connection 423

Summary/Solutions Fast Track/Frequently Asked Questions 426

Chapter 9 Working with XML 431
Introduction 432
Introduction to XML 432

Explaining XML DOM 434
Explaining XPath 435
Explaining XSL 436
Explaining XML Schemas 437
XML Classes in the .NET Framework 437

Working with XML DOM 439
Creating an Empty XML DOM Document 442
Adding an Element to the XML Document 443
Updating an Element in the XML Document 446
Deleting an Element in the XML Document 450
Loading and Saving the XML Document 451

Working with XML and Relational Data 452
XML and the DataSet Class 456
XML Schemas and the DataSet Class 461
Traversing Relations in the DataSet Class 464

167_C#_TOC.qxd 12/5/01 11:44 AM Page xviii

Contents xix

Working with XPath and XSL Transformations 469
Working with XPath 469
Working with XSL 479

Summary/Solutions Fast Track/Frequently Asked Questions 490

Chapter 10 ASP.NET 495
Introduction 496
Introducing the ASP.NET Architecture 496

ASP.NET Server Controls 497
Working with User Controls 501
Custom Controls 510
Understanding the Web.config File 511
Using the Global.asax Page 513

Working with Web Forms 513
Creating a Simple Web Form 513
Building an XML Poll 517

Creating the updateXPoll Method 523
Creating the updateFile Method 525
Displaying the Current Poll Statistics 526

Working with ADO.NET 529
Building a Message Board with SQL 529

Using VS.NET to Validate Form Input with a Regular Expression 538
XML and XSLT 543
Using the String Builder Class 547

Building a Shopping Cart with SQL 549
Creating dataaccess.cs 551
Creating XmlShoppingCart.cs 553
Creating catalog.cs 556

Summary/Solutions Fast Track/Frequently Asked Questions 571

Chapter 11 Web Services 575
Introduction 576
The Case for Web Services 576

The Role of SOAP 577
Why SOAP? 578
Why Web Services? 579
The World of Web Services 579

Web Service Standards 581
Wiring Up Distributed Objects—The SOAP Protocol 581

Creating Your Very First Web Service 581
Running Your Very First Web Service 589

Describing Web Services—WSDL 602
Discovering Web Services—DISCO 608
Publishing Web Services—UDDI 610

Working with Web Services 611
Passing Complex Data Types 611
Error Handling 614

Malformed SOAP Request 614
Wrong Argument Types 617
Exceptions in Server Code 617

167_C#_TOC.qxd 12/5/01 11:44 AM Page xix

xx Contents

Writing a SOAP Client Application 619
Passing Objects 626
Passing Relational Data 631
Passing XML Documents 635
Working with UDDI 639
SOAP Headers 646

Advanced Web Services 646
Maintaining State 647

State Information in the URL (URL Mangling) 648
State Information in the Http Header (Cookies) 651
State Information in the Http Body (SOAP Header) 653

Security 662
Summary/Solutions Fast Track/Frequently Asked Questions 664

Chapter 12 Building a Jokes Web Service 669
Introduction 670
Motivation and Requirements for the Jokes Web Service 670
Functional Application Design 672

Defining Public Methods 672
Defining the Database Schema 673
Defining the Web Service Architecture 674

Security Considerations 676
State Management 677
Error Handling 677

Implementing the Jokes Data Repository 677
Installing the Database 678
Creating the Stored Procedures 680

Implementing the Jokes Middle Tier 694
Setting Up the Visual Studio Project 694
Developing the Error Handler 698
Developing the Database Access Component 702
Developing the User Administration Service 704

Adding New Users 704
Checking Existing User Information 709
Adding Moderators 713
Creating the Public Web Methods—Users 715
Error Handling for the Public Web Methods 718
Creating the Public Web Methods—Administrators 720
Testing the Public Web Methods 722

Developing the Jokes Service 724
Best Practices for Returning Highly Structured Data 724
Setting Up Internal Methods to Wrap the Stored Procedure Calls 727
Setting Up Internal Methods to Manage Jokes and Ratings 734
Setting Up Internal Methods to Return Jokes 742
Creating the Public Web Methods 748

Creating a Client Application 758
Some Ideas to Improve the Jokes Web Service 775

Summary/Solutions Fast Track/Frequently Asked Questions 776

Index 781

167_C#_TOC.qxd 12/5/01 11:44 AM Page xx

Introducing the
Microsoft .NET
Platform

Solutions in this chapter:

■ Introducing the .NET Platform

■ Features of the .NET Platform

■ Components of the .NET Architecture

■ Exploring the Code Cycle

■ The Pursuit of Standardization

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 1

1

167_C#_01.qxd 12/3/01 5:42 PM Page 1

2 Chapter 1 • Introducing the Microsoft .NET Platform

Introduction
The .NET platform is the foundation upon which the next generation of soft-
ware will be built. Microsoft has invested a lot of capital in its development, and
is putting its considerable weight behind its adoption as a new standard.A long
list of Microsoft partners have also announced support for .NET tools and com-
ponents—you can check http://msdn.microsoft.com/vstudio/partners for a cur-
rent list of vendors who have .NET offerings.

The .NET platform is much more than a new language, software develop-
ment kit (SDK), or even an operating system. It offers powerful new services, a
new processor-independent binary format, new managed languages, managed lan-
guage extensions to existing languages, and the list goes on. Effectively using
these new tools is not possible without a firm background of the platform that
will empower your applications.

In this chapter, we take a look at the various components of the .NET plat-
form.We introduce not only the concepts and their technology, but explain the
terminology used to describe them.This will enable you to have a strong under-
standing of the internal workings of the .NET platform, and get the full benefit
of the information in the following chapters.

Introducing the .NET Platform
The precept behind the .NET platform is that the world of computing is
changing from one of PCs connected to servers through networks such as the
Internet, to one where all manner of smart devices, computers, and services work
together to provide a richer user experience.The .NET platform is Microsoft’s
answer to the challenges this change will provide for software developers.

The .NET platform has several components—however, who you ask will
probably affect the answer you receive. Servers such as BizTalk and SQL Server,
as well as services such as .NET My Services and its first visible component,
.NET Passport, are being described by some as integral parts of the .NET plat-
form. However, for many of us, the .NET Framework is what we think of when
.NET is mentioned. It includes Visual Studio.NET (VS.NET), the .NET
Common Language Runtime (CLR), and the .NET Base Class Libraries (BCL).
The other components may be required by specific applications, but they are not
a necessary part of all .NET applications.

Looking at the overall architecture, .NET consists of three primary
components:

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 2

www.syngress.com

■ The .NET Framework A completely new application development
platform.

■ Several .NET products Various applications from Microsoft based on
the .NET Framework, including new versions of Exchange and SQL
Server, which are Extensible Markup Language (XML)–enabled and
integrated into the .NET platform.

■ Several .NET services Provided by Microsoft for use in developing
applications running under the .NET Framework. Microsoft’s Hailstorm
project is actually an attempt to package some of the most crucial Web
Services under the Microsoft brand name.

The .NET Framework itself can be divided into three parts:

■ The CLR A managed execution environment that handles memory
allocation, error trapping, and interacting with the operating-system
services.

■ The Base Class Library An extensive collection of programming
components and application program interfaces (APIs).

■ Two top-level development targets One for Web applications
(ASP.NET) and another for regular Windows applications (Windows
Forms).

The advantages offered by the .NET Framework include shorter develop-
ment cycles (code reuse, fewer programming surprises, support for multiple pro-
gramming languages), easier deployment, fewer data type–related bugs due to
integral type safety, reduced memory leaks thanks to the garbage collector, and, in
general more scalable, reliable applications.

Microsoft .NET and Windows DNA
If some of the marketing speak surrounding .NET sounds familiar, there’s a good
reason:The .NET platform is the next generation of what was called Windows
DNA. However, although Windows DNA did offer some of the building blocks
for creating robust, scalable, distributed systems, it generally had little substance in
and of itself.

Windows DNA was a technical specification that focused on building soft-
ware based on Microsoft server products, utilizing numerous technologies and
languages (ASP, HTML, JavaScript, MTS, COM, and so on), many of which are
quite unrelated from a developer’s point of view.The servers and languages

Introducing the Microsoft .NET Platform • Chapter 1 3

167_C#_01.qxd 12/3/01 5:42 PM Page 3

4 Chapter 1 • Introducing the Microsoft .NET Platform

involved all have varying APIs and type systems, making interoperability a chal-
lenge at best. Herein lies the big difference: .NET is much more than a specifica-
tion.A product in its own right, it includes the tools and languages required to
make developing these types of n-tiered applications easier, neatly packaged as a
single coherent and comprehensive API.

Microsoft .NET Architecture Hierarchy
The diagram in Figure 1.1 shows the .NET platform architecture. Essentially, the
.NET families of languages are each compiled into Microsoft Intermediate
Language (MSIL, or just IL) output according to the Common Language
Specification.The primary types of application development are Web Forms,Web
Services, and Windows Forms applications.These applications communicate using
XML and Simple Object Access Protocol (SOAP), getting their functionality
from the Base Class Library and run within the Common Language Runtime
environment.Visual Studio.NET is not required in order to develop .NET
Framework applications, however it does offer an extensible architecture that
makes it an ideal choice for developing .NET software.

www.syngress.com

Figure 1.1 The .NET Platform Architecture

VB.NET C#Managed
C++

Perl Other .NET
Languages

Common Language Specification (CLS)

Web Services
Web Forms

Windows Forms

Data and XML

Base Class Library

Common Language Runtime (CLR)

V
i
s
u
a
l

S
t
u
d
i
o

.
N
E
T

167_C#_01.qxd 12/3/01 5:42 PM Page 4

Introducing the Microsoft .NET Platform • Chapter 1 5

Features of the .NET Platform
The core of the .NET platform is found in the Common Language Runtime,
Base Class Library, and the Common Language Specification.The .NET Base
Class Library exposes the features of the Common Language Runtime in much
the same way that the Windows API allows you to utilize the features of the
Windows operating system; however, it also provides many higher-level features
that facilitate code reuse.

This architecture gives a great number of benefits, not the least of which is a
consistent API. By writing to the Common Language Runtime and using the
.NET Base Class library, all application services are available via a common
object-oriented programming model.Today some OS functions are accessed via
DLL calls using the C-based API and other facilities are accessed via COM
objects, making the developer do the necessary legwork to make everything work
together smoothly. Some features are available only to developers working in
low-level languages, forcing design decisions.

This new programming model greatly simplifies the efforts that were required
when writing Windows DNA applications, or for that matter, almost any Win32
and COM project. Developers no longer need to be a Windows or COM archi-
tecture guru with an in-depth understanding of GUIDs, IUnknown,AddRef,
Release, HRESULTS, and so on. .NET doesn’t just hide these from the devel-
oper; in the new .NET platform, these concepts simply do not exist at all.

Another great benefit for .NET developers is its model for error handling via
exceptions. Developing software for the Windows platform has always meant you
were pulled into its own inconsistencies; particularly in the ways errors were
returned. Some functions would return Win32 error codes, some return HRE-
SULTS, and some raise exceptions, all requiring the programmer to write dif-
ferent types of error-handling code. In .NET, all errors are reported via
exceptions, which greatly simplifies writing, reading, and maintaining code.
Thanks to the Common Language Specification and Common Type System,
.NET exceptions work across module and language boundaries as well.

Multilanguage Development
Because many languages target the .NET Common Language Runtime, it is now
much easier to implement portions of your application using the language that’s
best suited for it. Older methods of allowing different programming languages to
interoperate, such as COM or CORBA did so through the use of an Interface
Definition Language (IDL).The .NET platform allows languages to be integrated

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 5

6 Chapter 1 • Introducing the Microsoft .NET Platform

with one another through the use of the MSIL.Although it contains instructions
that appear similar to assembly code, such as pushing and popping values and
moving variables in and out of registers, it also contains instructions for managing
objects and invoking their methods, manipulating arrays, and raising and catching
exceptions.

The Microsoft Common Language Specification describes what other devel-
opment tool authors must do in order for their compilers to output IL code that
will allow them to integrate well with other .NET languages. Microsoft currently
provides several compilers that produce IL code targeting the .NET Common
Language Runtime: C++ with managed extensions, C#, Jscript, and Visual Basic.
In addition, several companies other than Microsoft are producing compilers for
languages that also target the .NET Common Language Runtime. Currently
support for COBOL, Eiffle, Fortran, Perl, Python, Scheme, and many more have
been announced by various vendors. For a current list check http://msdn
.microsoft.com/vstudio/partners/language/default.asp.

Why should you care about the details of IL? Because this is how .NET
manages many of its cross-language features. No Interface Definition Language is
required to enable cross-language functionality because IL metadata handles the
entire translation overhead. For instance, with an exception object defined by IL,
the same object can be caught regardless of the .NET language used.Your com-
ponent written in C# can raise an exception that can be caught by the Fortran
application using it. No more worries about different calling conventions or data
types, just seamless interoperability.

Cross-language inheritance is another feature made possible by the use of IL.
You can now create new classes based on components written in other languages,
without needing the source code to the base component. For example, you can
create a class in C++ that derives from a class implemented in Visual Basic. .NET
can enable this because it defines and provides a type system common to all
.NET languages.

One of the great challenges of developing applications under the Windows
DNA specification was in debugging applications developed in a variety of lan-
guages.Thanks to the unified development environment of Visual Studio.NET
and the use of IL as the output of all .NET languages, cross-language debugging
is possible without resorting to assembly language.The .NET Common
Language Runtime fully supports debugging applications that cross language
boundaries.The runtime also provides built-in stack-walking facilities, making it
much easier to locate bugs and errors.

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 6

Introducing the Microsoft .NET Platform • Chapter 1 7

Platform and Processor Independence
The intermediate language is CPU-independent, and it’s much higher level than
most machine languages. Once written and built, a managed .NET application
can execute on any platform that supports the .NET Common Language
Runtime. Because the .NET Common Type System defines the size of the base
data types that are available to .NET applications, and applications run within the
Common Language Runtime environment, the application developer is insulated
from the specifics of any hardware or operating system that supports the .NET
platform.

Although at the time of this writing .NET applications run only on Windows
platforms, on June 27th, 2001 Microsoft announced that it had reached an agree-
ment with Corel to develop a shared-source implementation of a C# compiler
and the .NET Framework infrastructure components for the FreeBSD version of
Unix.This is currently expected to be available in a beta version sometime in the
first half of 2002.

A few weeks later, on July 10, 2001 Microsoft gave the go-ahead to an open-
source version of .NET being planned by Ximian, the developer the popular
GNOME user interface for Linux.You can find the project, called Mono, at
www.go-mono.net.The group is developing a C# language compiler, along with
the .NET Common Language Runtime.Work has also begun on the Base Class
Library.The release of the first usable Project Mono code is planned for the end
of 2001.

Automatic Memory Management
The mere mention of a memory leak problem brings forth images of endless
hours of debugging for developers who’ve come from a development environ-
ment that did not offer automatic memory management. Even for those fortu-
nate enough to work with this in some form have likely spent some time trying
to hunt down obscure bugs caused by tricky code that circumvented the resource
management methodology.

Developers coming from Visual Basic or COM backgrounds are familiar with
the reference counting technique.This technique recovers the memory used by
an object when no other object has a reference to it, essentially when it’s no
longer needed.Although this sounds perfect in theory, in practice it has a few
problems. One of the most common is a circular reference problem where one
object contains a reference to another object which itself contains a reference
back to the first object.When the memory manager looks for objects that are not

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 7

8 Chapter 1 • Introducing the Microsoft .NET Platform

in use, these objects will always have a reference count greater than zero, so unless
they are implicitly deconstructed, their memory may never be recovered.

For a C or C++ programmer—accustomed to ensuring that objects are
properly destroyed, essentially managing memory on their own—this sounds per-
fectly normal, and a good reason for not trusting anyone else to take care of
managing resources. However, in the .NET environment, Microsoft is striving to
make developing software easier. Later in this chapter, we cover a how .NET
garbage collection works, and the improvements that have been made over strict
reference counting or manual memory management approaches.

Versioning Support
Anyone who doesn’t understand the phrase “DLL Hell” hasn’t been developing
(or at least supporting) software for Windows very long. For the uninitiated,
you’ll find yourself in DLL Hell someday when a customer installs a software
package that uses one of the same DLLs as your application. However, your appli-
cation used version 1.0 of this DLL, and the new software replaces it with version
1.1.We developers all always make sure everything is 100% backwards-compat-
ible, right? The new DLL makes your application exhibit some strange problem
or perhaps just stop working altogether.After a lot of investigation, you figure out
what the offending DLL is and have the customer replace the new one with the
version that works with your software. Now their new software doesn’t work…
welcome to DLL Hell. Many developers resort to simply installing every DLL
their application requires in the application directory so that it will be found first
when the application loads the libraries.This defeats the purpose of shared
libraries, but it is one way around the problem.

COM was going to change this; one of its primary tenants was that you never
changed a methods interface you simply add new methods. Unfortunately, software
developers are frequently perfectionists, and leaving a “broken” function alone just
chafes some people. Problem is, changing a components interface once it’s in use
can have adverse affects on the client software that expected the old behavior.
Because COM objects are loaded using information in the Registry, simply placing
the DLL or control in the application directory doesn’t work for this problem.

The .NET architecture now separates application components so that an
application always loads the components with which it was built and tested. If the
application runs after installation, the application should always run.This is done
with assemblies, which are .NET-packaged components.Although current DLLs
and COM objects do contain version information, the OS does not use this
information for any real purpose.Assemblies contain version information that the

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 8

Introducing the Microsoft .NET Platform • Chapter 1 9

.NET Common Language Runtime uses to ensure that an application will load
the components it was built with.We cover more of the specifics of how assem-
blies and versioning works later in the chapter.

Support for Open Standards
In today’s world, not every device you may want to work with is going to be
running a Microsoft OS or using an Intel CPU. Realizing this, the architects of
.NET are relying on XML and its most visible descendant, SOAP, an emerging
standard for sending messages across the Internet that activates programs or appli-
cations regardless of their underlying infrastructure. SOAP will provide the means
for disparate systems to exchange information easily, but even more, SOAP allows
you to invoke methods on remote systems and return the results. Because SOAP
is a simple text-based protocol similar to HTTP, it can easily pass through fire-
walls, unlike DCOM or CORBA objects.

Other standards employed by the .NET platform include Universal
Description, Discovery, and Integration (UDDI), a directory of companies and
their XML interfaces and the Web Services Description Language (WSDL),
which describes what a piece of application code can do. By basing much of
.NET on open standards and by submitting the proposed draft standards for C#
and the .NET Common Language Infrastructure to ECMA, an international
standards organization, Microsoft hopes to see its version of the future of software
adopted beyond its own domain.

Easy Deployment
Today, developing installations for Windows-based applications can be incredibly
difficult, to the point that most companies use third party tools for developing
their installation programs, and even then it’s not pleasant.There are usually a
large number of files to be installed in several directories, various Registry set-
tings, installation of required COM components, and shortcuts that need to be
created, and so on. Completely uninstalling an application is nearly impossible,
most leave bits and pieces of themselves around even if they provide an uninstall
feature.With the release of Windows 2000, Microsoft introduced a new installa-
tion engine that helps with some of these issues, but it is still possible that the
author of a Microsoft Installer Package may fail to do everything correctly. Even
with those third party tools specifically designed to make developing installation
programs easier, it is still frequently a monumental task to correctly install a
retrievial application.

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 9

10 Chapter 1 • Introducing the Microsoft .NET Platform

The .NET design team must have felt the same way about this problem,
because .NET plans to do away with these issues for good. .NET components
are not referenced in the Registry, thanks to the use of metadata and reflection,
components are self describing. In fact, installing many .NET applications will
require no more than copying their files to a directory, and uninstalling an appli-
cation will be as easy as deleting those files.

Distributed Architecture
Today’s distributed applications are much different than those we will see in the
future. Microsoft certainly believes this; they say they are betting the company on
the concept of distributed Web services.

www.syngress.com

Using the Visual Studio.NET Setup Tools
Realizing that deploying applications and authoring installation pack-
ages is frequently a monumental task, the Visual Studio.NET team inte-
grated a number of setup tools into the Visual Studio.NET environment.

After you have completed your Visual Studio.NET project develop-
ment, start a new project from the File menu. Choose Setup and
Deployment Projects from the selection list. You’ll see a number of
setup project options listed:

■ Cab Project
■ Deploy Wizard
■ Merge Module Project
■ Setup Project
■ Setup Wizard
■ Web Setup Project

Using the wizards, you can select the Visual Studio project you want
to use and have a setup or deployment project created automatically. If
the defaults are not sufficient for your needs, you can use the new setup
project as a basis for creating your custom setup or deployment.

Developing & Deploying…

167_C#_01.qxd 12/3/01 5:42 PM Page 10

Introducing the Microsoft .NET Platform • Chapter 1 11

For example, today when a user is interacting with a portal site, it appears to
them that they are working with one remote server. Most of us know that is nor-
mally not the case, at least for a site of any significant size.There are various
servers and applications behind the scenes are accessing information on several
remote sites, combining it with information from their user database and merging
it all into an integrated product that is delivered to the user via their browser.

As useful as these types of applications are, they are all very complex to
develop and maintain. Each provider of information has developed different
interfaces to access data and processes on their servers.This redundant develop-
ment is grossly inefficient and for the most part fairly boring, so there has been a
great deal of activity around three standards to streamline the process: XML,
SOAP, and UDDI.As we discussed earlier, these are used in .NET and also in
competing, less well known initiatives from IBM and Sun.

Interoperability with Unmanaged Code
As you can probably guess, unmanaged code is code that isn’t managed by the
.NET Common Language Runtime. However, this code is still run by the CLR,
it just doesn’t get the advantages that it offers, such as the Common Type System
and Automatic Memory Management.You will probably end up using unman-
aged code in a couple of different situations:

■ Calling DLL functions There is a lot of functionality locked inside
DLLs today. Not every company is going to rush to deliver a .NET
component version of their products, so if you need to interface with
them, you’ll be calling unmanaged code.

■ Using COM components This is likely to be for pretty much the
same reasons you might be required to call DLL functions.

■ Calling .NET services from COM components Although this
sounds a little odd, it is possible.A COM client can be made to call a
.NET component as though it was a COM server.

Here’s a little more information on the COM interoperability issue. Microsoft
didn’t want to force companies to abandon their existing COM components;
especially because many of Microsoft’s own products are COM-based today.
COM components interoperate with the .NET runtime through an interop layer
that handles all the work required when translating messages that pass back and
forth between the managed runtime and the COM components operating as
unmanaged code.

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 11

12 Chapter 1 • Introducing the Microsoft .NET Platform

On the other side of the coin, companies with a vested interest in COM
technology might want to use a few bits and pieces from the .NET platform,
sticking a toe in before taking the plunge. COM clients can easily interface with
.NET components through the COM interop layer.

Security
Distributed component-based applications require security, and thus far Microsoft
hasn’t had a lot of positive feedback about its products’ security features.
Fortunately, the .NET designers decided to take a new approach, different than
traditional OS security, which provides isolation and access control based on user
accounts, and also unlike the model used by Java, where code that is not trusted is
run in a “sandbox,” with no access to critical resources.The .NET Framework
provides a fine-grained control of application security.

Security for .NET applications starts as soon as a class is loaded by the CLR.
Before the class loader instantiates a class, security information—such as accessi-
bility rules and self-consistency requirements—are checked. Calls to class methods
are checked for type safety. If you’ve ever heard of a security vulnerability caused
by a “buffer overrun,” you can understand why this is important.With verified
code, a method that is declared as taking a 4-byte integer parameter will reject an
attempt to call it with an 8-byte integer parameter.Verification also prevents
applications from executing code at a random location in memory, a common
tactic in buffer overflow exploits.

Additionally, as code requests access to certain resources, the class credentials are
verified. .NET security crosses process boundaries and even machine boundaries to
prevent access to sensitive data or resources in a distributed application environ-
ment.The following are some of the basic elements of the .NET security system:

■ Evidence-based security is a new concept introduced by the
.NET Framework. An assembly contains several important pieces of
information that can be used to decide what level of access to grant the
component. Some of the information used includes what site the com-
ponent was downloaded from, what zone that site was in, (Internet,
intranet, local machine, and so on) and the strong name of the assembly.
The strong name refers to an encrypted identifier that uniquely defines
the assembly and ensures that it has not been tampered with.

■ The .NET Common Language Runtime further provides secu-
rity using a Policy-Driven Trust Model Using Code Evidence.

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 12

Introducing the Microsoft .NET Platform • Chapter 1 13

It sounds worse than it really is. Essentially this is a system of security
policies that can be set by an administrator to allow certain levels of
access based on the component’s assembly information.The policies are
set at three levels: the enterprise, the individual machine, and the user.

■ Calling .NET Framework methods from the Base Class Library
get the benefits of built in security. That is, the developer doesn’t
have to make explicit security calls to access system resources. However,
if your components expose interfaces to protected resources, you will be
expected to take the appropriate security measures.

■ Role-based security plays a part in the .NET security scheme.
Many applications need to restrict access to certain functions or
resources based on the user, and .NET introduces the concepts of identi-
ties and principals to incorporate these functions.

■ Authentication and authorization functions are accessed
through a single API. It can easily be extended to incorporate appli-
cation-specific logic as required.Authentication methods include basic
operating system user identification, basic HTTP,ASP.NET forms,
Digest and Kerberos, as well as the new .NET service, Microsoft .NET
Passport.

■ Isolated storage is a special area on disk assigned to a specific
assembly by the security system. No access to other files or data is
allowed, and each assembly using isolated storage is separated from each
other. Isolated storage can be used for a saving a components state, or
saving settings, and can be used by components that do not have access
to read and write files on the system.

■ A robust set of cryptographic functions that support encryp-
tion, digital signatures, hashing, and random-number generation
are included in the .NET Framework. These are implemented
using well-known algorithms, such as RSA, DSA, Rijndael/AES,Triple
DES, DES, and RC2, as well as the MD5, SHA1, SHA-256, SHA-384,
and SHA-512 hash algorithms.Additionally, the XML Digital Signature
specification, under development by the Internet Engineering Task Force
(IETF) and the World Wide Web Consortium (W3C), is also available.
The .NET Framework uses these cryptographic functions to support
various internal services.The cryptographic objects are also available in
the Base Class Library for developers who require this functionality.

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 13

14 Chapter 1 • Introducing the Microsoft .NET Platform

Performance and Scalability
Let’s face it—there is no magic bullet that will allow a poorly designed applica-
tion to scale well.What the .NET Framework is giving you are tools to make it
easier to design better performing software. One big gain for Web development
will come from ASP.NET’s improved support for keeping code, data, and presen-
tation separate. .NET offers features for transaction handling and component
pooling, but makes them easier to use than they were in previous incarnations, so
more development will be likely to take advantage of them.The .NET Base Class
Library has an enormous set of functionality, which means that you will have to
write less basic code and spend more time refining the features and performance
of your applications.

New versions of Microsoft software christened with the .NET emblem offer
improved performance over earlier versions. SQL Server.NET offers quite an
enhancement over earlier versions of the database engine, and other server prod-
ucts offer enhanced scalability as well.When you redesign an application around
the .NET Framework, take advantage of the latest advances all around and see
what the results are.

Components of the .NET Architecture
As we mentioned earlier, there is a lot to the .NET Framework. In this section,
we identify the individual components and describe their features and how they
fit into the overall picture.

.NET Runtime
The heart of the .NET Framework is the CLR. Similar in concept to the Java
Virtual Machine, it is a runtime environment that executes MSIL code. Unlike
the Java environment, which is the concept of one language for all purposes, the
.NET platform supports multiple programming languages through the use of the
Common Language Specification, which defines the output required of com-
pilers that want to target the CLR.

Managed/Unmanaged Code
Because all code targeted at the .NET platform runs with the CLR environment,
it is referred to as managed code.This simply means that the execution of the
code and its behavior is managed by the CLR.The metadata available with man-
aged code contains the information required to allow the CLR to manage its safe

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 14

Introducing the Microsoft .NET Platform • Chapter 1 15

execution. By safe execution we mean memory and security management, type
safety, and interlanguage interoperability. Unmanaged code can write to areas of
memory it does not own, execute instructions at arbitrary locations in memory,
and exhibit any number of other bad behaviors that cannot be managed or pre-
vented by the CLR. Most of the applications running on Windows today are
unmanaged.

Intermediate Language
The .NET intermediate language, MSIL, is defined in the Common Language
Specification. It is an amalgam of a low-level language similar in many ways to a
machine language and a higher object language.You can write applications directly
in MSIL, much as you can write directly in assembly language.Thankfully, this is
not necessary for most purposes.

Common Type System
.NET applications, regardless of their source languages all share a common type
system.What this means is that you no longer have to worry when doing devel-
opment in multiple languages about how a data type declared in one language
needs to be declared in another.Any .NET type has the same attributes regardless
of the language it is used in. Furthermore, all .NET data types are objects,
derived from System.Object.

Because all data types derive from a common base class, they all share some
basic functionality, for example the ability to be converted to a string, serialized,
or stored in a collection.

.NET Base Class Library (BCL)
If I could have bought a library that offered everything the .NET Base Class
Library offers when I started programming, a year’s salary would have seemed
reasonable—there really is that much to it.Almost everything in the .NET envi-
ronment is contained within the BCL. Let’s look at a “Hello World” example:

using System;

class Hello

{

public static void Main()

{

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 15

16 Chapter 1 • Introducing the Microsoft .NET Platform

Console.WriteLine("Hello World");

}

}

The only function contained in this simple program is a call to the WriteLine
method of the Console class.What is really unique about the .NET environment
is that .NET languages don’t have to implement even the most basic functions;
they are available in the BCL. Because all .NET languages share the same
common set of libraries, the code being executed by your C# program is the
same code being executed by a program written in another language.This means
that all languages that target the .NET environment essentially share the same
capabilities, except they have different syntax.

Some people will wonder why we even have different languages if they all
have the same capabilities.A few reasons immediately spring to mind:

■ Programmers don’t like change.

■ Programmers usually have a favorite language.

■ Programmers don’t like change…

Imagine if Microsoft had come out with all the good things in .NET, but said
that in order to use it, we all had to learn a new language. Lots of people might
have never even given it an honest look unless forced by their employers. Making
it available for all languages makes it seem less like the chore of learning a new
language and more like the excitement of receiving a new library with tens of
thousands of functions that will make your life as a developer easier.

Assemblies
Assemblies are the means of packaging and deploying applications and compo-
nents in .NET. Just like a compiled application or component today, assemblies
can be made up of either single or multiple files.An assembly contains metadata
information (covered in the next section), which is used by the CLR for every-
thing from type checking and security to actually invoking the components
methods.All of this means that you don’t need to register .NET components,
unlike COM objects.

Metadata
Metadata is the feature that lets the CLR know the details about a particular
component.The metadata for an object is persisted at compile time and then

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 16

Introducing the Microsoft .NET Platform • Chapter 1 17

queried at runtime so that the CLR knows how to instantiate objects, call their
methods, and access their properties.Through a process called reflection, an appli-
cation can interrogate this metadata and learn what an object exposes.This is
similar to the way IDispatch and type libraries work in COM.

Unlike COM, where the information about a component can be found in
type libraries and the Registry, where it is only associated with the actual compo-
nent, .NET metadata is stored within the component itself in a binary format
packaged inside the assembly.The metadata contains a declaration for every type
and a declaration, including names and types, for all of its members (methods,
fields, properties, and events). For every method implemented by the component,
the metadata contains information that the loader uses to locate the method
body. It is also possible (but not required) for the creator of a class type to asso-
ciate help text and comments with a method or parameter in the metadata, sim-
ilar to the way that information can be associated with a component using
information within the IDL in the COM world.

Besides the low-level information described in this section, a component also
includes information regarding its version and any culture information specific to
the component.The culture information can be queried at runtime and used in
developing localized applications. Look at the System.Reflection.AssemblyName class
as a place to get started, and check out the CultureInfo class to see how extensive
the culture support of .NET components can be.You can also use reflection to
determine a components version, which might be useful if your application is
dynamically loading components and needs to make adjustments for different
versions.

Assemblies and Modules
.NET applications are deployed as assemblies, which can be a single executable or
a collection of components.When you create a .NET application, you are actu-
ally creating an assembly, which contains a manifest that describes the assembly.
This manifest data contains the assembly name, its versioning information, any
assemblies referenced by this assembly and their versions, a listing of types in the
assembly, security permissions, its product information (company, trademark, and
so on), and any custom attribute.

An assembly that is shared between multiple applications also has a shared
name (also known as a strong name).This is a key pair containing a globally unique
name (think GUID from COM) as well as an encrypted digital signature to pre-
vent tampering.This information is optional and may not be in a component’s
manifest if it was not intended as a shared component.

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 17

18 Chapter 1 • Introducing the Microsoft .NET Platform

Creating .NET modules that do not contain assembly manifest data is also
possible.These modules can then be added to an assembly, by including it in the
Visual Studio project.An example of why you might want to do this would be if
you had a component that was logically divided into several subcomponents that
would be best distributed and versioned as a single unit.

Assembly Cache
The assembly cache is a directory normally found in the \WinNT\Assembly direc-
tory.When an assembly is installed on the machine, it can be merged into the
assembly cache, depending upon the installation author or the source of the
assembly.The assembly cache has two separate caches: a global assembly cache and
a transient assembly cache.When assemblies are downloaded to the local machine
using Internet Explorer, the assembly is automatically installed in the transient
assembly cache. Keeping these assemblies separated prevents a downloaded com-
ponent from impacting the operation of an installed application.

Now for what may be a great feature that you won’t think of until your pro-
ject is finished.The assembly cache will hold multiple versions of an assembly,
and if your installation programs are written correctly, they cannot overwrite a

www.syngress.com

Finally, a Complete Debugging Solution
Some old-school programmers eschew today’s fancy Integrated
Development Environments (IDEs) as a mere toy for the weak. (Giving
away my age, it’s mostly us crusty old Unix programmers) However, the
debugging capabilities offered by the new Visual Studio.NET IDE may
finally change their minds. The new IDE provides end-to-end debugging
of applications across languages, projects, processes, and stored proce-
dures. This is a monumental achievement on the part of the Visual
Studio development team.

Using the integrated debugger, developers can step between HTML,
script, and code written in any of the .NET supported languages com-
plete with integrated call stacks offering a total solution for end-to-end
development.

Debugging…

167_C#_01.qxd 12/3/01 5:42 PM Page 18

Introducing the Microsoft .NET Platform • Chapter 1 19

previous version of an assembly that may be needed by another application.You
read that right, the .NET Framework is making a solid effort to banish DLL Hell.

Just to clarify what this means, the assembly cache can contain multiple ver-
sions of a component, as an example, we’ll say we’ve installed versions 1.0 and 1.1
of MyComponent.dll on a system. If an application was built and tested using
Version 1.0 of MyComponent.dll, the CLR will see this when it reads the appli-
cation’s metadata and will load Version 1.0 of MyComponent.dll, even though a
later version of the assembly exists in the cache.The application will continue to
function normally because the code that it is executing is the same code that it
was built and tested with.Thanks to this feature, you also don’t have to maintain
compatibility with earlier versions of your components.This feature alone is
enough to make the .NET architecture great.

Reflection
Reflection is the means by which .NET applications can access an assembly’s meta-
data information and discover its methods and data types at runtime.You can also
dynamically invoke methods and use type information through late binding
through the Reflection API.

The System.Type class is the core of the reflection system. System.Type is an
abstract class that is used to represent a Common Type System type. It includes
methods that allow you to determine the type’s name, what module it is con-
tained in, and its namespace, as well as if it is a value or reference type.

For example, using the System.Reflection.Assembly class you can retrieve all of
the types in an assembly, and all of the modules contained in the assembly.To
invoke a method of a class loaded at runtime, you would use a combination of
the Activator class to create an instance of the type you had obtained through the
Assembly class.Then you can use the type’s GetMethod method to create a
MethodInfo object by specifying the method name that you wish to invoke.At
this point, you can use the MethodInfo object’s Invoke method, passing it the
instance of the type you created with the Activator class.

It sounds a lot like some of the nasty bits of COM programming, but the
Reflection API genuinely makes it a lot easier.

Just In Time Compilation
The .NET CLR utilizes Just In Time (JIT) compilation technology to convert
the IL code back to a platform/device–specific code. In .NET, you currently have
three types of JIT compilers:

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 19

20 Chapter 1 • Introducing the Microsoft .NET Platform

■ Pre-JIT This JIT compiles an assembly’s entire code into native code at
one stretch.You would normally use this at installation time.

■ Econo-JIT You would use this JIT on devices with limited resources. It
compiles the IL code bit-by-bit, freeing resources used by the cached
native code when required.

■ Normal JIT The default JIT compiles code only as it is called and
places the resulting native code in the cache.

In essence, the purpose of a JIT compiler is to bring higher performance to
interpreted code by placing the compiled native code in a cache, so that when
the next call is made to the same method/procedure, the cached code is exe-
cuted, resulting in an increase in application speed.

Garbage Collection
Memory management is one of those housekeeping duties that takes a lot of pro-
gramming time away from developing new code while you track down memory
leaks.A day spent hunting for an elusive memory problem usually isn’t a produc-
tive day.

.NET hopes to do away with all of that within the managed environment
with the garbage collection system. Garbage collection runs when your applica-
tion is apparently out of free memory, or when it is implicitly called but its exact
time of execution cannot be determined. Let’s examine how the system works.

When your application requests more memory, and the memory allocator
reports that there is no more memory on the managed heap, garbage collection is
called.The garbage collector starts by assuming everything in memory is trash
that can be freed. It then walks though your application’s memory, building a
graph of all memory that is currently referenced by the application. Once it has a
complete graph, it compacts the heap by moving all the memory that is gen-
uinely in use together at the start of the free memory heap.After this is complete,
it moves the pointer that the memory allocator uses to determine where to start
allocating memory from the top of this new heap. It also updates all of your
application’s references to point to their new locations in memory.This approach
is commonly called a mark and sweep implementation.

The exception to this is with individual objects over 20,000 bytes.Very large
objects are allocated from a different heap, and when this heap is garbage col-
lected, they are not moved, because moving memory in this size chunks would
have an adverse effect on application performance.

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 20

Introducing the Microsoft .NET Platform • Chapter 1 21

As you can see, garbage collection involves a lot of work, and it does take
some time.A number of performance optimizations involved in the .NET
garbage collection mechanism make it much more than the simple description
given here.

Normally you will just let the CLR take care of running garbage collection
when it is required. However, at times you may want to force the garbage col-
lector to run, perhaps before starting an operation that is going to require a large
amount of memory.To do this, just call GC.Collect().And if you want to report
on your memory use at various points during your application’s execution to
help you determine when might be a good time to force collection, you can use
GC.GetTotalMemory(bool forceFullCollection).

As you can probably guess, the parameter forceFullCollection determines if
garbage collection is run before returning the amount of memory in use.

NOTE

For those of you who may want to know more about how the .NET
garbage collector actually works its magic, Jeffery Richter wrote two arti-
cles for MSDN magazine in the November and December 2000 issues
that describe the system architecture in some depth. You can find them
online at msdn.microsoft.com/msdnmag/issues/1100/GCI/GCI.asp and
msdn.microsoft.com/msdnmag/issues/1200/GCI2/GCI2.asp.

Exploring the Code Cycle
Let’s take a look at what’s really going on with a .NET application from code to
execution.We’ve already covered that the compiler is going to transform your
source code into IL, but what else is happening from code to running applica-
tion? Here’s an example:

1. You write your “Hello World” application in Visual Studio .NET using
the C# Console Application project.

2. The compiler outputs the MSIL code and a manifest into an exe file
that has a standard Win32 executable header.

Let’s stop here and take a look at the output using ildasm.exe, a MSIL disas-
sembly tool provided with the .NET SDK. Here is the Hello.exe manifest:

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 21

22 Chapter 1 • Introducing the Microsoft .NET Platform

.assembly extern mscorlib

{

.publickeytoken = (B7 7A 5C 56 19 34 E0 89) // .z\V.4..

.ver 1:0:2411:0

}

.assembly Hello

{

.custom instance void [mscorlib]System.Reflection.

AssemblyKeyNameAttribute::.ctor(string) = (01 00 00 00 00)

.custom instance void [mscorlib]System.Reflection.

AssemblyKeyFileAttribute::.ctor(string) = (01 00 00 00 00)

.custom instance void [mscorlib]System.Reflection.

AssemblyDelaySignAttribute::.ctor(bool) = (01 00 00 00 00)

.custom instance void [mscorlib]System.Reflection.

AssemblyTrademarkAttribute::.ctor(string) = (01 00 00 00 00)

.custom instance void [mscorlib]System.Reflection.

AssemblyCopyrightAttribute::.ctor(string) = (01 00 00 00 00)

.custom instance void [mscorlib]System.Reflection.

AssemblyProductAttribute::.ctor(string) = (01 00 00 00 00)

.custom instance void [mscorlib]System.Reflection.

AssemblyCompanyAttribute::.ctor(string) = (01 00 00 00 00)

.custom instance void [mscorlib]System.Reflection.

AssemblyConfigurationAttribute::.ctor(string) = (01 00 00 00 00)

.custom instance void [mscorlib]System.Reflection.

AssemblyDescriptionAttribute::.ctor(string) = (01 00 00 00 00)

.custom instance void [mscorlib]System.Reflection.

AssemblyTitleAttribute::.ctor(string) = (01 00 00 00 00)

//--The following custom attribute is added automatically, do not

// uncomment--

// .custom instance void

// [mscorlib]System.Diagnostics.DebuggableAttribute::.ctor(bool,

// bool) = (01 00 01 01 00 00)

.hash algorithm 0x00008004

.ver 1:0:628:38203

}

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 22

Introducing the Microsoft .NET Platform • Chapter 1 23

.module Hello.exe

// MVID: {D840F359-1315-4B70-8238-0D77358D57D0}

.imagebase 0x00400000

.subsystem 0x00000003

.file alignment 512

.corflags 0x00000001

// Image base: 0x032c0000

You can see that the manifest references the assembly mscorlib that contains
the System.Console.WriteLine method. It also contains the version of this assembly
that the application was built with, so that the correct one can be loaded when
the application is executed.And here is the MSIL output for the Main() function:

.method public hidebysig static void Main() cil managed

{

.entrypoint

// Code size 11 (0xb)

.maxstack 8

IL_0000: ldstr "Hello World"

IL_0005: call void [mscorlib]System.Console::WriteLine(string)

IL_000a: ret

} // end of method Hello::Main

Pretty basic stuff—the CLR is doing all the work.What you can’t see is that
behind the scenes the compiler added a call to a function in the .NET Runtime
named _CorExeMain. If you examine the EXE using the depends.exe utility that
installs with VS .NET, you will see that it is bound to mscoree.dll for this func-
tion, but you won’t see any of the DLLs containing the .NET Base Class Library
Functions.This is because those functions are invoked through the CLR, not
through the normal Windows operating system functions. Figure 1.2 illustrates
the process by which your application’s source code is eventually executed as
native code.

1. When the application is executed, it first behaves just like a normal
Win32 application, loading any required libraries, including mscoree.dll,
which exports the _CorExeMain function.

2. The loader then jumps to the EXE’s entry point. Because the Windows
operating system itself cannot execute the MSIL code, the C# compiler
placed the _CorExeMain function at the entry point.

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 23

24 Chapter 1 • Introducing the Microsoft .NET Platform

3. When the _CorExeMain function is invoked, it begins the execution of
the MSIL code.

4. The CLR compiles the MSIL code into the native machine format as it
processes the MSIL code by using a JIT compiler.The JIT compiles
code as it is executed, it does not process the entire application before
beginning execution. Once a given function is compiled, the resulting
machine code is cached so that it does not have to be recompiled at a
later point.

5. The native code is then executed by the system.

The Pursuit of Standardization
Microsoft is actively pursuing a process whereby the Common Language
Infrastructure and C# Programming Language can be standardized so that any

www.syngress.com

Figure 1.2 Code Cycle Diagram

Application source code is written.

A .NET compiler generates IL code and builds assembly.

Application execution begins normally, with the loader reading the Windows executable header.

The _CorExeMain function inserted at the application’s entry point is executed by the OS.

_CorExeMain uses a Just In Time (JIT) compiler to compile the IL code to native code.

Native code is executed.

Required DLLs are loaded.

167_C#_01.qxd 12/3/01 5:42 PM Page 24

Introducing the Microsoft .NET Platform • Chapter 1 25

company or individual can create applications based on a recognized standard. On
October 31, 2000, Hewlett-Packard, Intel, and Microsoft jointly submitted pro-
posed draft standards to ECMA for use in defining the C# Programming
Language (ECMA TC39/TG2) and the Common Language Infrastructure
(ECMA TC39/TG3) standards.The official submissions are available from the
ECMA Web site at www.ecma.ch.

Since submission, the original documents have been reviewed and edited by
the participants of ECMA TC39/TG2 and TC39/TG3. However, little informa-
tion is available about the group’s progress, other than the availability of updated
documentation once or twice a month. Given that the standards process for plat-
forms and languages that have already been released and are in widespread use is
generally measured in years, it is probably premature at this point to say much
about the progress that is being made.

Fujitsu Software, Hewlett-Packard, Intel Corporation, International Business
Machines, ISE, Microsoft Corporation, Monash University, Netscape, Openwave,
Plum Hall, and Sun Microsystems are all participants in the standards process.

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 25

26 Chapter 1 • Introducing the Microsoft .NET Platform

Summary
The .NET platform is a great leap forward in the evolution of computing from
PCs connected to servers through networks such as the Internet, to one where all
manner of smart devices, computers, and services work together to provide a
richer user experience.The .NET platform is Microsoft’s vision of how the
developers of this new breed of software will approach the challenges this change
will provide.

If some of the .NET concepts sound familiar, there’s a good reason:The
.NET platform is the next generation of what was called Windows DNA.
Although Windows DNA did offer some of the building blocks for creating
robust, scalable, distributed systems, it generally had little substance in and of
itself, where .NET actually has an integrated, comprehensive design and well
conceived, usable tools.

The components at the heart of the .NET platform are the Common
Language Runtime, the Base Class Library, and the Common Language
Specification.The .NET Base Class Library exposes the features of the Common
Language Runtime in much the same way that the Windows API allows you to
utilize the features of the Windows operating system. However, it also provides
many higher-level features that facilitate code reuse.The Common Language
Specification gives language vendors and compiler developers the base requirements
for creating code that targets the .NET Common Language Runtime, making it
much easier to implement portions of your application using the language that’s
best suited for it.The .NET platform allows languages to be integrated with one
another by specifying the use of the Microsoft Intermediate Language (MSIL, or
just IL) as the output for all programming languages targeting the platform.This
intermediate language is CPU-independent, and much higher level than most
machine languages.

Automatic resource management is one of the most discussed features of the
.NET platform, and for good reason. Countless man-hours have been spent
chasing problems introduced by poor memory management.Thanks to the man-
aged heap memory allocator and automatic garbage collection, the developer is
now relieved of this tedious task and can concentrate on the problem to be
solved, rather than on housekeeping.When an allocated object is no longer
needed by the program, it will be automatically be cleaned up and the memory
placed back in the managed heap as available for use.

Once written and built, a managed .NET application can execute on any
platform that supports the .NET Common Language Runtime. Because the

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 26

Introducing the Microsoft .NET Platform • Chapter 1 27

.NET Common Type System defines the size of the base data types that are avail-
able to .NET applications, and applications run within the Common Language
Runtime environment, the application developer is insulated from the specifics of
any hardware or operating system that supports the .NET platform.Although
currently this means only Microsoft Windows family of operating systems, work is
underway to make the .NET core components available on FreeBSD and Linux.

The .NET architecture now separates application components so that an appli-
cation always loads the components with which it was built and tested. If the appli-
cation runs after installation, the application should always run.This is done with
assemblies, which are .NET-packaged components.Assemblies contain version
information that the .NET Common Language Runtime uses to ensure that an
application will load the components it was built with. Installing a new version of
an assembly does not overwrite the previous version, thanks to the assembly cache,
a specialized container (directory) that store system-installed .NET components.

Given the massive amount of legacy code in use, it was necessary to allow
.NET applications to interact with unmanaged code.As you can probably guess,
unmanaged code is code that isn’t managed by the .NET Common Language
Runtime. However, this code is still run by the CLR, it just doesn’t get the advan-
tages that it offers, such as the Common Type System and Automatic Memory
Management.There are a couple of times when you will probably end up using
unmanaged code, making API or other DLL calls, interfacing with COM compo-
nents or allowing COM components to utilize .NET components. However,
realize that by calling unmanaged code, you may be giving up portability.

Developing software using .NET technology is a big change; the technology
has a lot of pieces to the puzzle and more than a few new ideas. Hopefully, we have
given you a solid introduction into the basics, and you now have a foundation
upon which to build your skills using the information found in the rest of the
book. If you want more detail on a particular feature of the platform, the MSDN
Web site contains a vast amount of reference material that covers the features of the
.NET platform at a much more technical level than we attempted here.

Solutions Fast Track

Introducing the .NET Platform

Software is changing from a closed to a connected world, much like
personal computers themselves are.The .NET Framework is designed to

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 27

28 Chapter 1 • Introducing the Microsoft .NET Platform

make it easier to create distributed applications that leverage this new
paradigm.

There are multiple pieces to the .NET Framework, starting from a
shared Common Language Infrastructure and extended to various
Microsoft servers and services.

The .NET Framework is designed as a single consistent development
environment offering shorter development cycles, improved scalability,
and better behaved programs.

Features of the .NET Platform

The .NET platform hides the gory details of interfacing with the
underlying operating system functions and lets you concentrate on the
solution at hand.

Multilanguage development is greatly simplified thanks to the use of the
intermediate language and Common Language Runtime.

Automatic memory management reduces the level of effort required to
manage resources; you can simply let the garbage collector take care of
cleaning up and preventing memory leaks.

It includes a new versioning system designed to end DLL Hell.

Much of the platform is built on open standards, such as XML and SOAP.

You are not forced to rewrite everything to use .NET—interoperability
with existing code and components is maintained.

It includes an improved security model, which allows a fine-grained
control as well as integrated safety from security flaws caused by
problems related to buffer overruns.

Components of the .NET Architecture

The Common Language Runtime is a managed execution environment
offering many advantages over the traditional native code development
methods.

All languages compile to the same intermediate language.The IL is
platform- and processor-independent, potentially allowing .NET
applications someday to run on non-Windows operating systems.

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 28

Introducing the Microsoft .NET Platform • Chapter 1 29

The Common Type System allows all languages to share data types
without requiring that the developer deal with interpreting different
languages conventions.

It includes a large Base Class Library shared by all .NET languages,
offering a wide range of functionality intended to improve developer
functionality.

Assemblies and metadata are designed to improve on some of the
weaknesses of the COM model, by including information about the
versions of required components a given component was built with.

The assembly cache is a new facility designed to contain shared .NET
components.The assembly cache can contain multiple versions of a
given assembly, helping to put an end to DLL Hell.

Through a process called reflection, an application can interrogate this
metadata and learn what an object exposes.

Exploring the Code Cycle

Compiling your source code, regardless of the language used, results in
IL code output.

Behind the scenes, the compiler inserts a stub function to load the CLR,
which then runs the Just In Time Compiler to transform the IL code
into native code.

The Pursuit of Standardization

Microsoft is making an active effort to see that the technologies on
which the .NET platform is based are accepted as standards by a
recognized standards organization.

The draft standards for the CLI and C# language have been submitted
to ECMA.

The current versions of the standards are available online.They are
updated once or twice a month at the current time.

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 29

30 Chapter 1 • Introducing the Microsoft .NET Platform

Q: If any .NET language has access to everything in the Base Class Library, why
is there so much talk about C#?

A: Although in theory all .NET languages have equal access to the BCL, in
reality it was left up to the language teams to determine what level of support
they wanted to offer, at least beyond the minimums needed for basic compli-
ance. In our opinion, C#, because it was developed as a new language specifi-
cally for the .NET platform, has the best support for .NET applications.

Q: I’m a C/C++ developer.Why on earth would I give up all the power and
control I have now? And what about speed—native code is always better.

A: The .NET platform is all about a new way of developing applications. Many
of the enhancements are there for increased productivity. For example, today a
C++ application for the desktop and PocketPC are vastly different pieces of
code. In the .NET world, they can be the same.Additionally, there are a lot of
prebuilt classes available in the BCL that have a lot to offer any developer.As
to the native code issue, that is debatable. In a perfect model, you might be
right, but for the majority of applications developed today, it’s just not a signif-
icant factor.The improvements in versioning support and automatic memory
management alone make a good argument for the managed environment.

Q: Is everything in the Win32 API exposed through the BCL?

A: Not through the BCL, but you can make API calls directly through most
languages.

Q: Why not just switch to Java?

A: I’m going to preface this answer by saying that I like Java, I’ve written several
successful commercial projects in Java, and it met the requirements of those
projects well. However, Java as a platform requires the developer to buy into

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

167_C#_01.qxd 12/3/01 5:42 PM Page 30

Introducing the Microsoft .NET Platform • Chapter 1 31

the idea of a single language for all things, which goes against my philosophy
of “use the right tool for the job.”The .NET design allows and encourages
cross-language development, letting programmers make use of language skills
already developed as well as leverage the various strengths of each .NET lan-
guage.As to the cross-platform features, my experience and that of many
others is summarized by the often-heard phrase “write once, test every-
where,” rather than the advertised “Write once, run everywhere.” In my
opinion, Java also suffers from some earlier design oversights that .NET
appears to have learned from. Look at the difference in the Streams imple-
mentation on both platforms for an example; the initial Java design did not
accommodate Unicode character streams.When this was corrected in JDK
1.1, Java ended up with four base stream classes.

Q: Isn’t the fact that .NET applications aren’t native code going to increase PC
requirements?

A: This depends on what type of application you’re developing, but it’s a pretty
safe bet.The managed environment introduces additional memory require-
ments, but they will be negligible in practice. Every new development in soft-
ware engineering has required more horsepower, and we’re really not taxing
today’s processors with most software. Buying more memory, if it is required,
should be a simple sale; developer man-hours are generally a lot more expen-
sive than more memory.

www.syngress.com

167_C#_01.qxd 12/3/01 5:42 PM Page 31

167_C#_01.qxd 12/3/01 5:42 PM Page 32

Introducing C#
Programming

Solutions in this chapter:

■ Getting Started

■ Creating Your First C# Program

■ Introducing Data Types

■ Explaining Control Structures

■ Understanding Properties and Indexers

■ Using Delegates and Events

■ Using Exception Handling

■ Understanding Inheritance

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 2

33

167_C#_02.qxd 12/3/01 5:43 PM Page 33

34 Chapter 2 • Introducing C# Programming

Introduction
Let’s start with your first look into the C# language.This chapter teaches you to
write, build, and execute console applications.This provides the groundwork for
developing applications that use more advanced features of .NET in later chapters.

The C# language is a modern object-oriented language. In some ways, it can
be seen as an extension of other languages that came before it. C# is most often
compared with Java and C++. If you are not familiar with C# programming, this
chapter gets you started. If you are familiar with Java or C++, you may want to
just skim this chapter because the concepts presented will look very familiar to
you. If you already know C#, feel free to skip this chapter entirely.We assume
you have a basic understanding of at least one object-oriented language.

We’ve mentioned that C# is a modern object-oriented language. Let’s take a
little time to explain what we mean by that. C# is a modern language. It supports
the notion of data types, flow of control statements, operators, arrays, properties,
and exceptions. Depending on the language(s) you are accustomed to program-
ming in, most of these concepts should be familiar to you.Throughout the
chapter, you will see examples and/or discussions of most of these features of C#.

C# is an object-oriented language. It supports the notion of classes and the
object-oriented nature of classes including encapsulation, inheritance, and poly-
morphism. C# also supports interfaces in conjunction with the .NET Common
Language Runtime (CLR) garbage collection, which some feel is necessary in an
object-oriented language. It also supports the notion of indexers, which in sim-
plified terms lets you manipulate objects as arrays and delegates, which you can
think of as method callbacks on steroids.

The .NET Framework supports console applications, graphical user interface
(GUI) applications (Windows Forms), browser-based applications (Web Forms
and ASP.NET), and Web Services.This chapter will focus on command line
applications, which are known as console applications. Console applications have a
text-only user interface. In later chapters, you will learn how to create other types
of applications.The focus of this chapter is to explain the concepts that are new
and/or different in C# from other object-oriented languages. Concepts that are
familiar to object-oriented programmers are covered in brief.

Throughout the chapter, a series of sample programs are presented that illustrate
the concepts introduced in each section.The sample programs are available on the
CD included with this book.Although there are separate sample programs for each
section, each sample builds on concepts covered in earlier sections of this chapter.

www.syngress.com

167_C#_02.qxd 12/3/01 5:43 PM Page 34

www.syngress.com

Getting Started
Microsoft supplies a full-blown development environment—Visual Studio
.NET—for building .NET applications. But, you don’t need to buy anything to
get started writing C# programs.The Microsoft.NET Framework software devel-
opment kit (SDK) is available for download from Microsoft’s Web site for free
(http://msdn.microsoft.com/net). It contains a command line C# compiler that
we use to compile the examples in this chapter.This chapter assumes you have
already installed the Microsoft.NET Framework SDK.The only other thing you
need to get started is a text editor. Because you are writing C# programs for the
Microsoft.NET Framework on Microsoft Windows platforms, you have several
choices freely available in the Windows operating system.We will stick with the
old reliable Notepad as our source code editor of choice.

For users that may be new to the Windows operating system, we run through
some explicit instructions on using the command line and Notepad. If you are
familiar with Windows, or if you aren’t interested in typing the programs in your-
self, you can skip ahead to the next section.

The first things you need to do are start a command line session and create
some directories to store your sample programs in.To start a new command line
session, click Start on the lower-left corner of the screen. Select the Run menu
option from the pop-up menu.The Run dialog box will appear.Type cmd in the
edit box and click OK.You should now see a command line window similar to
Figure 2.1.

Now you will create directories to save your C# programs in.You can set up
any directory structure you like, but for purposes of this example, we use a struc-
ture that uses an abbreviated book title as the root directory, the chapter as a sub-
directory, and the program name as the lowest level directory:

Introducing C# Programming • Chapter 2 35

Figure 2.1 A Command Line Window

167_C#_02.qxd 12/3/01 5:43 PM Page 35

36 Chapter 2 • Introducing C# Programming

1. Type md C#.NET at the command prompt and press Enter.

2. Type cd C#.NET and press Enter to navigate to the C# .NET
directory.

3. Type md chap1 and press Enter to create a subdirectory called chap1.

4. Type cd chap1 and press Enter to navigate to the chap1 directory.

5. Type md FirstCSharpProgram and press Enter.

6. Type cd FirstCSharpProgram.

You have now created the directory to store your first C# program, which
will be called FirstCSharpProgram. Leave the command-line window open.
You will use it to compile your first program a little later.

As previously mentioned, Notepad is our preferred source code editor.To
start Notepad, click Start | Programs | Accessories | Notepad.You should
now see the Notepad application.You will now create an empty source code file
in the directory you previously created for your first C# program:

1. Click File | Save.

2. In the Save dialog box, use the Save In drop-down list to select the
FirstCSharpProgram folder you just created.

3. C# programs typically use the file extension .cs, which is the convention
we will follow.Type FirstCSharpProgram.cs in the File name edit
area.The dialog box should look like Figure 2.2.

4. Click Save.

www.syngress.com

Figure 2.2 Saving a File in Notepad

167_C#_02.qxd 12/3/01 5:43 PM Page 36

Introducing C# Programming • Chapter 2 37

You now have an empty source file available for your first C# program.As
you type C# source code into Notepad, you can save your source at any time by
clicking File | Save.You are finally done with the preliminaries and are ready to
start writing code.

Creating Your First C# Program
The first C# program we look at is a very simple program that writes a couple
of lines of text to the console.The program source code is shown in Figure 2.3.
If you are following along, type in the program using Notepad and save it.We
examine the code in the following sections to get a general feel for the structure
of a C# console application.The source code is included on the CD that accom-
panies this book in a file named FirstCSharpProgram.cs.

Figure 2.3 The FirstCSharpProgram.cs Listing

using System;

namespace FirstCSharpProgram

{

/// <summary>

/// My first C# class. Contains the program entry point.

/// </summary>

class FirstCSharpClass

{

static void Main(string[] args)

{

try

{

/*

* Show when we wrote our first program on screen.

*/

DateTime today = DateTime.Now;

Console.WriteLine("I wrote my first C# program at: " +

today.ToString());

www.syngress.com

Continued

167_C#_02.qxd 12/3/01 5:43 PM Page 37

38 Chapter 2 • Introducing C# Programming

if (args.Length > 0)

{

// Show an optional message on screen.

string msg = "You wanted to say: " + args[0];

Console.WriteLine(msg);

}

}

catch (Exception exception)

{

// Display any errors on screen

Console.WriteLine(exception.Message);

}

}

}

}

Compiling and Executing
The command line compiler included in the Microsoft.NET Framework
SDK is named csc.exe.To compile the application, type csc.exe /out:
FirstCSharpProgram.exe FirstCSharpProgram.cs on the command line
and press Enter. If you typed the program correctly, no errors should display.

Taking a look at the command line, the first part of the statement, csc.exe,
invokes the C# compiler.The compiler takes two arguments in this case.The first
is /out:FirstCSharpProgram.exe.The /out compiler switch indicates that the fol-
lowing text will be the name of the compiled file that will be created, in our case
FirstCSharpProgram.exe.The final argument is the name of the source code file to
compile, FirstCSharpProgram.cs.The compiler takes many other optional argu-
ments. But for simple programs, you should be able to use the same command-
line text and just replace the name of the output file and the name of the source
code file.

FirstCSharpProgram takes one optional command-line argument when it exe-
cutes, that is, the message to display.To execute the program with an optional

www.syngress.com

Figure 2.3 Continued

167_C#_02.qxd 12/3/01 5:43 PM Page 38

Introducing C# Programming • Chapter 2 39

message, type the following at the command line prompt: FirstCSharpProgram
“C#, I like it!” Be sure to include the quotes.You should see output very sim-
ilar to Figure 2.4 after compiling and running the program.

Now that you’ve written, compiled, and executed your first C# program, let’s
take a look in the next sections at some of the features of C#.

www.syngress.com

Figure 2.4 Compiling and Executing the FirstCSharpProgram

Compiling C# Programs/Environment Variables
Your environment variables may not be properly set up if you get the fol-
lowing error message when compiling your program:

'csc.exe' is not recognized as an internal or external command,

operable program or batch file.

When you installed the Framework SDK, your environment variables
should have been set up correctly for you to compile programs. If you
get the error just shown, your environment variables have not been set
correctly. To fix this problem, execute the batch file corvars.bat located
in the bin directory of the SDK. Change directories to the Framework
SDK root directory, normally installed in the directory \Program Files\
Microsoft.NET\FrameworkSDK\bin. Execute the batch file by typing
corvars on the command line. Now change directories back to where
your program is saved and compilation should be successful.

Debugging…

167_C#_02.qxd 12/3/01 5:43 PM Page 39

40 Chapter 2 • Introducing C# Programming

Defining a Class
Classes are the basic ingredients of object-oriented languages. Classes are declared
in C# by using the class keyword followed by the class name and brackets sur-
rounding the body of the class.The FirstCSharpProgram sample has one class,
named FirstCSharpClass.

C#, like most object-oriented classes, supports member variables and methods.
Here is another class that contains some methods and member variables:

class Employee

{

// Member variables

private string m_FirstName;

private string m_LastName;

// Constructor

public Employee(string FirstName, string LastName)

{

m_FirstName = FirstName;

m_LastName = LastName;

}

// Public methods

public string getFirstName() { return m_FirstName; }

public string getLastName() { return m_LastName; }

}

This class has three methods, the constructor Employee and two other
methods, getFirstName and getLastName. It has two member variables, m_FirstName
and m_LastName. Classes and class members (methods and variables) can have
access modifiers associated with them that define their level of visibility.Table 2.1
lists the class and class member visibility access modifiers. Some restrictions apply
to use of the access modifiers—consult the .NET SDK documentation for
details.

www.syngress.com

167_C#_02.qxd 12/3/01 5:43 PM Page 40

Introducing C# Programming • Chapter 2 41

Table 2.1 Class and Class Member Visibility Access Modifiers

Access Modifier Visibility

public Accessible from anywhere
protected Accessible from this class or any class derived from

this class
internal Accessible within current program (assembly) only
protected internal Accessible within current program (assembly) or any

class derived from this class
private (default) Accessible only within current class

You can see some of these access modifiers applied to the Employee class and
its members. Classes can also support interfaces.You can think of interfaces as
contracts with a class to supply methods defined in the interface. Interfaces supply
class methods and signatures but no implementations. Classes that support a given
interface must supply the implementation of the methods defined by the inter-
face. Here is the previous Employee class extended to support an interface:

// IXmlRepresentation interface signature

interface IXmlRepresentation

{

string getXML();

}

// Employee class implements IXmlRepresentation

class Employee : IXmlRepresentation

{

private string m_FirstName;

private string m_LastName;

public Employee(string FirstName, string LastName)

{

m_FirstName = FirstName;

m_LastName = LastName;

}

public string getFirstName() { return m_FirstName; }

www.syngress.com

167_C#_02.qxd 12/3/01 5:43 PM Page 41

42 Chapter 2 • Introducing C# Programming

public string getLastName() { return m_LastName; }

// getXML method implements a method in IXmlRepresentation interface

public string getXML()

{

string xmlEmployee = "<Employee>";

xmlEmployee += "<FirstName>" + m_FirstName + "</FirstName>";

xmlEmployee += "<LastName>" + m_LastName + "</LastName>";

xmlEmployee += "</Employee>";

return xmlEmployee;

}

}

An interface named IXmlRepresentation, which has one method getXML,
returns a string.The definition of the interface supplies no implementation.The
declaration of the Employee now looks like this:

class Employee : IXmlRepresentation

You can see the interface IXmlRepresentation after the class name and a colon.
This signifies that the Employee class must supply an implementation for all the
methods declared in an interface.As you can see, the Employee class does supply
an implementation for the getXML method.The compiler would generate an
error if the getXML method were missing from the Employee class. Interfaces are
often used to supply functionality to a class that really is not part of the class’s
core functionality. In the case of the Employee class, getting an XML representa-
tion of the employee really is not related to being an employee at all. But, it may
be useful for another class that outputs XML to call the getXML method on
Employee.We show other examples of interfaces later in this chapter.

WARNING

C# does not have deterministic destructors like C++ does. The .NET
Common Language Runtime (CLR) uses garbage collection to clean up
memory and other resources. Long time C++ programmers have a hard
time getting used to this idea. This is a topic that is hotly debated on
newsgroups and bulletin boards devoted to C# programming.

www.syngress.com

167_C#_02.qxd 12/3/01 5:43 PM Page 42

Introducing C# Programming • Chapter 2 43

Declaring the Main Method
Every C# program must have a Main method. Here is the declaration of the
Main method of the FirstCSharpProgram:

static void Main(string[] args)

Execution of the program starts at the Main method.The Main method is
always declared static, which indicates that it is a method of the class and not of a
particular class instance.Also note that the Main method is declared as a method
of the class FirstCSharpClass. In other languages, such as C/C++, the entry point
is often a global function. Global functions are not supported in C#.Also note
that the letter M is capitalized in the keyword Main.

The Main method can take command-line arguments in the form of a string
array. In FirstCSharpProgram, we check to see if at least one command-line argu-
ment exists. If yes, we print a message to the screen. Here is the relevant code
from FirstCSharpProgram to accomplish this:

if (args.Length > 0)

{

string msg = "You wanted to say: " + args[0];

Console.WriteLine(msg);

}

Program flow of control starts at the beginning of the Main method and con-
tinues executing all statements within the Main method, or until a return state-
ment is encountered.When all statements have been executed, the program
terminates.

Organizing Libraries with Namespaces
Namespaces are used in.NET to organize class libraries into a hierarchical struc-
ture. One reason to do this is to help organize classes in a meaningful way that is
understood by consumers of the class library. For instance, the .NET Framework
SDK has many namespaces, such as System, System.Windows.Forms, System.IO, and
System.XML.You get a good idea of the types of classes that are contained within
the namespace from just the namespace name itself.The fully qualified name of a
class is the class name prefixed with the namespace name.The period character is
used to separate namespaces nested within other namespaces. It is also used to
separate the class name from the innermost namespace. For example, within the

www.syngress.com

167_C#_02.qxd 12/3/01 5:43 PM Page 43

44 Chapter 2 • Introducing C# Programming

System.IO namespace is a class named File. Here is some C# code to create an
instance of the class—observe how we wrote the fully qualified name of the class
File by prefixing the namespace name System.IO.Also note that System is the top
namespace and IO is the nested namespace within which the File class resides:

System.IO.File file = new System.IO.File();

Another reason to use namespaces is to reduce naming conflicts. For example,
if your company name is Synergistic Corporation, you could have all of your
namespaces contained with a root namespace named Synergistic. One namespace
might be Synergistic.Tools, and a typical class within the namespace might be
Logger.The full name of the class would be Synergistic.Tools.Logger. It is unlikely
that you will find another class with the same name anywhere, thus eliminating
naming conflicts.

Here is a snippet of the FirstCSharpProgram source code:

namespace FirstCSharpProgram

{

/// <summary>

/// My first C# class.

/// </summary>

class FirstCSharpClass

{

...

}

}

The namespace keyword indicates that the class FirstCSharpClass is contained
within the namespace FirstCSharpProgram.Therefore, to create an instance of
FirstCSharpClass, use the following code:

FirstCSharpProgram.FirstCSharpClass myInstance =

new FirstCSharpProgram.FirstCSharpClass();

Using the using Keyword
You might be thinking this namespace thing is all right, but you sure do have to
type a lot code to create a new instance of a class. Fortunately, a shortcut exists:
the using keyword.

www.syngress.com

167_C#_02.qxd 12/3/01 5:43 PM Page 44

Introducing C# Programming • Chapter 2 45

In FirstCSharpProgram, we call the static method WriteLine of the Console class
to write text to the screen.The Console class is actually part of the System names-
pace in the .NET Framework class library, so you would expect to see
System.Console.WriteLine() instead of Console.WriteLine().Take a look at the fol-
lowing line code at the top of the program:

using System;

The using keyword allows you to reference classes in the System namespace
without having to include System prior to the class name.This works equally well
with nested namespaces as in our example of the File class.You can now create a
new instance of a file object by using the following statements:

using System.IO;

File file = new File();

Adding Comments
C# supports three different types of source code comments, single-line com-
ments, multiline comments, and source code documentation comments. Single-
line comments begin with //. Multiline comments begin with /* and end with
*/ and can span multiple lines.Text between them constitutes the comment.
Source code documentation comments begin with ///. Examples of all three
types of comments from FirstCSharpProgram are shown here:

// Show an optional message on screen.

/*

* Show when we wrote our first program on screen.

*/

/// <summary>

/// My first C# class.

/// </summary>

Source code documentation comments deserve further explanation.You can
supply an additional argument to the C# compiler to parse the source code docu-
mentation comments and emit XML as documentation.The additional argument
takes the form /doc:filename. Here is the command line to build FirstCSharpProgram
modified to create the documentation file:

www.syngress.com

167_C#_02.qxd 12/3/01 5:43 PM Page 45

46 Chapter 2 • Introducing C# Programming

csc.exe /out:FirstCSharpProgram.exe FirstCSharpProgram.cs /

doc:FirstCSharpProgram.xml

Here is the XML that is generated by the compiler.

<?xml version="1.0"?>

<doc>

<assembly>

<name>FirstCSharpProgram</name>

</assembly>

<members>

<member name="T:FirstCSharpProgram.FirstCSharpClass">

<summary>

My first C# class.

</summary>

</member>

</members>

</doc>

FirstCSharpProgram uses the <summary> tag, which is recognized by the
compiler as a source code documentation tag.You can use many other tags to
document other parts of your code, including parameters, return codes, and so

www.syngress.com

Debugging Console Applications: Cordbg.exe
The .NET Framework SDK includes a command-line debugger that you can
use at runtime to debug your applications. A simple example follows:

cordbg FirstCSharpProgram.exe !b FirstCSharpProgram.cs:100

The example starts execution of FirstCSharpProgram.exe and sets a
breakpoint at line 100 of the file FirstCSharpProgram.cs. The debugger
allows you to set and display the value of variables in your program to
aid in debugging your application. You can find more information on
cordbg in the .NET Framework SDK documentation.

Debugging…

167_C#_02.qxd 12/3/01 5:43 PM Page 46

Introducing C# Programming • Chapter 2 47

on. In effect, you can self-document your classes and methods for other program-
mers using source code documentation comments.The XML emitted can be
converted into other formats, such as HTML, and then be published so that other
programmers can learn the classes and methods available in your program.You
can learn more about XML in Chapter 9.

Introducing Data Types
A programming language wouldn’t be able to do much if it didn’t have data to
work with. C# supports two data types: value types and reference types. Value
types are the typical primitive types available in most programming languages and
are allocated on the stack. Reference types are typically class instances and are allo-
cated on the heap. Both are discussed in further detail in the following sections.

Value Types
Value types encompass the data types you would traditionally encounter in
nonobject-oriented programming languages.This includes numeric, strings, bytes,
and Booleans.Value types in C# are implemented in the form of Structures and
Enums.Value types are allocated on the stack and therefore have little overhead
associated with them.

Primitive Data Types
Primitive data types include all value types except structures.The primitive data
types are shown in Table 2.2.

Table 2.2 Primitive Data Types, Sizes, and Descriptions

Data Type Size in Bytes Description

sbyte 1 Signed byte
byte 1 Unsigned byte
short 2 Signed short
ushort 2 Unsigned short
int 4 Signed integer
uint 4 Unsigned integer
long 8 Signed long integer
ulong 8 Unsigned long integer
float 4 Floating point

www.syngress.com

Continued

167_C#_02.qxd 12/3/01 5:43 PM Page 47

48 Chapter 2 • Introducing C# Programming

double 8 Double-precision floating point
decimal 8 96-bit signed number
string n/a Unicode string
char 2 Unicode character
bool n/a True or false

Reference Types
Instances of classes are reference types. Reference types are allocated on the heap.
In C#, all classes are derived from the .NET Framework class Object within the
System namespace. C# does not support pointers, but classes, being reference data
types, act like pointers. If you copy a pointer to another pointer, they both still
reference the same object.You can modify the contents of the original object
from either pointer. In C#, if you instantiate a class object and then make a copy
of it, changes made to either instance of the class change the original object. If
you pass an instance of a class to a class method, changes made to the object
passed in will persist upon returning from the method call.

As we mentioned previously, reference types are allocated on the heap.The
new keyword is used to allocate a new instance of a reference type (class).You
don’t need to free an instance of a class in C#, however.The CLR does garbage
collection on object instances that are no longer referenced. Here is a simple
example of instantiating an object of a class:

using System;

class TestSomeClass

{

static void Main(string[] args)

{

// Class is instantiated here using the new keyword. A new object

// of type SomeClass will be allocated on the heap.

SomeClass instance = new SomeClass();

instance.showMessage("Here is the message");

}

www.syngress.com

Table 2.2 Continued

Data Type Size in Bytes Description

167_C#_02.qxd 12/3/01 5:43 PM Page 48

Introducing C# Programming • Chapter 2 49

}

class SomeClass

{

public void showMessage(string message)

{

Console.WriteLine(message);

}

}

Sometimes class methods require class instances derived from the .NET
Framework class object.The odd thing is that you can pass a primitive data type,
such as an int, to the method. How can this be? C# has a feature called boxing,
which will automatically convert a value type to a reference type when a refer-
ence type is required. Upon return from the method, the reverse process, called
unboxing, will convert back to a value type.As a programmer, you don’t need to
do anything special to take advantage of boxing.You should note, however, that
some overhead is involved in the boxing/unboxing process.

Explaining Control Structures
The C# language supports all of the flow-of-control statements you would nor-
mally expect.This section gives you a very brief look at them.We point out a
few of the problem areas (especially for C/C++ programmers).

Using the if Statement
The if statement executes a series of statements if a test Boolean expression evalu-
ates to true.The test expression to evaluate must be Boolean.You cannot use a
test numeric expression as in C/C++:

int i = 3;

int j = 0;

if (i > 2)

{

j = 3;

}

www.syngress.com

167_C#_02.qxd 12/3/01 5:43 PM Page 49

50 Chapter 2 • Introducing C# Programming

Using the if-else Statement
The if-else statement adds a path for the false evaluation of the Boolean expression.

int i = 3;

int j = 0;

int k = 0;

if (i > 2)

{

j = 3;

}

else

{

j = 4;

k = 5;

}

Using the switch case Statement
The switch statement chooses flow of control based on the evaluation of a
numeric or string comparison.The switch statement does not allow control to fall
through to the next case as in C/C++ unless the case statement is followed
immediately by another case statement. In other words, you must use a break state-
ment with every case statement.You can also use a goto statement, although most
programmers frown on using them. Here are two examples:

int j = 0;

int i = 1;

switch (i)

{

case 1:

j = 7;

break;

case 2:

case 3:

www.syngress.com

167_C#_02.qxd 12/3/01 5:43 PM Page 50

Introducing C# Programming • Chapter 2 51

j = 22;

break;

default:

j = 33;

break;

}

string lastName = "";

string text = "fred";

switch (text)

{

case "fred":

lastName = "Flinstone";

break;

case "barney":

lastName = "Rubble";

break;

default:

lastName = "Slate";

break;

}

Using the for Statement
The for statement is used to loop through a series of statements until a test
Boolean expression evaluated at the beginning of the loop is false. In the fol-
lowing example, the WriteLine method will execute five times:

for (int i = 0; i < 5; i++)

{

Console.WriteLine("I will not talk in class");

}

www.syngress.com

167_C#_02.qxd 12/3/01 5:43 PM Page 51

52 Chapter 2 • Introducing C# Programming

Using the while Statement
The while statement is also used to loop through a series of statements until a test
Boolean expression evaluated at the beginning of the loop is false.The following
code has the same result as the previous for statement example:

int i = 0;

while (i < 5)

{

Console.WriteLine("I will not talk in class");

i++;

}

Using the do while Statement
The do while statement is also used to loop through a series of until a test
Boolean expression evaluated at the end of the loop is false.Therefore, the series
of statements contained within the do while loop will always execute at least once:

int i = 6;

do

{

Console.WriteLine("I will not talk in class");

i++;

}

while (i < 5);

Using the break Statement
The break statement exits the loop of a for, while, or do while statement regardless
of value of the test Boolean expression. In each of the following examples, the
WriteLine method will execute two times:

int j = 0;

for (int i = 0; i < 5; i++)

{

Console.WriteLine("I will not talk in class");

j++;

if (j == 2)

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 52

Introducing C# Programming • Chapter 2 53

break;

}

int i = 0;

int j = 0;

while (i < 5)

{

Console.WriteLine("I will not talk in class");

i++;

j++;

if (j == 2)

break;

}

int i = 0;

int j = 0;

do

{

Console.WriteLine("I will not talk in class");

i++;

j++;

if (j == 2)

break;

}

while (i < 5);

Using the continue Statement
The continue statement will pass flow of control immediately to the start of a loop
when encountered. In the following example,“I will not talk in class” will display
twice and “At least I’ll try not to talk in class” will display three times:

int j = 0;

for (int i = 0; i < 5; i++)

{

j++;

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 53

54 Chapter 2 • Introducing C# Programming

if (j > 2)

{

Console.WriteLine("At least I'll try not to talk in class");

continue;

}

Console.WriteLine("I will not talk in class");

}

Using the return Statement
The return statement returns flow of control from a method to the caller, option-
ally passing back a return value. Here is a complete example:

using System;

class TestDivision

{

static void Main(string[] args)

{

int dividend = 2;

int divisor = 0;

Divider divider = new Divider();

bool ret = divider.divide(dividend, divisor);

if (ret == true)

Console.WriteLine("I divided!");

else

Console.WriteLine("Something went horribly wrong!");

}

}

class Divider

{

public bool divide(int dividend, int divisor)

{

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 54

Introducing C# Programming • Chapter 2 55

if (divisor == 0)

return false;

int result = dividend / divisor;

return true;

}

}

NOTE

A better way to handle this case would have been to throw an exception
when the divisor is zero. We cover exceptions in a later section.

Using the goto Statement
The goto statement has been the bain of structured programming for many years.
C# supports the goto statement, although as previously stated, we wouldn’t rec-
ommend using it.The goto statement immediately transfers flow of control to the
statement following a label. If you must use goto, here is an example:

int i = 0;

int j = 0;

while (i < 5)

{

Console.WriteLine("I will not talk in class");

i++;

j++;

if (j == 2)

goto jumpeddoutofloop;

}

jumpeddoutofloop:

Console.WriteLine("I jumped out");

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 55

56 Chapter 2 • Introducing C# Programming

Understanding Properties and Indexers
Two of the more interesting features of C# are properties and indexers. Properties
allow you to call methods on a class using syntax that indicates you are accessing
member variables. Indexers allow you to access collections within a class using
array syntax.You will see examples of each in the following sections.

Using Properties
If you come from a C++ background, you have probably written many get and
set methods for classes you have created.A typical pattern used by C++ program-
mers is to make member variables of a class private and provide public accessor
methods to assign and retrieve the values of the member variables.A public set
method is written to assign a value to a member variable, and a get method is
written to retrieve the value assigned to a member variable.An alternate solution
is to make the member variables themselves public.The advantage of using get
and set methods is that if the underlying data type ever changes, the consumer of
the class does not have to change his code. Only the get and set methods need to
be rewritten.This is often referred to as data hiding.

Using get and set methods has a couple of disadvantages. First, it seems a little
more intuitive to just assign a value to a data member or retrieve its value rather
than having to use accessor methods.Also, slightly less typing is involved in
accessing the data member directly.

C# provides the best of both methods. It supports the idea of properties.
Properties are method calls that look like direct access to member data. Figure 2.5
is a complete listing that shows properties in action.The program is included on
the CD in the file Properties.cs.

NOTE

Throughout the rest of the chapter, we expand on this example of an
employee list.

Figure 2.5 The Properties.cs Program Listing

using System;

/// <summary>

www.syngress.com
Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 56

Introducing C# Programming • Chapter 2 57

/// Contains the program entry point for the Properties Sample.

/// </summary>

class PropertySample

{

static void Main(string[] args)

{

try

{

// Create a new employee

Employee employee = new Employee();

// Set some properties

employee.FirstName = "Timothy";

employee.MiddleName = "Arthur";

employee.LastName = "Tucker";

employee.SSN = "555-55-5555";

// Show the results on screen

string name = employee.FirstName + " " + employee.MiddleName +

" " + employee.LastName;

string ssn = employee.SSN;

Console.WriteLine("Name: {0}, SSN: {1}", name, ssn);

}

catch (Exception exception)

{

// Display any errors on screen

Console.WriteLine(exception.Message);

}

}

}

www.syngress.com

Figure 2.5 Continued

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 57

58 Chapter 2 • Introducing C# Programming

/// <summary>

/// Represents a single employee

/// </summary>

class Employee

{

private string m_firstName;

private string m_middleName;

private string m_lastName;

private string m_SSN;

// FirstName property

public string FirstName

{

get { return m_firstName; }

set { m_firstName = value; }

}

// MiddleName property

public string MiddleName

{

get { return m_middleName; }

set { m_middleName = value; }

}

// LastName property

public string LastName

{

get { return m_lastName; }

set { m_lastName = value; }

}

// SSN property

www.syngress.com

Figure 2.5 Continued

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 58

Introducing C# Programming • Chapter 2 59

public string SSN

{

get { return m_SSN; }

set { m_SSN = value; }

}

}

Get Accessor
Let’s take a look at the source code for the get accessor of the SSN property
(SSN being the employee’s social security number). Consider the following
source code for the SSN property:

public string SSN

{

get { return m_SSN; }

set { m_SSN = value; }

}

First, let’s take a look at the property declaration.The public keyword of the
property indicates its visibility. Normally you will make a property public because
the purpose is to allow consumers to have access to the data associated with the
property. Next, this property works with string data as indicated by the string key-
word. Finally, the name of the property is SSN.

The get accessor method is relatively simple. It just returns the value of the
private data member m_SSN. In the program, you can see the SSN property is
accessed using syntax usually reserved for accessing member data:

string ssn = employee.SSN;

Set Accessor
Here are code snippets that show invocation of the set property of SSN and the
implementation of the set property itself:

employee.SSN = "555-55-5555";

set { m_SSN = value; }

www.syngress.com

Figure 2.5 Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 59

60 Chapter 2 • Introducing C# Programming

The set accessor assigns a value to the member variable m_SSN.The value
keyword contains the value of the right side of the equal sign when invoking the
set property.The data type of value will be the type in the declaration of the
property. In this case, it is a string.

One thing to note about the set accessor is that it can do more than just set
the value of a data member. For instance, you could add code to validate the
value and not do the assignment if validation fails.

NOTE

Throughout the samples in this chapter, you will see a lot of string oper-
ations that use the overloaded concatenation operators such as “+” and
“+=” as in the following code:

string string1 = "a" + "b" + "c";

string1 += "e" + "f";

In C#, strings are immutable, which means they cannot be changed
once they have a value assigned to them. In the previous example, each
time the string is modified, a new copy of the string is created. This can
lead to performance problems in code that does a large amount of
string operations. The .NET Framework supplies the
System.Text.StringBuilder class, which allows you to create and manipu-
late a string using a single buffer in memory for cases where you do a
lot of string processing.

Accessing Lists with Indexers
The need to create and manipulate lists is a common programming task. Let’s
extend our employee example from the last section. Let’s say you need to display
a list of employees.The most logical thing to do would be to create a new
Employees class, which contains all of the individual Employee instances.You would
then iterate through all of the employees displaying each one until there are no
further employees. One way to solve this would be to create a property that
returns the number of employees and a method that returns a given employee
given its position in the list, such as the following:

for (i = 0; i < employees.Length; i++)

{

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 60

Introducing C# Programming • Chapter 2 61

Employee employee = employees.getEmployee(i);

Console.WriteLine(employee.LastName);

}

However, it would be more intuitive if we could just treat the list of
employees as an array contained with the Employee object. Here is what that
might look like:

for (i = 0; i < employees.Length; i++)

{

Console.WriteLine(employees.[i].LastName);

}

This is precisely what indexers do.They let you use array syntax to access a
list of objects contained inside another class. Indexers do not imply a specific
implementation for the list, however.The list within the containing class could be
a static array, a file on disk, one of the collection classes supplied by the .NET
Framework, or some other implementation. If the underlying implementation is
changed from a static array to a collection class, for example, a programmer using
the Employees class would not need to change her code.This is highly desirable
and analogous to the same situation described in the section discussing properties
in this chapter. Figure 2.6 extends the code listing in Figure 2.5 to make use of
an indexer to iterate through a list of employees.The program is included on the
CD in the file Indexers.cs.

Figure 2.6 The Indexers.cs Program Listing

using System;

using System.Collections;

/// <summary>

/// Contains the program entry point for the Indexers Sample.

/// </summary>

class IndexersSample

{

static void Main(string[] args)

{

try

{

www.syngress.com

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 61

62 Chapter 2 • Introducing C# Programming

// Create a container to hold employees

Employees employees = new Employees(4);

// Add some employees

employees[0] = new Employee ("Timothy", "Arthur",

"Tucker", "555-55-5555");

employees[1] = new Employee ("Sally", "Bess",

"Jones", "666-66-6666");

employees[2] = new Employee ("Jeff", "Michael",

"Simms", "777-77-7777");

employees[3] = new Employee ("Janice", "Anne",

"Best", "888-88-8888");

// Display the employee list on screen

for (int i = 0; i < employees.Length; i++)

{

string name = employees[i].FirstName + " " +

employees[i].MiddleName + " " +

employees[i].LastName;

string ssn = employees[i].SSN;

Console.WriteLine("Name: {0}, SSN: {1}", name, ssn);

}

Employee employee = employees["777-77-7777"];

if (employee != null)

{

string name = employee.FirstName + " " +

employee.MiddleName + " " + employee.LastName;

www.syngress.com

Figure 2.6 Continued

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 62

Introducing C# Programming • Chapter 2 63

string ssn = employee.SSN;

Console.WriteLine("Found by SSN, Name: {0}, SSN: {1}",

name, ssn);

}

else

{

Console.WriteLine(

"Could not find employee with SSN: 777-77-7777");

}

}

catch (Exception exception)

{

// Display any errors on screen

Console.WriteLine(exception.Message);

}

}

}

/// <summary>

/// Container class for employees. This class implements two

/// indexers

/// </summary>

class Employees

{

private ArrayList m_Employees;

private int m_MaxEmployees;

public Employees(int MaxEmployees)

{

m_MaxEmployees = MaxEmployees;

m_Employees = new ArrayList(MaxEmployees);

www.syngress.com

Figure 2.6 Continued

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 63

64 Chapter 2 • Introducing C# Programming

}

// Here is the implementation of the indexer by array index

public Employee this[int index]

{

get

{

// Check for out of bounds condition

if (index < 0 || index > m_Employees.Count - 1)

return null;

// Return employee based on index passed in

return (Employee) m_Employees[index];

}

set

{

// Check for out of bounds condition

if (index < 0 || index > m_MaxEmployees-1)

return;

// Add new employee

m_Employees.Insert(index, value);

}

}

// Here is the implementation of the indexer by SSN

public Employee this[string SSN]

{

get

{

Employee empReturned = null;

www.syngress.com

Figure 2.6 Continued

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 64

Introducing C# Programming • Chapter 2 65

foreach (Employee employee in m_Employees)

{

// Return employee based on index passed in

if (employee.SSN == SSN)

{

empReturned = employee;

break;

}

}

return empReturned;

}

}

// Return the total number of employees.

public int Length

{

get

{

return m_Employees.Count;

}

}

}

/// <summary>

/// Represents a single employee

/// </summary>

class Employee

{

private string m_firstName;

private string m_middleName;

private string m_lastName;

private string m_SSN;

www.syngress.com

Figure 2.6 Continued

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 65

66 Chapter 2 • Introducing C# Programming

// Constructor

public Employee(string FirstName, string LastName, string

MiddleName, string SSN)

{

m_firstName = FirstName;

m_middleName = MiddleName;

m_lastName = LastName;

m_SSN = SSN;

}

// FirstName property

public string FirstName

{

get { return m_firstName; }

set { m_firstName = value; }

}

// MiddleName property

public string MiddleName

{

get { return m_middleName; }

set { m_middleName = value; }

}

// LastName property

public string LastName

{

get { return m_lastName; }

set { m_lastName = value; }

}

// SSN property

www.syngress.com

Figure 2.6 Continued

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 66

Introducing C# Programming • Chapter 2 67

public string SSN

{

get { return m_SSN; }

set { m_SSN = value; }

}

}

You can see how this sets the value of an item in the list and get the value of
an item in the list using arraylike syntax such as this:

employees[0] = new Employee ("Timothy", "Arthur",

"Tucker", "555-55-5555");

string ssn = employees[i].SSN;

The portion of the code that implements an Indexer follows:

public Employee this[int index]

{

get

{

if (index < 0 || index > 4)

return null;

return m_Employees[index];

}

set

{

if (index < 0 || index > 4)

return;

m_Employees[index] = value;

updateCount();

}

}

www.syngress.com

Figure 2.6 Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 67

68 Chapter 2 • Introducing C# Programming

This sample code implements two indexers, one based on an index entry in
the list and the second based on the SSN of an employee.The code to imple-
ment an indexer is just a property on the containing class.The only real differ-
ence is that now the property takes the index within the list as a parameter.This
example uses an ArrayList, which is part of the System.Collections namespace of
the .NET Framework. So, the code to get an item in the list via an index entry
just returns the item in the ArrayList based on the index entry requested.
Similarly, the code to set an item in the list just sets the item in the ArrayList.A
check is also done to validate that the index entry passed in is within bounds
based on the maximum size of the list passed to the constructor of the Employees
class. Our implementation is relatively simple in that it returns if the index is out
of bounds.A better implementation would be to throw an exception.We cover
exceptions later in this chapter.

The code also implements a second read-only indexer based on SSN.This
illustrates that an indexer can be implemented using more than just the index of
an entry in the list. In the Main method of the program, you can see the fol-
lowing statement:

Employee employee = employees["777-77-7777"];

This code calls our SSN indexer implementation.The SSN indexer loops
through the Employee instances contained in the m_Employees ArrayList. If it finds
an Employee instance that has the SSN requested, it returns that Employee instance.
If it doesn’t find it, it returns null.

In C#, the foreach keyword is used to iterate through a list of objects con-
tained within another object. Here is what our sample program would look like
using foreach:

foreach (Employee employee in employees)

{

string name = employee.FirstName + " " +

employee.MiddleName + " " + employee.LastName;

string ssn = employee.SSN;

Console.WriteLine("Name: {0}, SSN: {1}", name, ssn);

}

To use the foreach keyword, the class that contains the list must implement the
IEnumerable interface contained within the System.Collections namespace.The

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 68

Introducing C# Programming • Chapter 2 69

IEnumerable interface has one responsibility: return an instance of an object that
implements the IEnumerator interface also from the System.Collections namespace.

The class that implements the IEnumerator interface is responsible for main-
taining the current position in the list and knowing when the end of the list has
been reached.Although this seems overly complex, it allows the flexibility of
having the implementation of IEnumerator be in the class containing the list or in
a separate class.

The complete sample that implements the IEnumerable interface is on the CD
in the Enumerable.cs file. Because the ArrayList class already implements the
IEnumerable interface, all that is necessary in the Employees class is to declare the
class as implementing the IEnumerable interface and then provide the implementa-
tion of the GetEnumerator method of the IEnumerable interface.The GetEnumerator
method simply returns the ArrayList implementation.The relevant code from the
sample on the CD that accomplishes this is shown here:

/// <summary>

/// Container class for employees. This class implements

/// IEnumerable allowing use of foreach sytax

/// </summary>

class Employees : IEnumerator

{

// IEnumerable implementation, delegates IEnumerator to

// the ArrayList

public IEnumerator GetEnumerator()

{

return m_Employees.GetEnumerator();

}

}

At first glance, indexers seem somewhat complex, and talking about them in
the abstract can be a bit confusing. However, when you see the code, it is rela-
tively simple and provides a clean and simple syntax to iterate though a list of
objects.

Using Delegates and Events
If you are familiar with Windows programming, you’ve most likely dealt with
callbacks. Callbacks are method calls that are executed when some event happens

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 69

70 Chapter 2 • Introducing C# Programming

during processing. For instance, a callback can be established to handle the pro-
cessing of an incoming message on a communications port.Another part of the
communications program can wait for messages on a communications port and
invoke the callback whenever a new message arrives. Function pointers perform
the same sort of tasks in straight C/C++ programs.

Delegates in C# improve on method callbacks in two areas. Delegates are type
safe, unlike callbacks in Windows programming. In addition, delegates can call
more than one callback when an event occurs.This is termed multicasting.

Delegates
Let’s extend our employees sample to use delegates.This sample simulates a back-
ground process that receives messages to add new employees to the employee list.
Our queue will be a static array, but in the real world it could be a message
queue (Microsoft Message Queue [MSMQ]), a socket, or some other type of
queue.The source code in Figure 2.7 shows the relevant portions of the sample
pertaining to delegates.The full source code for this sample is on the CD in the
file Delegates.cs.

Figure 2.7 Relevant Portions of the Delegates.cs Program Listing

using System;

using System.Collections;

/// <summary>

/// Contains the program entry point for the Delegates Sample.

/// </summary>

class DelegatesSample

{

static void Main(string[] args)

{

try

{

// Create a container to hold employees

Employees employees = new Employees(4);

// Create and drain our simulated message queue

EmployeeQueueMonitor monitor =

www.syngress.com
Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 70

Introducing C# Programming • Chapter 2 71

new EmployeeQueueMonitor(employees);

monitor.start();

monitor.stop();

// Display the employee list on screen

Console.WriteLine(

"List of employees added via delegate:");

foreach (Employee employee in employees)

{

string name = employee.FirstName + " " +

employee.MiddleName + " " + employee.LastName;

string ssn = employee.SSN;

Console.WriteLine("Name: {0}, SSN: {1}", name, ssn);

}

}

catch (Exception exception)

{

// Display any errors on screen

Console.WriteLine(exception.Message);

}

}

}

/// <summary>

/// Simulates our message queue.

/// </summary>

class EmployeeQueueMonitor

{

// Delegate signature

www.syngress.com

Figure 2.7 Continued

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 71

72 Chapter 2 • Introducing C# Programming

public delegate void AddEventCallback(string FirstName,

string LastName, string MiddleName, string SSN);

// Instance of the delegate

private AddEventCallback m_addEventCallback;

private Employees m_employees;

private int m_lengthQueue;

private string[,] m_msgQueue =

{

{"Timothy", "Arthur", "Tucker", "555-55-5555"},

{"Sally", "Bess", "Jones", "666-66-6666" },

{"Jeff", "Michael", "Simms", "777-77-7777"},

{"Janice", "Anne", "Best", "888-88-8888" }

};

public EmployeeQueueMonitor(Employees employees)

{

m_employees = employees;

m_lengthQueue = 4;

// Create an instace of the delegate and register the

// addEmployee method of this class as a callback.

m_addEventCallback = new AddEventCallback(

this.addEmployee);

}

// Drain the queue.

public void start()

{

if (m_employees == null)

return;

www.syngress.com

Figure 2.7 Continued

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 72

Introducing C# Programming • Chapter 2 73

for (int i = 0; i < m_lengthQueue; i++)

{

string FirstName = m_msgQueue[i,0];

string MiddleName = m_msgQueue[i,1];

string LastName = m_msgQueue[i,2];

string SSN = m_msgQueue[i,3];

// Invoke the callback registered with the delegate

Console.WriteLine("Invoking delegate");

m_addEventCallback(FirstName, LastName, MiddleName,

SSN);

}

}

public void stop()

{

// In a real communications program you would shut down

// gracefully.

}

// Called by the delegate when a message to add an employee

// is read from the message queue.

public void addEmployee(string FirstName, string MiddleName,

string LastName, string SSN)

{

Console.WriteLine("In delegate, adding employee\r\n");

int index = m_employees.Length;

m_employees[index] = new Employee (FirstName, MiddleName,

LastName, SSN);

}

}

www.syngress.com

Figure 2.7 Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 73

74 Chapter 2 • Introducing C# Programming

Single Cast
The source code in the previous section is an example of a single cast delegate.A
single cast delegate invokes only one callback method. Let’s examine our previous
sample to see this.

The EmployeeQueueMonitor class simulates a message queue. It contains a static
array that holds the current messages.At the top of EmployeeQueueMonitor are the
following lines:

public delegate void AddEventCallback(string FirstName,

string LastName, string MiddleName, string SSN);

private AddEventCallback m_addEventCallback;

The first statement defines a delegate and the parameters an object instance
of the delegate takes. In this case, we callback to a method that takes first name,
last name, middle name, and SSN.We do this whenever a request to add a new
employee appears in the message queue.

The second statement declares a member variable to hold our delegate. It is
initially set to null.A new object instance must be created prior to making
method calls through the delegate.An object instance is instantiated in the con-
structor of EmployeeQueueMonitor.

m_addEventCallback = new AddEventCallback(this.addEmployee);

This statement creates a new object instance of the delegate.The delegate
takes as an argument the method to call when the delegate is invoked. In this
case, whenever the delegate is invoked, the method that will execute is
EmployeeQueueMonitor.addEmployee.

In the start method of EmployeeQueueMonitor is the following code:

for (int i = 0; i < m_lengthQueue; i++)

{

string FirstName = m_msgQueue[i,0];

string MiddleName = m_msgQueue[i,1];

string LastName = m_msgQueue[i,2];

string SSN = m_msgQueue[i,3];

// Invoke the callback registered with the delegate

Console.WriteLine("Invoking delegate");

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 74

Introducing C# Programming • Chapter 2 75

m_addEventCallback(FirstName, LastName, MiddleName, SSN);

}

This code simulates draining the message queue of any waiting messages.The
callback function is invoked by treating the m_addEventCallback member variable
as if it were a method call passing it our four parameters. Note that you do not
specify the callback itself when making the call.The delegate maintains the
address of the callback internally and therefore knows the method to call.The
following example shows what not to do:

// Incorrect

m_addEventCallback.addEmployee(FirstName, LastName, MiddleName, SSN);

Multicast
The true power of delegates becomes apparent when discussing multicast dele-
gates. Let’s extend our previous example a bit further. Because background pro-
cesses do not usually have a user interface for human interaction, they typically
log incoming events for later review. Let’s add a second callback to our sample to
log incoming add employee requests.The relevant snippets of code are shown in
Figure 2.8.The full source code is for this sample is on the CD in the file
Multicasting.cs.

Figure 2.8 Relevant Portions of the Multicasting.cs Program Listing

class EmployeeQueueMonitor

{

// Delegate signature for add employee event callback

public delegate void AddEventCallback(string FirstName,

string LastName, string MiddleName, string SSN);

// Instance of the delegate

private AddEventCallback m_addEventCallback;

private EmployeeQueueLogger m_logger;

public EmployeeQueueMonitor(Employees employees)

{

www.syngress.com

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 75

76 Chapter 2 • Introducing C# Programming

m_employees = employees;

m_lengthQueue = 4;

m_logger = new EmployeeQueueLogger("log.txt");

// Register the methods that the delegate will invoke when an

// add employee message is read from the message queue

m_addEventCallback =

new AddEventCallback(this.addEmployee);

m_addEventCallback +=

new AddEventCallback(m_logger.logAddRequest);

}

// Drain the queue.

public void start()

{

if (m_employees == null)

return;

for (int i = 0; i < m_lengthQueue; i++)

{

string FirstName = m_msgQueue[i,0];

string MiddleName = m_msgQueue[i,1];

string LastName = m_msgQueue[i,2];

string SSN = m_msgQueue[i,3];

Console.WriteLine("Invoking delegate");

// Invoke the delegate passing the data associated with

// adding a new employee resulting in the subscribed

// callbacks methods being executed, namely

// Employees.this.addEmployee()

www.syngress.com

Figure 2.8 Continued

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 76

Introducing C# Programming • Chapter 2 77

// and EmployeeQueueLogger.logAddRequest()

m_addEventCallback(FirstName, LastName, MiddleName,

SSN);

}

}

// Called by delegate whenever a new add employee message

// appears in the message queue. Notice the signature matches

// that requried by AddEventCallback

public void addEmployee(string FirstName, string MiddleName,

string LastName, string SSN)

{

Console.WriteLine("In delegate, adding employee\r\n");

int index = m_employees.Length;

m_employees[index] = new Employee (FirstName, MiddleName,

LastName, SSN);

}

}

/// <summary>

/// Writes add employee events to a log file.

/// </summary>

class EmployeeQueueLogger

{

string m_fileName;

public EmployeeQueueLogger(string fileName)

{

m_fileName = fileName;

}

// Called by delegate whenever a new add employee message

www.syngress.com

Figure 2.8 Continued

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 77

78 Chapter 2 • Introducing C# Programming

// appears in the message queue. Notice the signature matches

// that requried by AddEventCallback

public void logAddRequest(string FirstName, string LastName,

string MiddleName, string SSN)

{

string name = FirstName + " " + MiddleName + " " + LastName;

FileStream stream = new FileStream(m_fileName,

FileMode.OpenOrCreate, FileAccess.ReadWrite);

StreamWriter writer = new StreamWriter(stream);

writer.BaseStream.Seek(0, SeekOrigin.End);

writer.Write("{0} {1} \n", DateTime.Now.ToLongTimeString(),

DateTime.Now.ToLongDateString());

writer.Write("Adding employee - Name: {0}, SSN: {1}",

name, SSN);

writer.Write("\n------------------------------------\n\n");

writer.Flush();

writer.Close();

}

}

A new class, EmployeeQueueLogger, has been added. It has a method
logAddRequest, which logs requests to add employees to a log file.The important
thing to note is that the logAddRequest method has a signature that matches the
AddEventCallback delegate signature.An instance of the logger is created in the
constructor of EmployeeQueueMonitor.The code that wires up the delegates is also
in the constructor and is shown here:

m_logger = new EmployeeQueueLogger("log.txt");

m_addEventCallback = new AddEventCallback(this.addEmployee);

m_addEventCallback += new AddEventCallback(

m_logger.logAddRequest);

www.syngress.com

Figure 2.8 Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 78

Introducing C# Programming • Chapter 2 79

First, a new logger instance is created. Next, the delegate is initialized with a
first callback function to the addEmployee method of EmployeeQueueMonitor.
Finally, a second callback is added to the delegate, which will invoke the
logAddRequest of the EmployeeQueueLogger class. Notice that the plus sign is used
to add the second callback to the delegate.The plus sign (addition operator) has
been overloaded in the System.Delegate class of the .NET Framework to call the
Combine method of that class.The Combine method adds the callback to the list of
methods the delegate maintains.The minus sign (subtraction operator) is also
overloaded to call the Remove method, which removes a callback from the list of
methods the delegate maintains.The rest of the source code remains unchanged.
When the delegate is invoked in the start method of EmployeeQueueMonitor, both
EmployeeQueueMonitor.addEmployee and EmployeeQueueLogger.logAddRequest are
executed.

Events
The event model is often referred to as the publish/subscribe model or the listener
pattern.The idea behind the event model is that a class publishes the events that it
can raise. Consumers of the class object subscribe to the events they are interested
in.When the event occurs, the object that monitors the event notifies all sub-
scribers that the event has been raised.The subscribers then take some action.

The event model is often used in GUI programs. Handlers are set up for
common events, such as pressing a button.When the button press event occurs,
all subscribers registered for the button press event are invoked.The .NET
Framework uses the event model and in particular the System.Event delegate for
Windows Forms–based applications.

The .NET Framework supplies a built in delegate of type System.Event.The
idea of events in the .NET Framework is to supply a single signature for the del-
egate regardless of the data that is passed to the subscribed callback. One of the
arguments for the Event delegate is an object derived from the .NET Framework
class System.EventArgs, which contains the data the callback needs.You declare a
class derived from System.EventArgs with the data your callback needs.When the
event takes place, you instantiate your derived EventArgs object and invoke the
event. Callback functions subscribed to the event are called passing the object
derived from EventArgs. Changes to the multicast delegate code sample that
implement events are shown in Figure 2.9.The full source code for this sample is
on the CD in the file Events.cs.

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 79

80 Chapter 2 • Introducing C# Programming

Figure 2.9 Relevant Portions of the Events.cs Program Listing

/// <summary>

/// Defines the data that will be passed from the event delegate to

/// the callback method when the event is raised

/// </summary>

class AddEmployeEventArgs : EventArgs

{

string m_FirstName;

string m_LastName;

string m_MiddleName;

string m_SSN;

public AddEmployeEventArgs(string FirstName,

string LastName, string MiddleName, string SSN)

{

m_FirstName = FirstName;

m_LastName = LastName;

m_MiddleName = MiddleName;

m_SSN = SSN;

}

// Event argument properties contain the data to pass to the

// callback methods subscribed to the event.

public string FirstName { get { return m_FirstName; } }

public string LastName { get { return m_LastName; } }

public string MiddleName {get { return m_MiddleName; } }

public string SSN { get { return m_SSN; } }

}

/// <summary>

/// Simulates monitoring a message queue. When a message appears

/// the event is raised and methods subscribed to the event

// are invoked.

/// </summary>

www.syngress.com

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 80

Introducing C# Programming • Chapter 2 81

class EmployeeQueueMonitor

{

// Event signature for AddEmployeeEvent

public delegate void AddEmployeeEvent(object sender,

AddEmployeEventArgs e);

// Instance of the AddEmployeeEvent

public event AddEmployeeEvent OnAddEmployee;

private EmployeeQueueLogger m_logger;

private Employees m_employees;

private int m_lengthQueue;

private string[,] m_msgQueue =

{

{"Timothy", "Arthur", "Tucker", "555-55-5555"},

{"Sally", "Bess", "Jones", "666-66-6666" },

{"Jeff", "Michael", "Simms", "777-77-7777"},

{"Janice", "Anne", "Best", "888-88-8888" }

};

public EmployeeQueueMonitor(Employees employees)

{

m_employees = employees;

m_lengthQueue = 4;

m_logger = new EmployeeQueueLogger("log.txt");

// Register the methods that the Event will invoke when an add

// employee message is read from the message queue

OnAddEmployee +=

new AddEmployeeEvent(this.addEmployee);

www.syngress.com

Figure 2.9 Continued

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 81

82 Chapter 2 • Introducing C# Programming

OnAddEmployee +=

new AddEmployeeEvent(m_logger.logAddRequest);

}

// Drain the queue.

public void start()

{

if (m_employees == null)

return;

for (int i = 0; i < m_lengthQueue; i++)

{

// Pop an add employee request off the queue

string FirstName = m_msgQueue[i,0];

string MiddleName = m_msgQueue[i,1];

string LastName = m_msgQueue[i,2];

string SSN = m_msgQueue[i,3];

Console.WriteLine("Invoking delegate");

// Create the event arguments to pass to the methods

// subscribed to the event and then invoke event resulting

// in the callbacks methods being executed, namely

// Employees.this.addEmployee() and

// EmployeeQueueLogger.logAddRequest()

AddEmployeEventArgs args = new AddEmployeEventArgs(FirstName,

LastName, MiddleName, SSN);

OnAddEmployee(this, args);

}

}

public void stop()

{

www.syngress.com

Figure 2.9 Continued

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 82

Introducing C# Programming • Chapter 2 83

// In a real communications program you would shut down

// gracefully.

}

// Called by event whenever a new add employee message appears

// in the message queue. Notice the signature matches that required

// by System.Event

public void addEmployee(object sender, AddEmployeEventArgs e)

{

Console.WriteLine("In delegate, adding employee\r\n");

int index = m_employees.Length;

m_employees[index] = new Employee (e.FirstName, e.MiddleName,

e.LastName, e.SSN);

}

}

/// <summary>

/// Writes add employee events to a log file.

/// </summary>

class EmployeeQueueLogger

{

string m_fileName;

public EmployeeQueueLogger(string fileName)

{

m_fileName = fileName;

}

// Called by event whenever a new add employee message appears

// in the message queue. Notice the signature matches that required

// by System.Event

public void logAddRequest(object sender, AddEmployeEventArgs e)

www.syngress.com

Figure 2.9 Continued

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 83

84 Chapter 2 • Introducing C# Programming

{

string name = e.FirstName + " " + e.MiddleName + " " +

e.LastName;

FileStream stream = new FileStream(m_fileName,

FileMode.OpenOrCreate, FileAccess.ReadWrite);

StreamWriter writer = new StreamWriter(stream);

writer.BaseStream.Seek(0, SeekOrigin.End);

writer.Write("{0} {1} \n", DateTime.Now.ToLongTimeString(),

DateTime.Now.ToLongDateString());

writer.Write("Adding employee - Name: {0}, SSN: {1}",

name, e.SSN);

writer.Write("\n------------------------------------\n\n");

writer.Flush();

writer.Close();

}

}

A new class, AddEmployeEventArgs, has been added. It contains the informa-
tion that will be passed to callback methods subscribed to the event. Notice the
data members of the AddEmployeEventArgs class are the same as the signature for
the AddEventCallback delegate in our previous sample. Instead of invoking the
callback with individual arguments, when using events, you pass a class object,
which contains the arguments instead.

Just as with the delegates samples, we declare the signature and create a
member variable for the delegate in EmployeeQueueMonitor class.The only differ-
ence is that the signature matches the signature necessary for events.The first
parameter is the object that raised the event, and the second is the object instance
that contains the arguments passed to subscribed callback methods.This is shown
here:

public delegate void AddEmployeeEvent(object sender,

www.syngress.com

Figure 2.9 Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 84

Introducing C# Programming • Chapter 2 85

AddEmployeEventArgs e);

public event AddEmployeeEvent OnAddEmployee;

In the constructor of the class, we subscribe the callback methods to the
event as shown here:

OnAddEmployee +=

new AddEmployeeEvent(this.addEmployee);

OnAddEmployee +=

new AddEmployeeEvent(m_logger.logAddRequest);

The callback methods have the correct signature for event callbacks. Here are
the callback method’s signatures:

public void addEmployee(object sender, AddEmployeEventArgs e)

public void logAddRequest(object sender, AddEmployeEventArgs e)

When an add employee message is popped off the queue in the start method
of EmployeeQueueMonitor, an instance of the AddEmployeeEventArgs is created and
the event is invoked. Here is the code that accomplishes this:

AddEmployeEventArgs args = new AddEmployeEventArgs(FirstName,

LastName, MiddleName, SSN);

OnAddEmployee(this, args);

As you can see, using events instead of delegates is really just a syntactic dif-
ference.The code is nearly identical.The main benefit is that you don’t have a
different delegate signature for every delegate you create based on the data that is
passed to subscribed callbacks. Instead, the standard event delegate signature will
suffice.

Using Exception Handling
If you look through the .NET Framework SDK documentation, you won’t find
an error code returned from any method calls in the library. Instead, the
Framework uses exceptions to indicate errors that occur.To illustrate exceptions,
consider the code snippet in Figure 2.10 that builds upon the Enumerable sample
from the Indexers section of this chapter.The complete sample is included on the
CD in the file Exceptions.cs.

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 85

86 Chapter 2 • Introducing C# Programming

Figure 2.10 Relevant Portions of the Exceptions.cs Program Listing

using System;

using System.Collections;

/// <summary>

/// Contains the program entry point for the Exceptions Sample.

/// </summary>

class ExceptionsSample

{

static void Main(string[] args)

{

try

{

// Create a container to hold employees

Employees employees = new Employees(4);

// Add some employees

addOneEmployee (employees, "Timothy", "Arthur",

"Tucker", "555-55-5555");

addOneEmployee (employees, "Sally", "Bess",

"Jones", null);

addOneEmployee (employees, "Jeff", "Michael",

"Simms", "777-77-7777");

addOneEmployee (employees, "Janice", "Anne",

"Best", "9888-88-88889");

// Display the employee list on screen

foreach (Employee employee in employees)

{

string name = employee.FirstName + " " +

employee.MiddleName + " " + employee.LastName;

www.syngress.com

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 86

Introducing C# Programming • Chapter 2 87

string ssn = employee.SSN;

Console.WriteLine("Name: {0}, SSN: {1}", name, ssn);

}

}

catch (Exception exception)

{

// Display any errors on screen

Console.WriteLine(exception.Message);

}

}

// Helper method to add an employee to the list

static void addOneEmployee(Employees employees,

string FirstName, string MiddleName, string LastName,

string SSN)

{

bool addedEmployee = false;

try

{

Console.WriteLine("Adding an employee");

// SSN cannot be NULL, throw exception

if (SSN == null)

throw new ArgumentNullException("SSN is null!");

// SSN length must be 11, throw exception

if (SSN.Length != 11)

throw new ArgumentOutOfRangeException(

"SSN length invalid!");

www.syngress.com

Figure 2.10 Continued

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 87

88 Chapter 2 • Introducing C# Programming

// Add the employee

employees[employees.Length] = new Employee (FirstName,

MiddleName, LastName, SSN);

addedEmployee = true;

}

catch (ArgumentOutOfRangeException exception)

{

Console.WriteLine("We caught ArgumentOutOfRangeException");

Console.WriteLine(exception.Message);

}

catch (ArgumentNullException exception)

{

Console.WriteLine("We caught ArgumentNullException");

Console.WriteLine(exception.Message);

}

catch (Exception exception)

{

Console.WriteLine("We caught a base exception");

Console.WriteLine(exception.Message);

}

catch

{

Console.WriteLine("We caught an unknown exception");

Console.WriteLine("Unknown exception caught!");

}

finally

{

if (addedEmployee == true)

Console.WriteLine("Add was successful\r\n");

else

Console.WriteLine("Add failed\r\n");

}

www.syngress.com

Figure 2.10 Continued

Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 88

Introducing C# Programming • Chapter 2 89

}

}

Using the try Block
Code that may throw an exception is placed inside a try block. In this example,
the addOneEmployee method has a try block surrounding the code that will add a
new employee to the list of employees. If an exception is thrown in a try block,
control is passed to the catch block.

Using the catch Block
The catch block is where you handle exceptions that are thrown.The first exception
type that matches the exception thrown has control passed to its block of source
code. In our example, if SSN length is not 11, an ArgumentOutOfRangeException
exception is thrown.This results in execution of the catch block of
ArgumentOutOfRangeException.

You should order your catch blocks so that the most general exceptions come
last. If you put the general exceptions at the top of your catch blocks, they will
always catch the exception.This can cause problems if you need to do special
processing based on the exception type. Because all exceptions in the .NET
Framework derive from System.Exception, the last two catch blocks in our sample
are equivalent.They will catch any exceptions that are not caught by a more spe-
cific exception above.They are both shown in Figure 2.10 for completeness.

Using the finally Block
The finally block is the last part of a try-catch-finally block for handling exceptions.
The finally block is always executed regardless of whether an exception was
thrown.Typically, finally blocks include cleanup code, such as closing files or
databases.You do not have to include a finally block if you have no need to do
special processing. In our example, the finally block prints a different message
based on whether an exception was thrown.

Using the throw Statement
You can throw exceptions to indicate errors that occur in your programs by using
the throw keyword.To throw an exception, you create a new instance of a

www.syngress.com

Figure 2.10 Continued

167_C#_02.qxd 12/3/01 5:44 PM Page 89

90 Chapter 2 • Introducing C# Programming

System.Exception class that indicates the type of exception encountered. Exceptions
derived from the System.Exception class take a message, which you can set as one
of the parameters.The code that catches the exception can retrieve the message
for display or logging purposes. In the previous sample code, an exception is
thrown when SSN is null or is not eleven characters in length. Here is the rele-
vant code:

// SSN cannot be NULL, throw exception

if (SSN == null)

throw new ArgumentNullException("SSN is null!");

// SSN length must be 11, throw exception

if (SSN.Length != 11)

throw new ArgumentOutOfRangeException("SSN length invalid!");

The CLR will also throw exceptions if it encounters errors. For instance, it
will throw an error if a divide-by-zero operation is attempted. If an exception is
thrown, and the method it is thrown in doesn’t contain a catch block, the CLR
will look for a catch block in the calling method, if one exists. It will keep looking
for a catch block up the call chain until it finds one that matches or until it has
reached the top-level method call. If it still doesn’t find a match, the system will
handle the exception.This typically results in an error message being displayed
and the program being aborted.You need to understand that even though you
may not throw any exceptions, the runtime may. So, if you have a program that
needs to keep running indefinitely, you should catch exceptions somewhere in
the call chain and then continue executing your application.

All of the exceptions in the sample are ones defined by the .NET
Framework.You can define your own exceptions as well.Typically, you just need
to derive your own exception from the System.Exception class provided by the
Framework and implement any behavior specific to your custom exception.
Before you can do that however, you need to understand inheritance in C#—we
cover that next.

Understanding Inheritance
Inheritance and polymorphism are the two characteristics that make object-ori-
ented programming languages so powerful. Many books, articles, and Web sites
have been written explaining the subjects with flowing prose.We distill it down
to a couple of short sentences. Inheritance means you can create a new type of

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 90

Introducing C# Programming • Chapter 2 91

object B that inherits all of the characteristics of an existing object A.
Polymorphism means that this new object B can choose to inherit some character-
istics and supply its own implementation for others.

Just in case it needs a bit more explanation, here is an example.Throughout
this chapter, you have seen examples that use the Employee class.An employee in
our case has a first name, middle name, last name, and SSN.What happens when
we add in wage information? Now we have two different types of employees:
salaried and hourly.They both still have the original characteristics of an
employee but one now has an hourly wage and the other a yearly salary.When
you need to run payroll for the employees, each type of employee’s pay is calcu-
lated differently.

One way to solve this would be to put a flag in the Employee class indicating
hourly or salaried.Then whenever you need to do something that requires
knowledge of the type of employee, you have to check the flag and do the
appropriate thing.This works fine for our simple example, but what if there are
20 kinds of things? Suddenly, a lot of code is spent just checking what type of
thing it is before doing further processing.

Fortunately we have inheritance to help us solve this problem. Inheritance
lets you create two new types of employees—hourly and salaried—that inherit all
of the characteristics of the Employee class. Here are the declarations of the two
new classes.We get to the implementations in a moment.

class SalariedEmployee : Employee

{

}

class HourlyEmployee : Employee

{

}

The text to the right of the colon indicates the base class of the new class.
Therefore, both SalariedEmployee and HourlyEmployee each have Employee as their
base class, or you can say they are derived from Employee.This means that they
inherit all of the characteristics of the Employee class. For instance, you can instan-
tiate a new SalariedEmployee object and write code like this:

string LastName = salariedEmployee.LastName;

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 91

92 Chapter 2 • Introducing C# Programming

That solves our first problem.You now have two types of employees to
manipulate. But you still don’t have a way to calculate payroll. Derived classes can
override methods defined in the base class. So one way to solve this is to create a
new base class method named getPayroll and have both classes write their own
implementation of the method. Portions of the class implementations are shown
here to demonstrate this:

class Employee

{

virtual public double getPayroll()

{

return 0.0;

}

}

class SalariedEmployee : Employee

{

private double m_Salary;

public SalariedEmployee(double Salary)

{

m_Salary = Salary;

}

override public double getPayroll()

{

return m_Salary / 12;

}

}

class HourlyEmployee : Employee

{

private double m_HourlyRate;

private double m_HoursWorked;

public HourlyEmployee (double HourlyRate)

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 92

Introducing C# Programming • Chapter 2 93

{

m_HourlyRate = HourlyRate;

}

public double HoursWorked

{

get { return m_HoursWorked; }

set { m_HoursWorked = value; }

}

override public double getPayroll()

{

return m_HoursWorked * m_HourlyRate;

}

}

Notice that all three classes have a getPayroll method.The SalariedEmployee
class calculates monthly payroll by dividing yearly salary by 12.The HourlyEmployee
class calculates payroll by multiplying pay rate by the number of hours worked.
This is exactly what we want. Each type of employee calculates payroll the appro-
priate way. Notice the getPayroll method of the Employee class is prefaced with the
keyword virtual.Also notice that the SalariedEmployee and HourlyEmployee classes
are prefaced with the keyword override.The virtual keyword indicates that if a
derived class provides the same method with the same signature and is prefaced
with the override keyword, call the derived classes implementation instead of the
base classes.The best way to explain is with a simple example:

Employee employee = new Employee();

SalariedEmployee salariedEmployee = new SalariedEmployee(600000);

HourlyEmployee hourlyEmployee = new HourlyEmployee(10.00);

hourlyEmployee.HoursWorked = 10;

Console.WriteLine(employee.getPayroll());

Console.WriteLine(salariedEmployee.getPayroll());

Console.WriteLine(hourlyEmployee.getPayroll());

The resulting output would be as follows:

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 93

94 Chapter 2 • Introducing C# Programming

0

5000

100

This is just what you would expect. Each type of employee returns the cor-
rectly calculated payroll amount.This is polymorphism at work.We can choose to
inherit those things that are common and implement those things that aren’t in
derived classes.

Let’s take a further look at polymorphism.The true power of polymorphism
allows you to use a derived class when an object of the base class is specified.The
following code demonstrates this:

Employee employee = new Employee();

SalariedEmployee salariedEmployee = new SalariedEmployee(600000);

HourlyEmployee hourlyEmployee = new HourlyEmployee(10.00);

hourlyEmployee.HoursWorked = 10;

displayPayrollAmount(employee);

displayPayrollAmount(salariedEmployee);

displayPayrollAmount(hourlyEmployee);

public void displayPayrollAmount(Employee employee)

{

Console.WriteLine(employee.getPayroll());

}

The resulting output would once again be as follows:

0

5000

100

Notice that the displayPayrollAmount method takes an Employee object as a
parameter. But it is passed an instance of both SalariedEmployee and
HourlyEmployee.The displayPayrollAmount method also displays the payroll amount
appropriate to the class type passed in.This is polymorphism at work.A
SalariedEmployee is an Employee, and an HourlyEmployee is an Employee as far as the

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 94

Introducing C# Programming • Chapter 2 95

CLR is concerned. So any method that expects an object of class type Employee
will also take an object of class types SalariedEmployee or HourlyEmployee.

There is still one odd thing about the code.The class Employee returns zero if
displayPayrollAmount is called. In truth, it doesn’t make any sense to create an
object of type Employee.All employees must be salaried employees or hourly
employees. But with the current code, nothing is stopping a programmer from
instantiating a class object of type Employee.

Fortunately, in C# you can make the Employee class an abstract class, and the
compiler will generate an error if an object of type Employee is created. Here are
the changes necessary to the enable this:

abstract class Employee

{

abstract public double getPayroll();

}

If you now try to create an instance of Employee, such as

Employee employee = new Employee();

the compiler will generate an error saying it cannot create an abstract class
Employee.

Notice that the Employee class declaration uses the keyword abstract.This indi-
cates to the compiler that an object of this class type can never be created.
Another change is that the getPayroll() method is also prefixed by the keyword
abstract. Notice that we supply only the signature for the method and no imple-
mentation.The abstract keyword indicates that a derived class must implement the
method. Note the distinction between the virtual and abstract keywords applied to
a base class method.The virtual keyword says the derived class is free to imple-
ment its own version of a method. If the derived class does not implement the
method, the base classes method will execute when called.The abstract keyword
says that the derived class must implement the method.

You can apply one other keyword to classes.The sealed keyword indicates that
the class cannot be used as a base class. Use the sealed keyword if you never want
other classes to derive from a class.

The getPayroll method shown in the examples in this section could also be
written as a property. Let’s take a look at how the code would change to support
this.The full source code for the three classes is shown here (the code is also
included on the CD in a sample program in the file Payroll.cs):

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 95

96 Chapter 2 • Introducing C# Programming

/// <summary>

/// Base class for an employee. Note that this is an abstract class

/// and therefore cannot be instantiated.

/// </summary>

abstract class Employee

{

private int m_ID;

private string m_firstName;

private string m_middleName;

private string m_lastName;

private string m_SSN;

public Employee(int ID, string FirstName, string LastName,

string MiddleName, string SSN)

{

m_ID = ID;

m_firstName = FirstName;

m_middleName = MiddleName;

m_lastName = LastName;

m_SSN = SSN;

}

abstract public double Payroll

{

get;

}

public int ID

{

get { return m_ID; }

}

public string FirstName

{

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 96

Introducing C# Programming • Chapter 2 97

get { return m_firstName; }

set { m_firstName = value; }

}

public string MiddleName

{

get { return m_middleName; }

set { m_middleName = value; }

}

public string LastName

{

get { return m_lastName; }

set { m_lastName = value; }

}

public string SSN

{

get { return m_SSN; }

set { m_SSN = value; }

}

}

/// <summary>

/// Salaried employee class. Implements the abstract method Payroll

/// defined in the base class.

/// </summary>

class SalariedEmployee : Employee

{

private double m_Salary;

public SalariedEmployee(int ID, string FirstName,

string LastName, string MiddleName,string SSN,

double Salary) :

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 97

98 Chapter 2 • Introducing C# Programming

base(ID, FirstName, LastName, MiddleName, SSN)

{

m_Salary = Salary;

}

override public double Payroll

{

get { return m_Salary / 12; }

}

}

/// <summary>

/// Hourly employee class. Implements the abstract method Payroll

/// defined in the base class. Also implements some class

/// specific methods

/// </summary>

class HourlyEmployee : Employee

{

private double m_HourlyRate;

private double m_HoursWorked;

public HourlyEmployee(int ID, string FirstName,

string LastName, string MiddleName, string SSN,

double HourlyRate):

base(ID, FirstName, LastName, MiddleName, SSN)

{

m_HourlyRate = HourlyRate;

m_HoursWorked = 0;

}

public double HoursWorked

{

get { return m_HoursWorked; }

set { m_HoursWorked = value; }

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 98

Introducing C# Programming • Chapter 2 99

}

override public double Payroll

{

get { return m_HoursWorked * m_HourlyRate; }

}

}

The Employee class now has a Payroll property that is declared as abstract:

abstract public double Payroll

{

get;

}

Notice that the get method has no implementation.The SalariedEmployee and
HourlyEmployee classes supply the following implementations of the property:

// SalariedEmployee implementation

override public double Payroll

{

get { return m_Salary / 12; }

}

// HourlyEmployee implementation

override public double Payroll

{

get { return m_HoursWorked * m_HourlyRate; }

}

The payroll sample program included on the CD in the file payroll.cs incor-
porates most of the concepts we have covered in this chapter. It extends the
employee message queue we have seen throughout this chapter. In particular, it
highlights the power and practical use of inheritance and polymorphism in C#.
The sample extends the messages received in the message queue to include mes-
sages that indicate hours worked for hourly employees as well as supporting the
add new employee message.After processing all of the messages in the queue, the
program lists each employee and the amount of their paycheck for the month.

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 99

100 Chapter 2 • Introducing C# Programming

Along with the Employee, SalariedEmployee, and HourlyEmployee classes just
shown, it illustrates inheritance and polymorphism in a few other classes.As men-
tioned earlier in the chapter when discussing exceptions, you can derive custom
exceptions.We have derived a new custom exception from System.Exception that
is thrown when an attempt is made to read past the end of the message queue.
Here is the declaration of the class:

/// <summary>

/// Custom exception which is thrown when an attempt is made to

/// read past the end of the queue.

/// </summary>

class EndOfMessageQueueException : Exception

{

public EndOfMessageQueueException(string Message) :

base(Message)

{

}

}

The sample also derives the Employees message queue class directly from
ArrayList instead of including an ArrayList as a member of the class. Because
ArrayList already supports IEnumerable, there is little we need to implement our-
selves. Here is the Employees class code:

/// <summary>

/// Container class for employees derived from ArrayList

/// </summary>

class Employees : ArrayList

{

public int Length

{

get { return this.Count; }

}

}

We’ve also created a new Logger base class and have derived the EmployeeLogger
class and a new ErrorLogger class from it.You can see from the following code that

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 100

Introducing C# Programming • Chapter 2 101

the Logger class performs the actual writing of text to a disk file while the other
two classes implement methods specific to the type of logging they perform:

/// <summary>

/// General logging class to a file. Base class for other more

/// specific loggers.

/// </summary>

class Logger

{

string m_fileName;

public Logger(string fileName)

{

m_fileName = fileName;

}

protected void log(string text)

{

FileStream stream = new FileStream(m_fileName,

FileMode.OpenOrCreate, FileAccess.ReadWrite);

StreamWriter writer = new StreamWriter(stream);

writer.BaseStream.Seek(0, SeekOrigin.End);

writer.Write("{0} {1} \n", DateTime.Now.ToLongTimeString(),

DateTime.Now.ToLongDateString());

writer.Write(text);

writer.Write("\n------------------------------------\n\n");

writer.Flush();

writer.Close();

}

}

/// <summary>

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 101

102 Chapter 2 • Introducing C# Programming

/// Writes add employee events to a log file.

/// </summary>

class EmployeeQueueLogger : Logger

{

public EmployeeQueueLogger(string filename) :

base(filename)

{

}

public void logAddRequest(object sender,

AddEmployeEventArgs e)

{

string name = e.FirstName + " " + e.MiddleName + " " +

e.LastName;

string text = "Adding Employee\n";

text += "EmployeeID: " + e.ID.ToString();

text += ", Name: " + name;

log(text);

}

public void logHoursWorked(object sender,

HoursWorkedEventArgs e)

{

string text = "Adding Hours Worked\n";

text += "EmployeeID: " + e.ID.ToString();

text += ", Hours Worked: " + e.Hours.ToString();

log(text);

}

}

/// <summary>

/// Logs error meessage to a log file.

/// </summary>

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 102

Introducing C# Programming • Chapter 2 103

class ErrorLogger : Logger

{

public ErrorLogger(string filename) :

base(filename)

{

}

public void logError(Exception exception)

{

log(exception.Message);

log(exception.StackTrace);

}

}

The payroll sample should provide you with several good examples of inheri-
tance and polymorphism.With the other samples you have seen and the concepts
discussed in this chapter, you should have a solid foundation to start creating your
own C# programs.

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 103

104 Chapter 2 • Introducing C# Programming

Summary
C# is a modern object-oriented language.The Microsoft.NET Framework soft-
ware development kit (SDK) and a text editor are all you need to get started pro-
gramming in C#. In conjunction with the Common Language Runtime (CLR),
you can develop console applications, graphical user interface (GUI) applications,
and Web-based applications using C# and the .NET Framework.

C# includes all of the features you would expect in a modern object-ori-
ented language. It supports the notion of classes and the object-oriented nature of
classes, including inheritance and polymorphism. Classes are one of two data
types in C#, reference types, which are allocated on the heap.Value types, which
are allocated on the stack, are also supported including the usual primitive
numeric and string data types.The looping and conditional statements available
in most modern languages are part of C#, including if-else statements, switch state-
ments, for loops, while loops, and do-while loops.

C# also includes advanced features such a properties and indexers which pro-
vide intuitive syntax for accessing data members while promoting data hiding.
Delegates and events allow you to define events in your programs and set up call-
backs to subscribed class methods when the event is raised. Exception handling is
supported, which moves the clutter of error-checking outside of your main pro-
cessing, resulting in clearly defined business logic.

Solutions Fast Track

Getting Started

C# is a modern object-oriented language.

The Microsoft .NET Framework software development kit (SDK) and a
text editor are all you need to begin programming in C#.The Windows
family of operating systems supplies several adequate editors including
Notepad.

Microsoft sells a feature rich development environment for developing
.NET applications:Visual Studio .NET.

You can use C# in development of console applications, graphical user
interface (GUI) applications, and Web-based applications.

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 104

Introducing C# Programming • Chapter 2 105

Creating Your First C# Program

A command-line compiler, csc.exe, is supplied with the .NET
Framework SDK.You use it to compile console applications.

Every C# program must have a static Main method, which is the entry
point of the program. C# does not support global functions, so Main
must be a class method.

You can use namespaces to group related classes together.The using
keyword allows you to reference a class object without prefixing it with
the full namespace.

You can also use source code control comments to document your
program classes and methods for other programmers that may call
your code.

Introducing Data Types

C# supports two data types: value types and reference types.

Value types are allocated on the stack and include primitive types such as
numerics, Booleans, characters, and strings. Structures and Enums are
also value types.

Reference types are allocated on the stack and are typically instances of
class objects.

C# does not support pointers.

Explaining Control Structures

C# supports the control structures you normally find in a modern
language: if-else conditional, for loop, do while loop, while loop, and the
switch statement.

The test expression in an if-else statement must evaluate to a Boolean
value. Numeric test expressions are not supported as they are in C/C++.

The switch statement does not support falling through to the next case
statement as it does in C/C++.

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 105

106 Chapter 2 • Introducing C# Programming

Understanding Properties and Indexers

Properties are method calls that appear to be member variables.
Properties hide the underlying data type allowing you to change the
implementation without the need to change code that uses the property.

Indexers allow you to use array syntax to access a list of objects
contained inside another class. Like properties, indexers hide the
underlying implementation allowing you to change it without the need
to change code that uses the indexer.

Implementing indexers that support the IEnumerator interface allows you
to use the for-each looping syntax to access the list objects of the indexer.

Using Delegates and Events

You can use delegates to call subscribed method calls when a triggering
event happens. Delegates are similar to callback functions in Microsoft
Windows programs or function pointers in C++.

A single cast delegate invokes a single subscribed method.A multicast
delegate invokes more than one subscribed method.

Events are a type of a delegate that is provided for you in the .NET
Framework. Methods subscribing to an event always provide the same
set of arguments.This differs from delegates in that each delegate
provides a unique signature for its subscribed methods.

Using Exception Handling

You use exception handling return and trap errors in C# programs.

Exception handling uses the try-catch-finally syntax. Try blocks define the
code that may throw exceptions. One or more catch blocks trap and
handle exceptions of various types.The finally block is always executed
regardless of whether an exception was thrown and is typically used to
free resources.

Because the .NET Common Language Runtime (CLR) may throw
exceptions even if you don’t, you should catch exceptions somewhere
near the top of your call chain to be sure you program will continue
running.

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 106

Introducing C# Programming • Chapter 2 107

Understanding Inheritance

C# is an object-oriented language and as such supports inheritance and
polymorphism. Inheritance means you can create a new type of object B
that inherits all of the characteristics of an existing object A.
Polymorphism means that this new object B can choose to inherit some
characteristics and supply its own implementation for others.

The virtual keyword is used to define methods in a base class that a
derived class supplies its own implementation of.The override keyword is
used by a method with the same signature in the derived class to provide
a different implementation than the base class.

The abstract keyword applied to a class definition indicates that the class
is abstract and cannot be instantiated.

The abstract keyword applied to a method call of an abstract class means
the method has no implementation in the base class and must be
implemented in the derived class.

Q: Does C# support friend classes like in C++?

A: No.About the closest you can come is using the internal keyword, which
allows access within the current assembly. But, there is no way to specify spe-
cific a class that knows about another class’s private implementation.

Q: I thought destructors didn’t exist in C#.Why can I declare one?

A: You can declare a method that looks like a C++ destructor such as ~Employee().
But it really becomes a shorthand way to define System.Object.Finalize.The
Finalize method is not the same as a C++ destructor.A short explanation is
that C++ destructors are called when the call stack unwinds.The Finalize

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

167_C#_02.qxd 12/3/01 5:44 PM Page 107

108 Chapter 2 • Introducing C# Programming

method will be called when the garbage collector of the CLR is ready to
destroy the object.

Q: How do I convert a numeric type to a string?

A: Call Sytem.Object.ToString(). For example, if the variable count is an integer,
write the following:

string text = count.ToString();

Q: How do I call a member method and pass a primitive type (Value Type) by
reference?

A: Use the ref keyword when declaring the parameter of the method, for
example:

public bool GetValue(ref int returnValue);

This will pass the numeric by reference.You can modify the value of
returnValue within the body of GetValue and it will persist when the method
call returns.

Q: Can I call a Win32 API function from a C# program?

A: Yes, you can.The .NET Framework provides a set of services called Platform
Invoke, also known as PInvoke. Refer to the .NET Framework documenta-
tion for examples of using PInvoke services.

www.syngress.com

167_C#_02.qxd 12/3/01 5:44 PM Page 108

Visual Studio.NET
IDE

Solutions in this chapter:

■ Introducing Visual Studio.NET

■ Components of VS.NET

■ Features of VS.NET

■ Customizing the IDE

■ Creating a Project

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 3

109

167_C#_03.qxd 12/3/01 5:45 PM Page 109

110 Chapter 3 • Visual Studio.NET IDE

Introduction
In addition to the powerful .NET platform, Microsoft has introduced a new ver-
sion of its Visual Studio Suite, called Visual Studio.NET (VS.NET). Even in its
Beta stages,VS.NET provides the developer with powerful visual tools for devel-
oping all kinds of applications on the .NET platform.

VS.NET helps in the speedy creation and deployment of applications coded
in any of the managed languages, including C#.This chapter gets you familiar
with the new features of VS.NET and teaches you to customize it according to
your needs.We cover the many new features of VS.NET, including the .NET
Framework,Web Services, XML support, and the Integrated Development
Environment (IDE).

Also, we cover the XML editor, which has tag completion for Extensible
Stylesheet Language Transformations (XSLTs).We go over the IntelliSense feature
and how it is used in the different windows. Finally, we cover how to customize
your settings within the IDE.

VS.NET is a complete development environment.The components stay the
same regardless of language, making it very easy to switch projects and languages
and have the same features in the same place.Also, with the expanded IntelliSense
with tag completion, routine code writing is faster.

Introducing Visual Studio.NET
The Start pages deliver a great many resources for the development environment.
The Start page is the default home page for the browser inside of the IDE.You
can tap all aspects of the IDE from these pages.We go over the three most useful
Start pages, starting out with the “What’s New” page and the “My Profile” page,
and ending with the “Get Started” page.We show you what is new with VS.NET,
set up your profile, and get started using the tool.

Let’s open up VS.NET and take a look at the first of the Start pages (see
Figure 3.1).

You can filter the “What’s New” Start page to whatever topic you are inter-
ested in—we have chosen to filter by .NET Framework.All content in the
“What’s New” Start page will be rendered based on the filter, so you can save
some time by not looking up new features for VB, for example.You can also
select Check availability of Visual Studio.NET service packs from this
Start page and check to see if you need the latest download for VS.NET. Let’s
look at the “My Profile” page next, shown in Figure 3.2.

www.syngress.com

167_C#_03.qxd 12/3/01 5:45 PM Page 110

www.syngress.com

The “My Profile” section of the Start page lets you create your own (custom)
profile or select from any of the options listed. If you happen to come from a VB
background, using the VB profile would be beneficial so that you could be
familiar with the tools from VS 6. Likewise, a C++ or Interdev user from VS 6
will benefit from the same environment.This will help you to learn the tool by
showing a familiar layout.You can also select to have only external help, which
will open the Help documentation in a new window outside of the IDE.You can
filter the Help topics; in our case, we’ve selected .NET Framework SDK in

Visual Studio.NET IDE • Chapter 3 111

Figure 3.1 VS.NET Start Page: What’s New

Figure 3.2 VS.NET Start Page: My Profile

167_C#_03.qxd 12/3/01 5:45 PM Page 111

112 Chapter 3 • Visual Studio.NET IDE

the What’s New section Start page.You can also select the window layout that
you want to use.You then can select the Get Started Start page, shown in
Figure 3.3.

Here you can select projects you worked on previously, and you can also see
where they are located on the machine by dragging the mouse over the name of
the file.This is a nice feature that you can use where you have two projects
named the same but at different locations.

The Start page is the default page for the Web browser window in VS.NET,
so if you close it and want to get it back, simply hit the home icon on the Web
toolbar and the page will load in the design window.

Components of VS.NET
The Visual Studio.NET IDE is made up of many components that interact with
one another.You can use each of them separately or at the same time.This feature
lets the user decide which set of components he wishes to use.All of the compo-
nents together create an intuitive graphical user interface (GUI).

Design Window
The design window is used when you are graphically creating an application using
the Toolbox to drag and drop objects onto the window. Much like the code

www.syngress.com

Figure 3.3 VS.NET Start Page: Get Started

167_C#_03.qxd 12/3/01 5:45 PM Page 112

Visual Studio.NET IDE • Chapter 3 113

window and browser, the design window cannot be docked or set to Auto Hide.
You can split the design view or have tab groups added to it. Splitting the window
helps when you need to compare code from two separate files (see Figure 3.4).

Here you can see windows for both design and code.This is a C# Web appli-
cation, but the functionality is the same for any project.

Code Window
As we mentioned, the code window is much like the design window.There is no
toolbox functionality within the code view, however—you cannot drag and drop
objects from the toolbox into the code view. If you create objects in the code
view and then switch back to the design view, the objects that you added would
persist in design view.Again you cannot dock this window nor allow it to float.
You can, however, split it and add new tab groups to the display. Figure 3.5 shows
the code window split and a tab vertical tab order added.

If you look at Figure 3.5 a little more closely, you can see a collapsible menu
tree on the left-hand side.This is created every time you create a class or function,
enabling you to collapse each section independently to save space for viewing

www.syngress.com

Figure 3.4 Split Window View

167_C#_03.qxd 12/3/01 5:45 PM Page 113

114 Chapter 3 • Visual Studio.NET IDE

other code present within the window. Note that you must have the default
option Outlining Mode checked for this to work. If you want to have line num-
bers show for your code, you will have to choose Tools | Options. In the
Options dialog box, select Text/Editors. Select C# and then choose the option
to have line numbers added.

You may also define your own regions of code that may be collapsed.To do
this simply add the following code to your class or function you want to make
into a region:

#region

///Comments and code

#endregion

Server Explorer
The Server Explorer is by far one of the best features in VS.NET. From this
window you can connect to a server on the network and have full access to that
server or servers.You can also link to any database servers on the network. Let’s
see how to do that. Click the Connect to Database icon in the title bar of the
window (see Figure 3.6).You will be prompted to give all information required
for a Universal Data Link (UDL).

Fill out the UDL Wizard and test the connection.After this is done, you can
access everything within that database that the user has rights to. Let’s take a look
at that in Figure 3.7.

www.syngress.com

Figure 3.5 Code View

167_C#_03.qxd 12/3/01 5:45 PM Page 114

Visual Studio.NET IDE • Chapter 3 115

www.syngress.com

Figure 3.6 Add Database to Server Explorer

Figure 3.7 Expanded Database View

167_C#_03.qxd 12/3/01 5:45 PM Page 115

116 Chapter 3 • Visual Studio.NET IDE

You can now click on any object within the Server Explorer and edit it
within VS.NET.This is a timesaver from having to have both the Query Analyzer
and VS.NET open at the same time and going back and forth between the two
just to switch a data type of one stored procedure input parameter.

Toolbox
The Toolbox, shown in Figure 3.8, includes Data, Components,Web Forms, and
Window Forms tabs.As stated earlier in the chapter, you can use the Toolbox
with the Design View window.You can drag and drop each component or con-
trol onto the design window.Also, you may customize the Toolbox by adding in
your own code fragments and renaming them to something meaningful.

To do this, simply right-click on the Toolbox and select Add Tab. Give it a
name that is different than the existing tabs, and you are ready to add your own
tools.To add a new tool, highlight a block of code that you want to make into a
tool and drag it onto the Toolbox label you just created.

The Clipboard Ring stores all the items that you have copied in code view
automatically.You can then double-click these and add them to the source code.

www.syngress.com

Figure 3.8 The Toolbox Window

167_C#_03.qxd 12/3/01 5:45 PM Page 116

Visual Studio.NET IDE • Chapter 3 117

Docking Windows
One of the new features for VS.NET is that you can dock or expand or collapse
all the windows within the IDE.To add windows to your IDE, navigate to the
standard toolbar and select View; here you can select all the windows that you
want to have immediately available in your environment. One drawback to this is
that you will not have much room left to work in if you select a lot of windows
to show, but the Auto Hide feature of each window makes them slide off the
screen and embed in the side when not needed.This enables you to have max-
imum code view but still have all windows present.To see a window that has
Auto Hide enabled, simply position your mouse over the window icon on either
side of the IDE.You can dock each window into place by clicking on the pin or
by navigating to the standard toolbar and choosing the Window menu option.
Once a window is docked, it is there permanently; you can, however, make the
window float by selecting Window | Floating (see Figure 3.9).

Properties Explorer
The Properties Explorer is much as it was in VS 6 and the Visual Basic IDE and
Visual Interdev IDE. Select an object from the design window, and in the
Properties Explorer, you will see available attributes for that object listed, as
shown in Figure 3.10.The right-hand column lists the property names, and the
left-hand column stores the attribute’s value.The Properties window enables
Rapid Application Development (RAD) by allowing you to quickly create a
graphical representation of the application you are building without doing any

www.syngress.com

Figure 3.9 Floating Window

167_C#_03.qxd 12/3/01 5:45 PM Page 117

118 Chapter 3 • Visual Studio.NET IDE

coding whatsoever. Some options are available in the Properties Explorer.You can
select from the drop-down list the actual object you want to view.You can also
select the Events option and have the event available to that object displayed.You
can organize the Properties Explorer either by categories or alphabetically.

Any changes made in this window will be propagated to the design view and
code view windows, respectively.

Solution Explorer
The Solution Explorer is the same as it was in VS 6.The Solution Explorer is a
look at all the files in your solution. In the title menu bar, you have four options:
Refresh, Copy Web, Show All Files, and Properties.The Properties option lets you
set all of your solutions’ properties, including debug parameters options.The
.NET IDE has two different types of containers available for holding items: solu-
tions and projects.The main difference between the two is that you can have mul-
tiple projects within a solution, whereas the project container keeps only files and
items within files.To view a project’s properties, right-click the project and select
Properties. Let’s look at project properties in more detail in Figure 3.11.

Here, you need to make two changes. Set the target schema to Internet
Explorer 3.2 & Navigator 3.0.Also, change the page layout from Grid to

www.syngress.com

Figure 3.10 Properties Explorer

167_C#_03.qxd 12/3/01 5:45 PM Page 118

Visual Studio.NET IDE • Chapter 3 119

Flow.These two changes will make all the JavaScript comply with the selected
browsers.This will enable you to code without having to check to make sure if
your scripts will work in older browsers. By making the change to “flow layout,”
you prevent your code from using absolute positioning within span tags so that it
will be safe for Netscape users.These two changes are useful for any ASP.NET
development you may do inside of the VS.NET IDE.

Object Browser
The Object browser will give you a complete list of all classes’ methods and
properties in your solution. Everything is listed, and it is quite in depth. If you
want to, you can look up parents of classes that you are using and list out the
methods and properties you might need. By double-clicking on an external class
in your solution, the Object browser will load and have all parent and child nodes
of the class listed with each of their methods and properties included.This comes
in handy when you are in need of finding a suitable substitute class to handle
some part of your application. Like in Java, .NET has an incredible quantity of
built-in classes that can accomplish just about everything you may need—the
trouble is finding their location and how to access their methods and properties.
Using the Object Browser enables you to achieve this in a timely fashion (see
Figure 3.12).

www.syngress.com

Figure 3.11 Project Properties

167_C#_03.qxd 12/3/01 5:45 PM Page 119

120 Chapter 3 • Visual Studio.NET IDE

From this window, you can quickly drill through a class that is not your own
and see what methods and properties it has; you also will get a summary of what
it does and how it is instantiated.

Dynamic Help
Dynamic Help is a dockable window just like the previous windows we have dis-
cussed.To get Dynamic Help to appear, simply choose Help | Dynamic Help.
You can then make the window float or Auto Hide. One thing to note is that
each part of Help (Index, Contents, Search, Index Results, and Search Results),
are all separate windows, so if you undock them and make them all float you will
have quite a few windows appearing on the screen. One thing you may do is
load all the Help windows into themselves and a bottom tab order will appear
inside the main Help window; you can then access all parts of Help from the
same window (see Figure 3.13).

To customize the Dynamic Help window, choose Tools | Options. In
the Options dialog box, select Environment and then select Dynamic Help.

www.syngress.com

Figure 3.12 Object Browser

167_C#_03.qxd 12/3/01 5:45 PM Page 120

Visual Studio.NET IDE • Chapter 3 121

Here you can specify what topics you want to have available and in what order.
You may also specify how many links are displayed per topic.You may also create
a custom Help file on your own for your project, by following the XML schema
named vsdh.xsd. Create your XML file based off of that schema list and place the
file where you want your Help topics to be displayed.

Tabbing through the many different Help options and getting to the informa-
tion you need is now easy. If you have the hard drive space, loading all the
MSDN Help files from the disks that come with VS.NET would be beneficial.To
do this, simply check the option on the installation sequence that will run from
the computer and not the CD.This will prevent you from constantly having to
load another disk every time you want to look up a particular topic.This gets
quite annoying when you need one disk to open the tree view and another to
access the topic within.

Task List Explorer
The Task List (see Figure 3.14) enables you to add tasks that need to be done and
organize them in a number of different ways and with priority. It is very simple
to use. If you are using Source Safe, a group of developers can quickly see what
needs to be done and what has been done by viewing the Task List for each file
in the project.

www.syngress.com

Figure 3.13 Docked Help Windows

167_C#_03.qxd 12/3/01 5:45 PM Page 121

122 Chapter 3 • Visual Studio.NET IDE

Another feature of the Task List is that it will create tasks on the fly as you
debug your application by marking down any errors.You can then go back and
fix each task and have it removed.You can organize the task list on Build errors.
Also you can create your own custom token, which is a unique key that tells the
Task List that a comment needs to be added to the list, to appear in your Task
List from your code.You can map out your function or method or whatever you
are coding with your own custom tokens and have them appear in the Task List.

To create your own custom token to add to the default tokens available
(HACK,TODO, UNDONE), choose Tools | Options | Task List. Give the
token name and priority.To use the token, simply add something like the fol-
lowing in your code window (use the comment tag “//” and then the token
name followed by the instruction for the task):

// FUBAR what I want in the task list to appear.

Features of VS.NET
VS.NET has a combination of new and old features built into the IDE.We discuss
the additions to IntelliSense, the new features of XML support, and the many dif-
ferent ways you can now customize the IDE. Let’s begin with IntelliSense.

IntelliSense
IntelliSense is a form of code completion that has been part of most Microsoft
developer tools for many years now. Code completion technology assists when you
start to type a tag, attribute, or property by providing the resulting ending so that
you will not have to write out the whole item.You will notice this right away.

www.syngress.com

Figure 3.14 Task List

167_C#_03.qxd 12/3/01 5:45 PM Page 122

Visual Studio.NET IDE • Chapter 3 123

VS.NET has IntelliSense support for all of the primary programming lan-
guages:VB.NET, C#, and C++. IntelliSense even exists for Cascading Style
Sheets and HTML. Unfortunately,VS.NET doesn’t include IntelliSense for XSLT
in the Beta2 version—we may have to wait for the release version. Currently
ActiveState does make an XSLT plug-in for VS.NET that provides this function-
ality; you can obtain a free trial version at http://aspn.activestate.com/ASPN/
Downloads/VisualXSLT.

While developing, you will notice that IntelliSense provides information
about active classes only, meaning those that you have created in your project or
those referenced in your page with the using Directive (for code-behind pages:
pagename.aspx.cs). If you are trying to use an object or method, and no
IntelliSense appears for it, you may have forgotten to include the reference.

For example, if you attempt to do data operations using the SqlCommand
object, no IntelliSense will appear until you reference the appropriate data class
(see Figure 3.15):

using System.Data.SqlClient;

www.syngress.com

Figure 3.15 Using IntelliSense

167_C#_03.qxd 12/3/01 5:45 PM Page 123

124 Chapter 3 • Visual Studio.NET IDE

For C#, IntelliSense is available only in the code-behind page and not in the
ASPX page itself.This may change in the release version.To disable IntelliSense,
choose Tools | Options | Text/Editor and select the editor you are using,
which should be C#. In the Statement Completion section, uncheck all the
options, which will disable IntelliSense for the editor.

XML Editor
When working with XML,VS.NET has some interesting features. If you create a
well-formed XML document of your own, you can easily generate a corre-
sponding XSD schema that conforms to the 2001 W3C XML schema. Once this
is done, your XML document will have code completion based on this new
schema.To test creating a schema, let’s open poll.xml and generate a schema for it:

■ Choose File | Open. Navigate to your CD-ROM drive and locate the
file poll.xml.

■ Click Open.This should load the page into the IDE.

■ If the XML is one continuous line, simply click the Format the Whole
Document icon (see Figure 3.16).

www.syngress.com

Figure 3.16 Formatting an XML Document

167_C#_03.qxd 12/3/01 5:45 PM Page 124

Visual Studio.NET IDE • Chapter 3 125

Now, let’s create a schema for this file. Right-click anywhere in the text editor
and select Create Schema.You can see these resulting changes in Figure 3.17:

■ A new file called poll.xsd was auto-generated by VS.NET.

■ In the Properties window, the new schema is set as the file’s target
schema.

■ An XML namespace attribute is added.

■ IntelliSense based on the schema is now available for this document.

You can also select a different schema to base the XML file on by selecting a
new schema from the targetSchema drop-down (see Figure 3.18).This would then
provide IntelliSense based on the schema selected.

You can also view XML documents from the Data mode.This presents the
document in a hierarchical structure. From this view, you can also add new nodes
and data to the document (see Figure 3.19).

www.syngress.com

Figure 3.17 Generating a Schema for a Well-Formed XML Document

167_C#_03.qxd 12/3/01 5:45 PM Page 125

126 Chapter 3 • Visual Studio.NET IDE

www.syngress.com

Figure 3.18 Selecting a Target Schema

Figure 3.19 Viewing an XML Document in Data Mode

167_C#_03.qxd 12/3/01 5:45 PM Page 126

Visual Studio.NET IDE • Chapter 3 127

Documentation Generation
(XML Embedded Commenting)
This feature enables you to comment your code with an embedded XML tag-
ging structure.When XML documentation is enabled, an XML documentation
file will be created during the build process. In the Solutions Explorer, right-click
on the project name, then select Properties.The Project Properties dialog
appears. Click the Configuration Properties folder and select Build.

Find the item called XML Documentation File in the textbox next to this,
provide a relative path to the file location you would like the Documentation
written to, and click Apply (see Figure 3.20).

Now let’s look at how to add XML comments to the code.

Adding XML Document Comments to C# Pages
The file used in this example is from a sample application built in Chapter 10
and is on the CD (See catalog.cs in the components folder.) To add XML docu-
mentation comments to your code, simply type three slashes above any class,
method, or variable.

www.syngress.com

Figure 3.20 Setting the XML Documentation File Source in the Project
Properties Dialog

167_C#_03.qxd 12/3/01 5:45 PM Page 127

128 Chapter 3 • Visual Studio.NET IDE

public DataSet catalogItemDetails(string book_isbn)

{

return catalogRangeByCategory(-1, -1, book_isbn);

}

An XML representation of its inputs and outputs will be generated:

/// <summary>

///

/// </summary>

/// <param name="book_isbn"></param>

/// <returns></returns>

public DataSet catalogItemDetails(string book_isbn)

{

return catalogRangeByCategory(-1, -1, book_isbn);

}

Simply add appropriate notes and build the project:

/// <summary>

/// Specialized interface to catalogRangeByCategory.

/// This Method returns all the data for only the given book

/// </summary>

/// <param name="book_isbn">string</param>

/// <returns>DataSet</returns>

public DataSet catalogItemDetails(string book_isbn)

{

return catalogRangeByCategory(-1, -1, book_isbn);

}

When you build the project, you will receive a list of warnings corresponding
to every Public variable, property, method, and class that is not commented. Figure
3.21 shows what happens when you tell it to create comments; this is how it tells
you what variable isn’t commented.This will not prevent program execution, nor
the writing of the documentation file. Figure 3.22 contains the XML generated
on build.

www.syngress.com

167_C#_03.qxd 12/3/01 5:45 PM Page 128

Visual Studio.NET IDE • Chapter 3 129

Customizing the IDE
The VS.NET IDE is fully customizable.All windows can be set to dockable, hide,
auto hide, and floating.You can display different toolbars for each different type of
file, and you can create customizable toolbars.You can set font, tab, and text
layout properties for each type of file.You can set the default Start page to open
the last project, or even set it to a user-created page. If you mess up the layout,
you can easily set it back to several predefined layouts.

www.syngress.com

Figure 3.21 Warning for Uncommented Public Variables, Properties,
Methods, and Classes

Figure 3.22 Generated XML Documentation

167_C#_03.qxd 12/3/01 5:45 PM Page 129

130 Chapter 3 • Visual Studio.NET IDE

Creating a Project
Now that we have covered all the different aspects of the IDE, let’s create a test
project.We cover the different type of projects available, show how to add a Web
reference to the project, and briefly go over some of the debugging tools avail-
able to the IDE.This should give a well-rounded tour of the complete IDE. Now
let’s go over the projects available.

Projects
We cover the projects available to C# development:

■ Windows application

■ Class Library

■ Windows Control Library

■ ASP.NET Web application

■ ASP.NET Web service

■ Web Control Library

■ Console application

■ Windows Service

■ Empty project

■ Empty Web project

■ New project in existing folder

Most of these are self-explanatory. Users new to .NET will see that three
Web projects are added into the project listing for all languages.These are the
ASP. NET,Application,Web Service, and Control Library.The other projects will
be familiar to all VS 6 users (see Figure 3.23).

Creating a Project
For this example, we will build an ASP.NET Web application (see Figure 3.23).
You may keep the name as the default or select a new name.The location should
be localhost if you are developing on the same box as the IIS server; if not, you
will have to place the location of the server in that text box, either through IP or
the name of server.The next option is to either close any open solutions and
open this new, or add it to the existing solution.We recommend that you choose

www.syngress.com

167_C#_03.qxd 12/3/01 5:45 PM Page 130

Visual Studio.NET IDE • Chapter 3 131

to have it close all open solutions and open new, so as not to task your machine
with having multiple solutions in the same IDE. Click OK, and VS.NET will
create the project for you.

Add Reference
One of the great benefits of working within the IDE of VS.NET is that you can
add references to your project with ease.Try it out: In this project, select the project
name in the Solutions Explorer. Right-click and select Add Web Reference.
Now you will have to have a location to a WSDL file from which to locate and
add in the Web Service to the project.This is covered later in the book.

You may also add a reference to a DLL to your project.This will be done
much the same way as the Web Reference. Instead of selecting Add Web
Reference as we just did, select Add Reference, then choose from all the avail-
able references on your machine.

Build the Project
To build a project, simply press F5 or click the Start icon on the main window
menu bar.The project will be compiled.You must also set a Start page before this
takes place.To do that, right-click on the file you want to have be the Start page or
window and set it to Start page.This will launch this page first after the project
has been compiled and run (see Figure 3.24).

www.syngress.com

Figure 3.23 Project Listing in the IDE

167_C#_03.qxd 12/3/01 5:45 PM Page 131

132 Chapter 3 • Visual Studio.NET IDE

Debugging a Project
While building the project, any errors will bring up a dialog box, which will ask
you to continue with the errors in place, or to strop debugging and correct any
errors displayed.These errors will show in the Task window.You may double-
click on any error in the Task window, and the IDE will take you to that location
in the code.As you fix the bugs present in the task list, they will be removed.You
can also set breakpoints and step over and step into options.

www.syngress.com

Figure 3.24 Compiling a Project

167_C#_03.qxd 12/3/01 5:45 PM Page 132

Visual Studio.NET IDE • Chapter 3 133

Summary
In this chapter, we’ve taken a tour of the VS.NET IDE.We’ve seen an overview
of the interface, some of its component windows and some of its built-in fea-
tures.The design window and the code window are graphical tools used in cre-
ating an application.You can split the windows or have tab groups added to
them; you can use the Toolbox (which includes Data, Components,Web Forms,
and Window Forms) to drag and drop objects onto the design window.The
Server Explorer window allows you to connect to a server on the network and
have full access to that server, and to link to any database servers on the network.

One of the new features for VS.NET is that you can dock all the windows, or
expand and collapse them within the view of the IDE.The Auto Hide feature of
each window makes them slide off the screen and embed in the side when not
needed; this enables you to have maximum code view but still have all windows
present.

The Properties Explorer (similar to the one in VS 6 and the Visual Basic IDE
and Visual Interdev IDE) allows you to select an object from the design window
to see available attributes for that object listed.Any changes made in this window
will be propagated to the design view and code view windows respectively.

The Solution Explorer (the same as in VS 6) is a look at all the files in your
solution via the four options: Refresh, Copy Web, Show All Files, and Properties.
The VS.NET IDE has two different types of containers available for holding
items, solutions and projects (you can have multiple projects within a solution,
whereas the project container keeps only files and items within files).The Object
browser will give you a complete list of all classes’ methods and properties in your
solution.

Other windows include Dynamic Help and the Task List. Dynamic Help is a
dockable window that you can fully customize to make it easy to tab to whatever
information you are interested in.You can use the Task List for collaborative pro-
jects and in debugging; it lets you add and prioritize tasks.

IntelliSense, the code-completion technology Microsoft uses, is supported in
VS.NET for VB.NET, C#, and C++, but not yet for XSLT. IntelliSense provides
information about active classes. For C#, IntelliSense is available only in the
code-behind page and not in the ASPX page itself.

Another important feature is XML Documentation.This feature enables you
to comment your code with an embedded XML tagging structure.When XML
documentation is enabled, an XML documentation file will be created during
the build process.

www.syngress.com

167_C#_03.qxd 12/3/01 5:45 PM Page 133

134 Chapter 3 • Visual Studio.NET IDE

We’ve looked at some issues like the customizable, dockable, hide, auto hide,
and float settings for many of the component windows along with the profile
setting on the Start page.VS.NET is a collection of integrated developer tools
that you should definitely familiarize yourself with.

Solutions Fast Track

Introducing Visual Studio.NET

Visual Studio.NET (VS.NET) provides a consistent interface across the
primary development languages.

VS.NET provides easy to use tools for Windows and WebForms rapid
prototyping across languages (including C# and Managed C++).

Components of VS.NET

Enhanced window manipulation for user preferences within the
Integrated Development Environment (IDE) gives the developer the
ability to dock, auto hide, hide, or float all component windows.

Task List has the ability to create custom tokens to map out and
prioritize your code via the Task List.

Server Explorer allows the developer to quickly connect and access any
database server on the network, enabling direct access to all database
objects, including stored procedures, functions, and user settings.

Features of VS.NET

IntelliSense is one of the best tools at your disposal when learning a new
language or technology.VS.NET has built IntelliSense into almost every
aspect of the development process.

Dynamically generated XML Documentation provides a fast and easy
way to comment your code and generate a separate XML formatted
documentation file.This tool makes code more self-documenting, and it
should save developers time and ensure that some documentation is
provided.

www.syngress.com

167_C#_03.qxd 12/3/01 5:45 PM Page 134

Visual Studio.NET IDE • Chapter 3 135

Generating XML schemas from well-formed XML is now a breeze with
.NET.You can also create new XML documents that conform to
popular standards by selecting a targetSchema and using the IntelliSense
feature to create valid XML documents.

Customizing the IDE

The VS.NET IDE is fully customizable.All windows can be set to
dockable, hide, auto hide, and floating.You can display different toolbars
for each different type of file and create customizable toolbars.You can
set font, tabbing, and text layout properties for each type of file.

You can set the default Start page to open the last project, or even set it
to a user-created page.

The IDE also includes several common default settings in case you mess
up while customizing your interface, settings like the default VB 6
interface or Visual InterDev.

Creating a Project
One of the great benefits of working within the IDE of VS.NET is that
you can add references to your project with ease.

To build a project, simply press F5 or click the Start icon on the main
window menu bar.

While building the project, any errors will bring up a dialog box, which
will ask you to continue with the errors in place, or to strop debugging
and correct any errors displayed.

www.syngress.com

167_C#_03.qxd 12/3/01 5:45 PM Page 135

136 Chapter 3 • Visual Studio.NET IDE

Q: How can I look up a parent class method or property of any System-level
object?

A: Use the Class View window, accessed from the standard toolbar by clicking
View | Class View.

Q: Does VS.NET support line numbering in its text editor?

A: Yes, from the standard toolbar select Tools | Options.This will open the
Options dialog; select the Text Editor folder, pick the language, and click on
the check box for line numbering under the display section.

Q: Is there a way to set the tab size in the text editor?

A: Yes, from the standard tool bar select Tools | Options.This will open the
Options dialog; select the Text Editor folder, choose a language folder, select
Tabs, and set them to your desired setting.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

167_C#_03.qxd 12/3/01 5:45 PM Page 136

Windows Forms

Solutions in this chapter:

■ Introducing Windows Forms

■ Writing a Simple Windows
Forms Application

■ Writing a Simple Text Editor

■ Using the ListView and TreeView Controls

■ Creating Controls

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 4

137

167_C#_04.qxd 12/3/01 5:47 PM Page 137

138 Chapter 4 • Windows Forms

Introduction
With so much focus on Web-based user interfaces, it’s easy to dismiss the tradi-
tional Windows architecture when developing for the Internet.The recent popu-
larity, however, of peer-to-peer file sharing and online chat programs
demonstrates that the “rich client” can work extremely well over the Internet,
and provide features unavailable in thin client model.The .NET platform pro-
vides a modern solution for developing Windows applications, with the following
key features:

■ A revamped object-oriented model, with a focus on consistency and
extensibility

■ A rapid application development environment in Visual Studio

■ Easy access to the Internet through .NET networking libraries and
Web Services

■ Managed execution environment that allows custom controls to be
hosted in a Web page

■ Compilation to a small executable

And, of course, you no longer have any installation worries—you just need
to copy a small executable to the target machine and run it. Rich client has
become thin.

The components provided in the .NET library for writing Windows applica-
tions can broadly be divided into two groups:Windows Forms (the components
that manage windows and controls) and the graphics device interface known as
GDI+ (the classes that encapsulate the lower-level graphics functions).This chapter
covers Windows Forms in some detail, also touching upon GDI+, and it takes you
step by step through the process of creating typical rich client applications.

Introducing Windows Forms
In essence,Windows Forms is a collection of classes and types that encapsulate
and extend the Win32 API in a tidy object model. In other words, the compo-
nents used to create Windows GUI applications are provided as .NET classes and
types that form part of an orderly hierarchy.

This hierarchy is defined by inheritance: Simple reusable classes such as
Component are provided, and then used as a base from which more sophisticated
classes are derived.We can draw a useful overview by representing the inheritance

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 138

www.syngress.com

hierarchy in a treelike diagram. Figure 4.1 summarizes at a high level the classes
that comprise Windows Forms and GDI+.

The arrows represent inheritance: Control assumes all the functionality of
Component, which assumes all the functionality of Object.Table 4.1 provides a
quick and pragmatic summary of the four essential classes on which the Windows
Forms types are based.

Windows Forms • Chapter 4 139

Figure 4.1 A Summary of Window Forms and GDI+ Classes

Object

Component

Control

Windows Forms
Components

Timer
MainMenu
ImageList
...

Containers Hosting
Child Controls

Form
Panel
TabPage
GroupBox
UserControl
...

Windows Forms
Controls

Label
Button
TextBox
CheckBox
ListBox
...

Subclassed Forms
and UserControls

Custom Controls
drawn with GDI+

System.Windows.Forms

GDI+ Classes

Graphics
Pen
Brush
Bitmap
...

System.Drawing

167_C#_04.qxd 12/3/01 5:47 PM Page 139

140 Chapter 4 • Windows Forms

Creating a Windows Forms application is largely just a matter of instantiating
and extending the Windows Forms and GDI+ classes. In a nutshell, you typically
complete the following steps:

1. Create a new project defining the structure of a Windows Forms
application.

2. Define one or more Forms (classes derived from the Form class) for the
windows in your application.

3. Use the Designer to add controls to your forms (such as textboxes and
checkboxes), and then configure the controls by setting their properties
and attaching event handlers.

www.syngress.com

Table 4.1 Core Classes

Class What It Does Why We Need It

Object

Component

Control

Form

For a tidy unified type system,
and to provide core function-
ality available to all types (such
as ToString).
So Visual Studio’s Designer can
host a wide variety of controls
and components in a generic
way, to provide a base from
which you can write nonvisual
components, and to allow the
cleanup of Windows handles
and file handles in a timely and
reliable manner.
As a common superclass for all
controls, such as textboxes,
labels, and buttons, allowing
them to be treated in a consis-
tent manner, as well as pro-
viding a base from which you
can derive your own custom
controls.
To provide a base class with
standard windowing and con-
tainership functionality that
you can subclass to create
forms in your application.

Acts as a base class for all
types in the .NET Framework.

Provides the basics of contain-
ership, facilitates hosting in a
visual designer, and defines a
protocol for resource disposal.

Provides the core functionality
for a visual control that
responds to mouse and key-
board messages, accepts focus,
and can participate in drag-
and-drop operations.

Defines a class representing a
window to which you can add
controls.

167_C#_04.qxd 12/3/01 5:47 PM Page 140

Windows Forms • Chapter 4 141

4. Add other Designer-managed components, such as menus or image lists.

5. Add code to your form classes to provide functionality.

6. Write custom controls to meet special requirements, using GDI+ classes
to handle low-level graphics.

In this chapter, we cover each of these steps through a series of walkthroughs.
Starting with a new Windows Forms project, we visually add controls to a simple
form, add an event handler, and then demonstrate how controls can be added at
runtime. In the next walkthrough, we write a simple text editor, illustrating
menus, single and multiple-document interfaces, dialog forms, and visual inheri-
tance. In the following example, we introduce the ListView and TreeView controls,
going step-by-step through the process of setting up a splitter, adding a context
menu, and enabling drag and drop between the controls. In the final walk-
through, we write our own controls—starting with a simple address container
and finishing with a scrolling text banner.We then show how custom controls
can be hosted on an HTML page—demonstrating how C# and Windows Forms
can be used to write Java-like Internet applets.

Writing a Simple Windows
Forms Application
The first step to building a Windows Forms application is creating a project.A
Windows Forms project is just like any other type of project in that it consists of
a grouping of source code files, a list of references to required .NET code
libraries, and an appropriate configuration of compilation and debugging options.
When you use Visual Studio to create a project from a template, it sets all of this
up for you, providing a “skeleton” appropriate to the template you’ve selected. In
the case of Windows Forms, this consists of the following:

■ A project of Output Type Windows Application.You can view or change
this in the Project | Properties dialog box.

■ References to the .NET assemblies required for typical Windows Forms
applications (covering most of the types in the Windows Forms namespace).
You can see a list of the project references in the Solution Explorer.

■ A blank form, called Form1 (a C# class with the structure required for a
visually editable form).

■ A Main method in Form1 that instantiates and displays the form.

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 141

142 Chapter 4 • Windows Forms

Let’s start the walkthrough by creating a new Windows Forms project. From
the main menu, choose File | New | Project, click Visual C# Projects, and
choose the Windows Application template (see Figure 4.2). Change the project
name to SimpleApp and click OK.

Adding Controls
Once we’ve created the project,Visual Studio opens the main form (Form1) in
the Designer—the visual editor for our C# form class. Basically, a form created in
Visual Studio is just a C# file, defining a class based on
System.Windows.Forms.Form, containing code to add and configure the controls
created visually.Visual Studio is a “two-way tool” meaning that we can work with
the same code either visually (using the Designer) or programmatically (in the
Code Editor).

Let’s use the Designer to add a few controls to Form1.We can add controls
and components from the toolbox window and then configure them using the
Properties window.

1. From the toolbox, add a Label control to the form. By default,Visual
Studio will name the control Label1.

2. From the Properties Window (F4) change label1’s Text property to
Favorite CD, and change its AutoSize property to True (see Figure 4.3).
This tells the control to size itself according to the metrics of the font
and width of the text.

www.syngress.com

Figure 4.2 Creating a New Windows Forms Project

167_C#_04.qxd 12/3/01 5:47 PM Page 142

Windows Forms • Chapter 4 143

3. Now add a TextBox from the toolbox onto the form, and position it
below the label. Enlarge it horizontally and clear its Text property.

4. Add another label to the form, setting its Text property to Favorite
Style, and AutoSize property to True.

5. Add a ComboBox and position it below the Favorite Style label. Clear
its Text property.

6. Select the combo’s Items property, and then click the ellipses on the right
to open the String Collection Editor.Type in a few styles of music—
each on a separate line, as shown in Figure 4.4.

7. Click OK, and then press F5 to save, compile, and run the application.

www.syngress.com

Figure 4.3 Adding and Configuring a Label Control

167_C#_04.qxd 12/3/01 5:47 PM Page 143

144 Chapter 4 • Windows Forms

www.syngress.com

Figure 4.4 Populating a ComboBox Items Collection

Working with Controls: Using TextBoxes
To create and work with textboxes having more than one line:

1. Set MultiLine to True and AutoSize to False.

2. Set AcceptsTab and AcceptsReturn to True to allow tabs and
new lines to be entered via the keyboard.

3. Set the ScrollBars property to Vertical (or Both if WordWrap is
false).

4. Use the Lines property to access the control’s text one line at
a time.

5. Use \r\n for a new line, for example, Flat 18\r\nQueen St.

To use the control for entering a password, set the PasswordChar
property to *. To read or update selected text, use the SelectionStart,
SelectionLength, and SelectedText properties.

Developing & Deploying…

167_C#_04.qxd 12/3/01 5:47 PM Page 144

Windows Forms • Chapter 4 145

Adding an Event Handler
Let’s add some functionality to the form.

1. Add a Button and ListBox to the form.

2. Select the button, and change its Text property to Update.Then click
the lightning icon in the Properties window to switch to the Events
View (see Figure 4.5).

Think of these events as “hooks” into which we can attach our own
methods.You can either double-click on an event to create a new event-
handling method, or use the drop-down list to connect into an existing
compatible method.

3. Double-click on the Click event.Visual Studio will write a skeleton
event-handling method, wiring it to the event. It will then place you in
the Code Editor, inside the empty method definition:

private void button1_Click(object sender, System.EventArgs e)

{

}

The .NET convention for event handling requires two parameters: a
sender parameter of type object, and an event arguments parameter of

www.syngress.com

Figure 4.5 Properties Window Events View

167_C#_04.qxd 12/3/01 5:47 PM Page 145

146 Chapter 4 • Windows Forms

type EventArgs—or a descendant of EventArgs.The sender parameter tells
us which control fired the event (this is useful when many controls have
been wired to the same event-handling method).The second parameter
is designed to supply special data about the event. In the case of Click,
we have a standard EventArgs object, and this contains no useful infor-
mation—it’s just there to meet the protocol required to support more
sophisticated events (such as KeyPress or MouseDown).

The actual name for this method (button1_Click) is just a convenient
identifier generated by Visual Studio;Windows Forms doesn’t impose
any particular naming convention.

4. Add the following code to the event handler:

private void button1_Click(object sender, System.EventArgs e)

{

listBox1.Items.Clear();

listBox1.Items.Add ("Fav CD: " + textBox1.Text);

listBox1.Items.Add ("Fav Style: " + comboBox1.Text);

}

Here we’re manipulating our list box through its Items property. Items
returns a collection object, having methods to add and remove items from
its list. Note how we access each control through its name—this is possible
because the Designer creates class fields matching the names of each con-
trol.You can see these declarations at the top of the class definition.

5. Press F5 to compile and run the program (see Figure 4.6).

www.syngress.com

Figure 4.6 Running a Simple Windows Forms Application

167_C#_04.qxd 12/3/01 5:47 PM Page 146

Windows Forms • Chapter 4 147

Adding Controls at Runtime
Sometimes it’s necessary to add controls without the help of the Designer. For
instance, you might want some controls to appear on a form only when a partic-
ular button is clicked.

In learning how to programmatically add controls, it’s very helpful to
examine a visually created form in the Code Editor. If you expand the Designer
Generated Code region, you’ll see a method called InitializeComponent containing
all the code that creates and configures each of the form’s visual components.

www.syngress.com

Working with Controls: Using the
ComboBox and ListBox Controls
To add items to the controls’ selection lists programmatically:

1. Call the Item property’s Add method to append to the end of
the list, for example:

myControl.Items.Add ("My New Item");

2. Use the Item property’s Insert method to insert within the list.

3. Because these methods expect an Object type, the item you
add can be of any class, including your own (this is polymor-
phism in action—one of the benefits of a working in an
object-oriented language). The control simply calls the item’s
ToString method to determine what to display.

To get the currently selected item:

1. Use the Text property to return a string.

2. Use SelectedIndex to get a numeric position within the list.

3. Use SelectedItem to get an object reference. If the item is of
your own custom class, you’ll need to explicitly cast the
returned value back to your type.

To allow the user to select only from items in a ComboBox list, set
the DropDownStyle property to DropDownList.

Developing & Deploying…

167_C#_04.qxd 12/3/01 5:47 PM Page 147

148 Chapter 4 • Windows Forms

WARNING

Although reading Designer-generated code is useful in understanding
how components are instantiated and configured, you shouldn’t make
manual changes to this code without exercising some caution. In partic-
ular, you should check that the control renders as expected in the
Designer before saving the form. You should also check your code after
making some visual change—Visual Studio completely rewrites the
Designer-generated code section, so your modifications may not appear
as originally entered.

Here are the four steps to programmatically adding a control or component:

1. Add a class field declaration for the new control.

2. Instantiate the control.

3. Configure the control by setting its properties and adding event han-
dlers, if required.

4. Add the control to the form’s Controls collection (or alternatively, to the
Controls collection of a container control, such as a GroupBox).

Let’s work through an example: we’ll create a new form, add a button, and
then have a textbox appear when the user clicks the button:

1. Create a new Windows Forms project called SimpleApp2 and add a
Button control from the toolbox onto the new form.

2. Press F7 to open the Code Editor, and locate button1’s declaration.
Below this, add a similar declaration for our new textbox, as follows (you
can exclude the System.Windows.Forms prefix if your form has the appro-
priate using statement):

private System.Windows.Forms.Button button1;

private System.Windows.Forms.TextBox myTextBox;

You need to understand that this declaration doesn’t actually create a
textbox.All it does is instruct the compiler, once our form is instanti-
ated, to create a field that can reference (point to) a textbox object—one
that does not yet exist.This declaration exists so as to provide a conve-
nient way to refer to the control throughout the lifetime of the form. In
the cases where we don’t need to explicitly reference the control after its
been created, we can do away with this declaration.

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 148

Windows Forms • Chapter 4 149

3. Return to the Designer, and double-click on the button.This is a quick
way to attach an event handler to the button’s default event (Click).

4. Add the following code to the button’s event handler:

private void button1_Click(object sender, System.EventArgs e)

{

// Create the actual textbox and assign its reference to

myTextBox

this.myTextBox = new TextBox();

// Position the control

myTextBox.Location = new Point (30, 20);

// Put the control on the form.

this.Controls.Add (myTextBox);

}

5. Press F5 to test the application (illustrated in Figure 4.7).

You might have noticed that we created a Point object to position the con-
trol. Point, Size, and Rectangle are three “helper types” defined in the
System.Drawing namespace, and are used extensively in Windows Forms—as well
as other parts of the .NET Framework.Table 4.2 illustrates how these types are
most commonly applied in Windows Forms.

www.syngress.com

Figure 4.7 Adding Controls at Runtime

167_C#_04.qxd 12/3/01 5:47 PM Page 149

150 Chapter 4 • Windows Forms

www.syngress.com

Table 4.2 Helper Types for Positioning and Sizing

Type Example Notes

Point
struct

Size
struct

Rectangle
struct

Sets button1’s
position 100 pixels
across and 80 pixels
down.
Equivalent to the
above.
Equivalent to out-
putting button1.Left.
Not permitted because
of the way structs are
marshaled in C#.
Resizes button1 to 75
by 25 pixels.
Equivalent to the
above.
Attempts to resize the
form so it just fits
button1. However, the
form’s Size property
includes the title bar
and borders—its
usable space is less,
and button1 won’t
quite fit.
ClientSize excludes
title bars and borders
so this works
correctly.
Rectangle combines
Point and Size.
Moves and sizes
button1 to fill the
whole client area of
our form (later we’ll
see that docking pro-
vides a better solution
to achieving this).

button1.Location = new Point (100, 80);

button1.Left = 100;

button1.Top = 80;

Console.WriteLine (button1.Location.X);

button1.Location.X = 100;

button1.Size = new Size (75, 25);

button1.Width = 75;

button1.Height = 25;

// Assuming "this" is our form

this.Size = new Size (button1.Right,

button1.Bottom);

this.ClientSize = new Size

(button1.Right, button1.Bottom);

button1.Bounds = new Rectangle

(100, 80, 50, 20);

button1.Bounds = new Rectangle

(0, 0, this.ClientSize.Width,

this.ClientSize.Height);

167_C#_04.qxd 12/3/01 5:47 PM Page 150

Windows Forms • Chapter 4 151

www.syngress.com

Working with Controls: Using Controls Collections
The form class is an example of a control that hosts other controls.
Windows Forms manages this containership by providing a Controls
property, returning a ControlCollection object that has methods to add,
remove, and access the child controls. Like other .NET collections, it
implements standard interfaces such as ICollection and IList—and this
means we can work with them all in a similar way.

To access an individual control by its position in the collection, use
its Indexer—for example:

Controls[0].Hide() // hide the first control in the collection

To iterate through every control, use the foreach structure—for
example:

// Write the Text property of each control on the form

foreach (Control c in Controls)

Console.WriteLine (c.Text);

To remove a control from the collection, use the Remove method—
for example:

Controls.Remove (txtMiddleName);

To reparent a control to another collection:

■ Change the control’s Parent property.
■ A control’s position in the collection determines its z-order

(front-to-back order), where position 0 is at the front. When
you use Bring To Front and Send To Back in the Designer,
you’re actually changing the control’s position in its parent’s
Controls collection. You can also achieve the same thing at
runtime by calling the object’s BringToFront and SendToBack
methods, or by using the parent collection’s SetChildIndex
method.

Here are some other commonly used container-style controls that
offer the same property:

Developing & Deploying…

Continued

167_C#_04.qxd 12/3/01 5:47 PM Page 151

152 Chapter 4 • Windows Forms

Attaching an Event Handler at Runtime
Let’s suppose we want to set up our newly created textbox so that when it’s
right-clicked, a message box appears.We need to add an event handler to the
textbox at runtime, and there are two steps to this:

■ Writing the event-handling method.

■ Attaching the method to the control’s event.

In our case, we’ll need to attach to the textbox’s MouseDown event (because
there’s no specific right-click event). First, we need to write the event-handling
method, with parameters of the correct type for a MouseDown event.You can
determine an event’s signature in two ways:

■ Look for the event in the Microsoft documentation, and then click on
its delegate (in our case, MouseEventHandler).

■ Using the Designer, add a dummy control of the type we’re attaching to,
create an appropriate event handler, and then delete the dummy control.
The event-handling method will still be there—with the correct signa-
ture.All we need to do is rename it.

Here’s how we do it:

1. Using either approach, add a method to our form, as follows:

void myTextBox_MouseDown (object sender, MouseEventArgs e)

{

if (e.Buttons == MouseButtons.Right)

// Show is a static method of System.Windows.Forms.MessageBox

MessageBox.Show ("Right Click!");

}

www.syngress.com

■ Panel A simple container for other controls.
■ GroupBox A container with a border and caption text, used

for visually grouping controls on a form. It’s also often used
to host RadioButton controls (only one radio button can be
checked at a time inside each group box).

■ TabPage A TabControl contains a collection of TabPage con-
trols—each of which acts as a container for child controls,
with its own Controls property.

167_C#_04.qxd 12/3/01 5:47 PM Page 152

Windows Forms • Chapter 4 153

2. Next, we attach this method to myTextBox’s MouseDown event. Return
to the button1_Click method and add the following line of code:

myTextBox.MouseDown += new MouseEventHandler (myTextBox_MouseDown)

On the left-hand side, myTextBox.MouseDown is the event to
which we’re attaching, using the += operator. On the right-hand side,
we’re creating a new MouseEventHandler delegate instance: in other words,
an object containing a pointer to a method (myTextBox_MouseDown) con-
forming to MouseEventHandler’s signature.

3. Test the application.

www.syngress.com

Why We Need Delegates
It’s often asked, “why can’t we simply assign a target method (for
example, myTextBox_MouseDown) directly to an event?” C# doesn’t
allow this because the language is strongly typed, and the event needs
to pass parameters to the target method. If we could assign a method
directly to an event, there would be no place to formalize the number
and types of these parameters (the method signature). We need a way
of describing an agreed method signature, and for this we have dele-
gates. The easiest way to think of a delegate is in two parts:

■ The delegate definition This simply describes a method
signature.

■ A delegate instance This is an object containing a pointer
to a method conforming to the signature.

Most of the delegate definitions you’ll come across are part of the
.NET Framework—although sometimes you define your own—usually
when writing custom controls. Delegate instances, however, are created
whenever you hook up to an event.

Here’s an example of a complete delegate definition:

public delegate void EventHandler (object sender, EventArgs e)

As you can see, all this does is set out a signature: two parameters,
one of type object, and the other of type EventArgs, and a void return
type. EventHandler is the “plain vanilla” delegate used extensively in the

Developing & Deploying…

Continued

167_C#_04.qxd 12/3/01 5:47 PM Page 153

154 Chapter 4 • Windows Forms

Writing a Simple Text Editor
This walkthrough will take you through developing a simple Notepad-style text
editor, demonstrating the following:

■ Adding a menu

■ Creating and activating a new form

■ Creating a Multiple Document Interface

■ Creating a dialog form

■ Using form inheritance

■ Adding a tab control

■ Anchoring controls

■ Connecting the dialog form

The code for this walkthrough is on the accompanying CD-ROM, in folder
the TextEditor directory.

Starting the Project
First, we’ll create a new project.We’ll then rename the main form Visual Studio
creates for us to something more meaningful:

1. Create a new Windows Forms Project, naming the project TextEditor.

2. From the Solution Explorer, rename Form1.cs to MainForm.cs (press F2
or right-click and choose Rename).Also, from within the Properties

www.syngress.com

.NET Framework. Events are declared of this type if they don’t require
any special information sent to the target.

Here’s an example of a delegate instance:

EventHandler eh = new EventHandler (textBox1_Click);

This simply contains a reference (pointer) to textBox1_Click. The
compiler will check that the target method’s signature agrees with the
delegate definition (EventHandler). The following line of code attaches
eh to myTextBox’s click event:

myTextBox.Click += eh;

Review Chapter 2 for more information on delegates and events.

167_C#_04.qxd 12/3/01 5:47 PM Page 154

Windows Forms • Chapter 4 155

window, change the form’s name to MainForm (this changes its class
name), and change its Text property to Simple Editor.

3. In the Code Editor, check that the class’s Main method references
MainForm rather than Form1, changing it if necessary.

Creating a Menu
Next, we’ll create the main menu:

1. From the toolbox, drag a MainMenu component onto the form.The
Designer provides a WYSIWYG interface for populating the menu. In
other words, it’s just a question of typing directly into the menu.

2. Type in menu items for File, New, and Exit, as in Figure 4.8.

To enter the underlined accelerator keys, put an ampersand (&) before
the desired character (the same principle works with label controls).To
enter the separator between New and Exit, type a single hyphen (-).

3. Click on the New menu item, and from the Properties window, set its
shortcut to Ctrl+N.

4. Right-click on one of the menu items, select Edit Names, and enter
meaningful menu item names such as miFile, miNew, and miExit.
This will help later on with coding and debugging. Right-click again
and uncheck Edit Names.

5. Double-click on the Exit menu item.This will create and attach an
event handler (to Click, the default event for the MenuItem class) and
place you in the code window.Add the following line:

private void miExit_Click(object sender, System.EventArgs e)

{

www.syngress.com

Figure 4.8 Creating a Main Menu

167_C#_04.qxd 12/3/01 5:47 PM Page 155

156 Chapter 4 • Windows Forms

Close();

}

Because we’re in the application’s startup form, closing the form is
sufficient to close the application (and any other forms that are open). If
we wanted to exit the application from another form, we could instead
call Application.Exit().

6. Run the application.There’s our menu!

www.syngress.com

Working with Controls: Using Menus
Menus are not strictly controls—in fact, they’re based on Component—
because menus and menu items don’t exhibit the normal behavior of a
control. Each menu is encapsulated by a MainMenu component, com-
prised of a collection of MenuItem components. Although you can have
any number of main menus on a single form, only one can be active at
a time (this is determined by the form’s Menu property). A context menu
(right-click pop-up menu) is encapsulated by the ContextMenu compo-
nent, and this also comprises a collection of MenuItems.

To add a menu item at runtime:

1. Define an appropriate event-handling method for the menu
item’s Click event, such as the following:

void miNew_Click (object sender, EventArgs e)

{

MessageBox.Show ("New Item Clicked!");

}

2. Create and configure a MenuItem object, and then add it to
the main menu’s MenuItem collection. For example:

MenuItem mi = new MenuItem

("New", new EventHandler (miNew_Click));

mi.Shortcut = Shortcut.CtrlN;

mainMenu1.MenuItems.Add (mi);

Developing & Deploying…

Continued

167_C#_04.qxd 12/3/01 5:47 PM Page 156

Windows Forms • Chapter 4 157

Adding a New Form
Let’s create a new form for editing text documents:

1. Go to Project | Add Windows Form, name the class EditForm.cs,
and then change the form’s Text property to Untitled.

2. Drag a TextBox control from the toolbox to the form, and from the
Properties windows, change its name to txtEdit.

3. Clear the textbox’s Text property and change its font’s point size to 10.

4. Set AutoSize to False and MultiLine to True.This allows us to vertically
enlarge the textbox.

5. Change the Dock property to Fill (from the drop-down, click the box in
the center).This expands the textbox so that it fills the entire client area
(inside area) of the form. If you subsequently resize the form, the
textbox will still fill the entire area.

6. Set AcceptsReturn and AcceptsTab to True.

7. Drag a MainMenu control onto the form, and create a View |
Options menu structure, as in Figure 4.9.

Let’s now hook this up to our main form.

8. Return to the main form, and double-click on the menu item for New.
Add the following code to its event handler:

private void miNew_Click(object sender, System.EventArgs e)

{

EditForm ef = new EditForm(); // Create new instance of form

www.syngress.com

To add subitems at runtime:

1. Define an event-handling method, then create and configure
a MenuItem object as in the previous bullet item.

2. Add the new object to the parent menu item’s MenuItem
collection, as follows:

miFile.MenuItems.Add (mi);

To enable and disable menu items, set the menu item’s Enabled
property to True or False (the parent menu item’s Popup event is a con-
venient place in which to do this). To check and uncheck menu items, set
the menu item’s Checked property to True or False.

167_C#_04.qxd 12/3/01 5:47 PM Page 157

158 Chapter 4 • Windows Forms

ef.Show(); // Display form modelessly

}

Now run the application, and click New a few times to open up several text
editor windows. Notice how each of the forms is modeless (you can click ran-
domly on any form) and top-level (each window floats independently on the
desktop). If we moved the File menu to the child form itself, and did away with
the main form entirely, we’d have a Single Document Interface (SDI) application.
Internet Explorer is an example of an SDI (see Figure 4.10).

www.syngress.com

Figure 4.9 EditForm Menu structure

Figure 4.10 Single Document Interface

167_C#_04.qxd 12/3/01 5:47 PM Page 158

Windows Forms • Chapter 4 159

Creating a Multiple Document Interface
In the example in the preceding section, we would prefer the editor forms to be
physically constrained to the main parent window, and to have only one menu,
with the View menu items merged into the main menu.This describes a Multiple
Document Interface (MDI) style. Let’s turn our interface into an MDI:

1. Enlarge the main form, and change its IsMdiContainer property to True.

2. Click on our main menu component and add a new menu item for a
Window menu. Set its MdiList property to True (this instructs
Windows to add items for child forms automatically) and set its
MergeOrder to a large value such as 20 (so that the Window menu item
appears at the right-hand side, when merged with child menus).

3. Press F7 to return to the Code Editor, and enhance the event handler
for miNew as follows:

private void miNew_Click(object sender, System.EventArgs e)

{

EditForm ef = new EditForm();

ef.MdiParent = this; // this makes ef an MDI

// child form

ef.Show();

}

4. Run the application.We now have an MDI (see Figure 4.11).

www.syngress.com

Figure 4.11 Multiple Document Interface

167_C#_04.qxd 12/3/01 5:47 PM Page 159

160 Chapter 4 • Windows Forms

Let’s now enhance this by adding “Tile” and “Cascade” menu items:

1. Add menu items to the Window menu, titled Tile Vertical, Tile
Horizontal, and Cascade.

2. Double-click each of the menu items to create event handlers. In each
method, call the form’s LayoutMdi method with an appropriate member
of the MdiLayout enumeration, such as in the example below:

private void miTileVertical_Click(object sender,

System.EventArgs e)

{

LayoutMdi (MdiLayout.TileVertical);

}

Creating a Dialog Form
A form with OK and Cancel buttons is usually described as a dialog. In most
cases, dialog forms are modal rather than modeless, meaning the user must accept
or cancel before clicking on another form. Making and displaying a dialog form
involves three parts:

■ Creating a form that has the “look and feel” of a dialog

■ Displaying the form modally—using ShowDialog() instead of Show()

■ Disposing of the form when we’re finished

Let’s first create a basic dialog form. Later we’ll use this as a base for creating
an Options Form within our text editor:

1. Add a new form to the project called DialogForm.

2. Put two buttons onto the form. Name one btnOK and the other
btnCancel. Change their Text properties to OK and Cancel.

3. Set the DialogResult property of the OK button to OK and the Cancel
button to Cancel.This instructs the form to automatically close when
the button is pressed (and to return an appropriate DialogResult to the
calling program).

4. Click directly on the form, and change its FormBorderStyle property to
FixedDialog.This will prevent the user from resizing the form. Of
course, you can still resize it from within the Designer.

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 160

Windows Forms • Chapter 4 161

5. Set MaximizeBox and MinimizeBox properties to False and the
StartPosition to CenterScreen.

6. Set the AcceptButton property to btnOK and the CancelButton property
to btnCancel.This will hook up the Enter and Escape keys to the OK
and Cancel buttons (see Figure 4.12).

7. Finally, we need to remove the form’s icon and associated menu.This is
not possible with the Designer, however, it can be done programmati-
cally. In the form’s constructor, after the call to InitializeComponent, add
the following:

this.Icon = null;

8. Next, we need to activate and test the dialog.We’ll do this from the
Options menu item in EditForm. Return to EditForm and double-click
on the Options menu item.Add the following code:

private void miOptions_Click(object sender, System.EventArgs e)

{

DialogForm df = new DialogForm();

if (df.ShowDialog() == DialogResult.OK)

MessageBox.Show ("OK Pressed!");

df.Dispose(); // modal forms don't dispose automatically!

}

The ShowDialog method returns a DialogResult enumeration, and this tells us
how the form was closed.You can also query the form’s DialogResult property to

www.syngress.com

Figure 4.12 Basic Dialog Form

167_C#_04.qxd 12/3/01 5:47 PM Page 161

162 Chapter 4 • Windows Forms

the same effect.The call to Dispose is required because a form activated with
ShowDialog does automatically clean up when it’s closed.This is a useful feature
because it allows us to query the state of its controls after the form’s been closed.
But once we’re done, we must remember to call Dispose—otherwise the form
will continue to consume operating system resources—even after the garbage
collector has released its memory.This completes the skeleton dialog form.You
can run the application as it is, to ensure that the form works as expected.

Using Form Inheritance
The dialog form we’ve just designed is an example of a template that could be
utilized in many places within an application.We could keep this form as it is

www.syngress.com

Remembering to Call Dispose
As a rule, if a .NET object has a Dispose or Close method, it must be
called once the object is no longer required. But in practice, we rarely
dispose Windows Forms components explicitly because most compo-
nents are parented to a container collection that handles disposal auto-
matically. For instance, a control object is normally parented to a form’s
Controls collection (or some other Controls collection), and this is pro-
grammed to dispose all child controls automatically with the parent.

In a couple of situations, however, you do need to explicitly dis-
pose—when you’ve programmatically instantiated an object having a
Dispose method that’s not managed through a component collection
(such as a Bitmap), and when you’ve instantiated a form modally (by
calling ShowDialog).

Disposing is about releasing resources—such as Windows handles
and file handles. It’s not about releasing memory: The CLR’s garbage col-
lector does this automatically (some time) after an object is no longer
referenced. Calling Dispose does not influence garbage collection, and
conversely, the garbage collector knows nothing about Dispose.

It’s sometimes asked, “why doesn’t the class’s destructor handle
disposal?” The answer is that inherent limitations are associated with
destructors activated via automatic garbage collection, and disposal is
considered too important to be subject to these limitations.

Debugging…

167_C#_04.qxd 12/3/01 5:47 PM Page 162

Windows Forms • Chapter 4 163

(our “skeleton” dialog), and then whenever we need a real dialog, we could create
a copy to which we add controls.

But this approach is inflexible in that if we later enhance the base dialog
form, we’d have to manually update each of the forms we’ve already created. By
using inheritance, we get around this problem: Forms that have been subclassed
from the base dialog form will automatically assume its functionality—even if the
base class is later modified.

Let’s turn our DialogForm into a reusable base class.We need to make only
one small change. Select the OK button and change its Modifiers property to
Protected (sometimes called Family), and likewise with the Cancel button.

This allows subclasses to access the buttons—and change their properties.
Subclassed dialogs will need to modify the buttons’ Location properties, otherwise
they’ll be stuck in one position on the form.

WARNING

Once you’ve created a reusable form, such as a dialog, it’s quite
tempting to subclass it again to create another reusable form—such as a
tabbed dialog, which in turn is subclassed into a sizable tabbed dialog,
then a dialog with an Apply button, and so on. This leads to a messy and
inflexible hierarchy, causing many more problems than the designer set
out to solve. It’s usually best to keep (implementation) inheritance as
simple as possible—the best object-oriented designs often employ com-
ponent reuse and interface inheritance as alternatives to keep complexity
and coupling to a minimum. It’s worth reading a book or two on object-
oriented design before diving into a big project—if these concepts are
unfamiliar.

Now we can subclass and create the options form. First, rebuild the project
(Shift+Ctrl+B).Then select Project | Add Inherited Form, name the class
OptionsForm, and select DialogForm from the Inheritance Picker (see
Figure 4.13).

To test this, modify the miOptions_Click method in EditForm so that it
instantiates OptionsForm instead of DialogForm and run the application.

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 163

164 Chapter 4 • Windows Forms

Adding a TabControl
When designing a form, it’s a good idea to start with a TabControl if you plan to
have a lot of controls—or if you anticipate a lot of controls in the future. It dis-
courages future developers from cluttering the form, as well as giving dialog
forms a tidy presentation.

Let’s add a tab control to OptionsForm:

1. Drag a TabControl onto the options form, and align it with the OK
and Cancel buttons, as shown in Figure 4.14. (The easiest way to align
the Cancel button is to select it together with the tab control by using
the Ctrl key, and then choosing Align Rights from the Layout toolbar
or Format menu.)

2. Select the tab control and then click Add Tab at the bottom of the
Properties window.

www.syngress.com

Figure 4.13 Inheritance Picker

Figure 4.14 Options Form with TabControl

167_C#_04.qxd 12/3/01 5:47 PM Page 164

Windows Forms • Chapter 4 165

3. Click inside the dashed rectangle on the tab control to select a TabPage,
and then set its Text property to Editor.

Note that you can also add and configure tab pages by clicking the
ellipses on the tab control’s TabPages property. Now we’ll add controls to
the tab page.

4. Put a couple of checkboxes, a NumericUpDown control, and a label onto
the tab page, as in Figure 4.15. Name the controls chkWordWrap,
chkApplyAll, and nudFontSize.

5. Choose View | Tab Order and click each control in sequence, from
top to bottom.This sets the order of focus when the Tab and Shift+Tab
keys are used.

www.syngress.com

Figure 4.15 Adding Controls to the TabPage

Working with Controls: Using TabControls
A TabControl consists of a collection of TabPages, each of which hosts a
collection of controls.

To determine the active tab page:

1. Use the SelectedTab property to get a TabPage object.

2. Use the SelectedIndex property to get its position.

To add a page at runtime:

Developing & Deploying…

Continued

167_C#_04.qxd 12/3/01 5:47 PM Page 165

166 Chapter 4 • Windows Forms

Anchoring Controls
Next, we’ll make the form sizable.This is a useful feature in forms that have con-
trols with a lot of information to display—such as the TabPage Collection Editor
in Visual Studio. Of course in our case, we have only two checkboxes and an up-
down control, but we’ll gloss over that for now:

1. Change the tab control’s Anchor property to all four sides (from the
drop-down, click on the bottom and right rectangles so that all four
rectangles are selected). Selecting two opposite sides instructs a control
to expand or shrink in that direction. Our tab control will expand or
shrink both vertically and horizontally.

2. Change the OK and Cancel button’s Anchor properties to Bottom and
Right (from the drop-down, uncheck the rectangles at the top and left,
and check those at the bottom and right).This instructs the buttons to
maintain their alignment to the bottom and right of their parent con-
tainer (in this case the form).

3. Change the Form’s FormBorderStyle to Sizable.

Now try resizing the form.You can test this better by adding a dummy list
box to the tab page (placing it the area at the right), and anchoring it to all four
sides.Anchoring works in the same way at runtime.

www.syngress.com

1. Create a new TabPage control:

TabPage tp = new TabPage ("Advanced Properties");

2. Add the new TabPage control to the tab control’s TabPages
collection:

tabControl1.TabPages.Add (tp);

To programmatically add controls to a tab page:

1. Declare, create, and configure the control as if it were to go
directly on the form.

2. Add the control to the tab page’s Controls collection instead
of the form’s Controls collection:

tabPage4.Controls.Add (myTextBox);

/*or*/ tabControl1.TabPages[3].Controls.Add (myTextBox);

167_C#_04.qxd 12/3/01 5:47 PM Page 166

Windows Forms • Chapter 4 167

Changing the Startup Form
Once you have several forms in your application, you might want to change the
form used for startup.This is simply a matter of moving the Main method:

1. Cut and paste the Main method from the old startup form to the new
startup form.

2. Update this method so that it instantiates the new form class instead.

As long as you have only one Main method in your project, the compiler will
find it, and make that class the startup object. If you have more than one method
in your project with this name, you need to specify which should be the startup
object in the Project | Properties dialog.

Connecting the Dialog
Let’s now write the code to make the Options form function.We’ll need to pass
data to and from the dialog form—in our case, the editing form’s textbox.To do
this, the first thing we’ll need is a field in the Options form to hold a reference
to textbox it’s controlling:

www.syngress.com

Navigating in the Designer and Code Editor

■ To select the parent of the control you’re on, press Escape.
For example, if you have a TabPage selected, pressing Escape
will select its TabControl, and pressing Escape again will
select the form.

■ In the Code Editor, press Ctrl+spacebar to redisplay an
object’s list of members. Press Shift+Ctrl+spacebar to
redisplay its parameters.

■ Use the F12 shortcut to jump to a class or member’s
definition.

■ Enable Auto Hide on the Output and Task List windows to
see more form and code.

Developing & Deploying…

167_C#_04.qxd 12/3/01 5:47 PM Page 167

168 Chapter 4 • Windows Forms

1. Add the following declaration to the OptionsForm class:

public class OptionsForm : TextEditor.DialogForm

{

private TextBox hostControl;

Next, we’ll need some way to get the textbox in, so we can save it to
the class field.The easiest way is through its constructor. Once we have
the textbox, we can also set the initial values for the word wrap and font
size controls.

2. Modify the form’s constructor, as follows:

public OptionsForm (TextBox hostControl)

{

InitializeComponent();

// Save hostControl parameter to class field

this.hostControl = hostControl;

chkWordWrap.Checked = hostControl.WordWrap;

nudFontSize.Value = (decimal) hostControl.Font.Size;

}

When the user clicks OK, we need to update the textbox’s word
wrap and font properties.

3. Double-click on the OK button to attach a Click event handler, and
enter the following:

private void btnOK_Click(object sender, System.EventArgs e)

{

hostControl.WordWrap = chkWordWrap.Checked ;

hostControl.Font = new Font

(hostControl.Font.Name, (float) nudFontSize.Value);

}

The method that displays this form is going to be responsible for
propagating the settings to all other open windows, if the Apply All
checkbox is checked.This means we need to provide a way in which
this checkbox can be queried from outside the class.

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 168

Windows Forms • Chapter 4 169

4. Add a property definition inside the OptionsForm class as follows:

public bool ShouldApplyAll

{

get {return chkApplyAll.Checked;}

}

Finally, we need to make a couple of modifications to EditForm.We
require a property to expose the textbox, and miOptions_Click needs to
be updated so that it passes in the form’s textbox to OptionsForm, and
then checks and handles the “Apply All” scenario.The following below
illustrates how to iterate through MDI child forms. Note that because
the MdiChildren collection consists of plain Form objects, we need to
cast each child into the expected class, so we access its specific properties
(in this case, EditControl).

5. Make the following changes to EditForm.cs:

public TextBox EditControl

{

get {return txtEdit;}

}

private void miOptions_Click(object sender, System.EventArgs e)

{

OptionsForm of = new OptionsForm (txtEdit);

if (of.ShowDialog() == DialogResult.OK && of.ShouldApplyAll)

foreach (Form child in MdiParent.MdiChildren)

{

TextBox childEdit = ((EditForm) child).EditControl;

childEdit.WordWrap = txtEdit.WordWrap;

childEdit.Font = txtEdit.Font;

}

of.Dispose();

}

This completes the simple text editor.

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 169

170 Chapter 4 • Windows Forms

Using the ListView
and TreeView Controls
Most people are very familiar with Windows Explorer: On the left is a tree view
displaying folders hierarchically; on the right is a list view offering four modes of
display (Large Icons, Small Icons, List, and Detail). In this walkthrough, we’ll
create a ListView and TreeView control, add images and items, and then attach a
context menu to allow the user to switch between each of the four views.Then
we’ll insert an Explorer-style splitter and enable a simple drag-and-drop facility
between the controls.The code for this walkthrough is on the accompanying
CD-ROM, in the WeatherView folder.

Building an ImageList
Before we can set up a list or tree view capable of displaying icons, we need to
create an ImageList component.An image list is just a convenient repository, into
which we can load a collection of same-sized images, and then use in any
number of controls on the form.

In this example, we’ll create two image lists: one suitable for a TreeView and a
ListView’s Small Icons view and another suitable for a ListView’s Large Icons view:

1. Create a new Windows Forms project called WeatherView, and drag an
ImageList from the toolbox to the form. Because it’s a component
rather than a control, its icon appears in the bottom section of the
Designer.

www.syngress.com

Using the Console Class
You’ll remember from the second chapter that the Console class pro-
vides Write and WriteLine methods that send output to the screen in
command-line applications. You can call the same methods from a
Windows Forms application, and the text will be diverted to Visual
Studio’s Output window—providing a quick and easy mechanism for
generating debugging output.

Debugging…

167_C#_04.qxd 12/3/01 5:47 PM Page 170

Windows Forms • Chapter 4 171

2. Change its Name property to ilSmall, and its ImageSize to 16x16
pixels—this is the size of the small icons we’ll be loading.

3. Next we need to find some images to load in. Search your hard drive
for the Elements folder (this is usually in Program Files\Microsoft Visual
Studio.NET\Common7\Graphics\Icons).

4. Expand the component’s Images collection property, and add four icons
appropriate for Sun, Snow, Clouds, and Rain (see Figure 4.16).

Note that while we’ve loaded images from ICO files, the image list
control stores the data in ordinary bitmap format.

5. Add a new ImageList called ilLarge, change its ImageSize to 32x32
pixels, and repeat the previous steps (using the same icons).

6. Check that the images in the two lists appear in the same order. If not,
use the up and down arrow buttons in the Collection Editor to rear-
range the images.

NOTE

When designing custom graphics for use in an ImageList control, saving
into the GIF format is a good idea, because it provides transparency in
an easy and reliable manner. If you’re using Microsoft Paint in Windows
2000, you can select the transparency color from Image | Attributes
(this option is only enabled once the file’s been saved as a GIF).

www.syngress.com

Figure 4.16 Populating an ImageList

167_C#_04.qxd 12/3/01 5:47 PM Page 171

172 Chapter 4 • Windows Forms

Adding a ListView
Now that we have the image lists set up, creating a list view is easy:

1. Add a ListView control to the form, setting its LargeImageList property
to ilLarge and its SmallImageList property to ilSmall.

2. Expand its Items property and add four items with text properties: Sun,
Snow, Clouds, and Rain. Set the ImageIndex on each to the corre-
sponding icon (see Figure 4.17).

The control defaults to the Large Icons view.You can see the Small
Icons view by changing the control’s View property in the Designer.

3. Attach a handler to the control’s ItemActivate event, and add the fol-
lowing code:

MessageBox.Show (listView1.SelectedItems[0].Text);

Because list views allow multiple items to be selected, the control has
a collection property for this purpose. In this case, we’re interested only
in the first selected item.

4. Run the application and double-click on a list item to test the event
handler.

www.syngress.com

Figure 4.17 ListViewItem Collection Editor

167_C#_04.qxd 12/3/01 5:47 PM Page 172

Windows Forms • Chapter 4 173

Using the Details View
The Details view allows us to add columns.This is often used in Windows Forms
to provide simple grid control, without with the need for a dataset. In this
example, we’re going to enhance our list view by defining two columns:

1. Change the list view’s View property to Details, and then expand its
Columns collection property.Add two columns, and set their Text prop-
erties to Outlook and Probability.

Once you close the dialog, you can visually resize the columns by
dragging their headers in the Designer.

2. Return to the Items Collection Editor, and for each member, open its
SubItems collection.Add a subitem, and set its Text property to some
random value, such as in Figure 4.18.

We’ll also add an item programmatically.

3. In the form’s constructor, after the call to InitializeComponent, add the
following:

ListViewItem lvi = new ListViewItem

(new string[] { "Hail", "Possible" });

listView1.Items.Add (lvi);

4. Run the form (see Figure 4.19).

www.syngress.com

Figure 4.18 Adding SubItems to a ListViewItem

167_C#_04.qxd 12/3/01 5:47 PM Page 173

174 Chapter 4 • Windows Forms

Attaching a Context Menu
It would be nice if the user could right-click on the list view control, and then
from a menu, select one of the four available views:

1. Add a ContextMenu component to the form, naming it cmView, and
type in four menu items: Large Icons, Small Icons, List, and Details,
as shown in Figure 4.20. Right-click and select Edit Names, and
rename them miLargeIcon, miSmallIcon, miList, and miDetails.

2. Double-click each of the menu items, to create handlers for their Click
events. Code each method as follows (where XXXX is LargeIcon,
SmallIcon, List, or Details):

private void miXXXX_Click(object sender, System.EventArgs e)

{

www.syngress.com

Figure 4.19 Details View at Runtime

Figure 4.20 Designing a Context Menu

167_C#_04.qxd 12/3/01 5:47 PM Page 174

Windows Forms • Chapter 4 175

listView1.View = View.XXXX;

}

3. Select the cmView component, and in the Properties window, switch to
the Events view and then double-click its Popup event. Here’s where
we’ll tick the selected view:

private void contextMenu1_Popup(object sender,

System.EventArgs e)

{

miLargeIcon.Checked = (listView1.View == View.LargeIcon);

miSmallIcon.Checked = (listView1.View == View.SmallIcon);

miList.Checked = (listView1.View == View.List);

miDetails.Checked = (listView1.View == View.Details);

}

4. Finally, select the list view control, set its ContextMenu property to
cmView, and then test the form.

Adding a TreeView
Setting up a tree view control is rather similar to setting up a list view. First you
create and attach an image list (if icons are required), and then add items to the
tree—either visually or programmatically. In this example, we’ll use one of the
image lists we created earlier:

1. Put a TreeView control on the form, set its ImageList property to
ilSmall.With this control, there’s only one image list, equivalent to the
list view’s Small Icons view.

2. Expand the tree view’s Nodes collection, and add three root nodes for
Sun, Snow, and Clouds.Then add a child node for Rain, below Clouds.
Set their Label, Image, and Selected Image properties as in Figure 4.21.

Now we’ll add an item programmatically.The tree view’s items are
managed through Nodes—a property returning a collection—rather like
with the list view control’s Items property, except that in this case it’s
hierarchical. Nodes itself has itself a Nodes property, returning another
tree node collection.Adding nodes is largely just a question of finding
the right place in the containership tree.

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 175

176 Chapter 4 • Windows Forms

Let’s insert a node as a child to Snow. First, we need to know its
numeric position. Because it’s second in the list, and the list is zero-
indexed, its position is 1.We’ll also give the new node an ImageIndex—
in this case, we’ll use Snow’s image (also position 1).

3. Add the following to the form’s constructor:

// Use snow's ImageIndex (1) for image & selected image

TreeNode tn = new TreeNode ("Sleet", 1, 1);

// treeView1.Nodes[1] is the Snow Node.

// We want to add to *its* node collection.

treeView1.Nodes[1].Nodes.Add (tn);

4. Test the form.

NOTE

Sometimes you need to add custom information to list view items or tree
nodes. The easiest solution is to use the Tag property. This property is of
type Object (allowing data of any class to be stored)—and this works in
the same way as the Tag property in the Control class. As an alternative
you can subclass ListViewItem or TreeNode, adding your own fields and
methods, and then instantiating the subclassed versions instead to create
items or nodes. Note that with the latter approach, you cannot then add
your subclassed items or nodes through the Designer.

www.syngress.com

Figure 4.21 TreeNode Editor

167_C#_04.qxd 12/3/01 5:47 PM Page 176

Windows Forms • Chapter 4 177

Adding a Splitter
Let’s now add an Explorer-style splitter bar between the tree view and list view
controls. Getting a splitter to work is largely about getting all the controls in the
correct front-to-back order (z-order). In a nutshell, we need the following:

■ A side-docked control, at the back of the z-order

■ A splitter control, docked to the same side, in the middle of the z-order

■ A fill-docked control, at the front of the z-order

We already have the two controls we want to split—all that’s required is the
splitter control, and of course, everything in the right z-order.

1. Set the tree view’s Dock property to Left (click the leftmost rectangle
in the drop-down).This pushes it up hard against the left-hand side of
the form.

2. Add a Splitter control from the toolbox, and change its Dock property
to Left (if not already docked left). Because we’ve just put it on the
form, it’ll be in front of the tree view, and will appear to its right.

3. Set the list view’s Dock property to Fill (click the center rectangle in the
drop-down) and then right-click the control and select Bring to
Front. Now it’ll be at the front, with the splitter in the middle, and the
side-docked tree view at the back.

4. Test the application.The controls will automatically resize as you drag the
splitter (and also when you resize the form), as shown in Figure 4.22.

www.syngress.com

Figure 4.22 Splitter Control at Runtime

167_C#_04.qxd 12/3/01 5:47 PM Page 177

178 Chapter 4 • Windows Forms

Implementing Drag and Drop
When demonstrating the list view and tree view controls, it’s hard to put them
side-by-side without someone asking about drag and drop.The good news is that
dragging between these controls is reasonably easy to implement in Windows
Forms.

WARNING

When you create a Windows Forms project, Visual Studio adds the
[STAThread] attribute to the startup form’s Main method. This tells the
compiler to apply the Single Threaded Apartment threading model,
allowing your application to interoperate with other Windows and COM
services. If you remove this attribute, features such as drag and drop will
not work—even between controls within your own application.

Let’s take a look at drag and drop in general.As you might guess, it consists of
two parts. In the first part, you need to identify when the user starts dragging the
mouse, and then ask Windows to start the operation, supplying data necessary for
the recipient when processing the drop. In Windows Forms, this is done as follows:

1. Decide from which event to start the operation. If you’re dragging from
a list view or tree view control, it’ll be the special event called ItemDrag.
With other controls, it will usually be the MouseDown or MouseMove
event.

2. Package information to be sent to the target in a DataObject. If you want
to interoperate with another Windows application, you must use one or
more of the standardized formats listed in the DataFormats class, such as
Text or HTML.

3. Decide on what actions (such as Move or Copy) are permitted.You can’t
always be sure at this point on what will end up happening, because it
could depend on where the item is dropped.

4. Call DoDragDrop to start the operation.

The second part is about enabling a target control to accept a drop. In
Windows Forms, this is done as follows:

1. Set the target’s AllowDrop property to True.

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 178

Windows Forms • Chapter 4 179

2. Handle the DragEnter or DragMove event. DragEnter fires just once when
the cursor enters the control; DragMove fires continually as the cursor
moves through the control. In the event handler, you need to decide if
the drop is allowable—and this is done by checking that the packaged
data is of an expected type. If so, you set the DragEventArg parameter’s
Effect property to one of the permitted actions, and this enables the drop
(changing the cursor accordingly).

3. Handle the DragDrop event.To get at the packaged data, you first need
to extract it and cast it back into its original type.

NOTE

The advantage of passing a DataObject to DoDragDrop is that you can
include data in multiple formats, allowing external applications, such as
Microsoft Word, to function as drop targets. Standard formats are
defined (as static public field) in the DataFormats class.

In our example, we’re going to allow dragging from the tree view to the
list view:

1. Double-click the tree view’s ItemDrag event, and type the following:

treeView1.DoDragDrop (e.Item, DragDropEffects.Move);

The first parameter is our package of information. Because we’ve not
wrapped it in a DataObject,Windows Forms does this for us automatically,
as if we did the following:

treeView1.DoDragDrop (new DataObject (e.Item),

DragDropEffects.Move);

e.Item is the actual data we want to send to the target: in this case the
TreeNode we’re dragging.The second parameter describes the allowed
actions: In this example, we’re going to allow only moving.

2. Set the list view’s AllowDrop property to True.

3. Double-click the list view’s DragEnter method, and type the following:

private void listView1_DragEnter(object sender,

System.Windows.Forms.DragEventArgs e)

{

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 179

180 Chapter 4 • Windows Forms

if (e.Data.GetDataPresent (typeof (TreeNode)))

e.Effect = DragDropEffects.Move;

}

e.Data returns the packaged information, as a DataObject. Regardless
of how the data went in when we called DoDragDrop, we always get
back a DataObject.This class is designed to hold information in multiple
formats, and we call its GetDataPresent method to find out if a particular
type of data is supported.

4. Double-click the list view’s DragDrop event, and type the following:

private void listView1_DragDrop(object sender, DragEventArgs e)

{

if (e.Data.GetDataPresent (typeof (TreeNode)))

{

TreeNode tn = (TreeNode) e.Data.GetData

(typeof (TreeNode));

listView1.Items.Add (tn.Text, tn.ImageIndex);

treeView1.Nodes.Remove (tn);

}

}

We use the data object’s GetData method to retrieve our original
data, and then cast it back to the original type. Once this is done, we can
treat it again as a normal TreeNode.

5. Test the application.You’ll now be able to drag items from the tree view
to the list view.

www.syngress.com

Dragging Into a Tree View
If setting up to drag into a tree view, you might want the dropped item
to be inserted into the tree at the position under the mouse pointer. For
this, you first need to determine which tree node is positioned under the
mouse, as follows:

Developing & Deploying…

Continued

167_C#_04.qxd 12/3/01 5:47 PM Page 180

Windows Forms • Chapter 4 181

Creating Controls
Sometimes your requirements demand extending or replacing standard Windows
Forms controls. It could be that your requirements are specific to a particular
application—or they could warrant developing a general-purpose component for
use in thousands of applications.Writing and deploying custom components is
easy, because .NET components are self-describing, they don’t require registra-
tion, and are not accidentally overwritten by subsequent software installations.
Let’s look at the three most common scenarios:

■ You have a recurring group of controls that you would like to make into
a reusable component (a UserControl).

■ You need a control that cannot be assembled or adapted from existing
components (a custom control).

■ You want to extend a standard control—in order to modify or enhance
its appearance or behavior (an inherited control).

In the following sections, we’ll walk through solutions to each of the scenarios.

Creating a User Control
Suppose your application contains several forms with a group of controls for
entering an address.Assembling these controls into a reusable class would be
nice—both for visual consistency, and so that common functionality can be
added, such as postcode lookup. In this walkthrough, we’ll create a user control to
show how to do this:

1. Create a new Windows Forms project, and then choose Project | Add
User Control, naming the file Address.cs.

2. Add a group of controls suitable for entering an address, such as in the
example in Figure 4.23.

www.syngress.com

void treeView1_DragDrop(object sender, DragEventArgs e)

{

Point pos = treeView1.PointToClient (new Point (e.X, e.Y));

TreeNode tn = treeView1.GetNodeAt (pos);

...

167_C#_04.qxd 12/3/01 5:47 PM Page 181

182 Chapter 4 • Windows Forms

3. Build the project (Shift+Ctrl+B) and return to Form1.At the bottom
of the toolbox, in the Windows Forms tab, will be a new control called
Address.Add this to Form1 and then run the application.

Adding a Property
Our address control is not much use because there’s no way for the form to
determine what the user typed in. For this, we need to add properties to our
control. Here’s how we add a property to allow access the contents of the Street
textbox:

1. Add the following declaration to the Address class:

[Category ("Data"), Description ("Contents of Street Control")]

public string Street

{

get {return txtStreet.Text;}

set {txtStreet.Text = value;}

}

The first line is optional—it specifies Category and Description
attributes, to enhance the control’s presentation in the Designer.Without
the Category attribute, the property would appear in the “Misc” section
in the Properties window.

2. Rebuild the project, and return to Form1.The address control now has a
Street property into which you can type. Of course, it can also be
accessed programmatically as with any other control property.

Adding Functionality
Once the control has been set up, it’s fairly easy to modify its class so as to add
reusable functionality, such as postcode lookup. It’s just a matter of capturing
events such as TextChanged or Validating and then updating the properties of other

www.syngress.com

Figure 4.23 UserControl in Designer

167_C#_04.qxd 12/3/01 5:47 PM Page 182

Windows Forms • Chapter 4 183

controls accordingly.We don’t provide an example, because it doesn’t introduce
aspects of Windows Forms we haven’t already covered. However, it’s worth men-
tioning that in a real situation you would consider good object-oriented design,
and abstract the postcode-lookup functionality into a class separate from the user
interface.You could also consider basing this class on a (C#) interface—to which
the user control would be programmed.This would allow the control to plug in
to different implementations (to facilitate internationalization, for instance).

Writing a Custom Control
If your needs are more specialized, you can paint a control from scratch with
GDI+. In principle, this is fairly simple:You subclass Control, and then override its
OnPaint method, where you render the graphics.You can also capture mouse and
keyboard events by overriding methods such as OnMouseDown and OnKeyPress.

NOTE

Every event had a corresponding protected method, prefixed with the
word On. Some people have asked about the difference between han-
dling the event (such as Paint) and overriding the protected OnXXXX
method (such as OnPaint). There are a number of differences:

■ Overriding the protected method is faster because the CLR
doesn’t have to traverse an event chain.

■ Because the protected method fires the event, you can effec-
tively snuff the event simply by failing to call base.OnXXXX.

■ Events can be attached and detached at runtime; code in over-
ridden OnXXXX methods always runs.

■ When subclassing a control, you generally override protected
methods rather than handling events.

GDI+ is accessed through a Graphics object—a representation of a drawing
surface, with methods to draw lines, shapes, and text. GDI+ is stateless, meaning
that a graphics object doesn’t hold properties to determine how the next object
will be drawn (the “current” color, pen, or brush)—these details are supplied with
each call to a GDI+ drawing method.Tables 4.3 and 4.4 summarize the most
common GDI+ helper types.

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 183

184 Chapter 4 • Windows Forms

Table 4.3 Commonly Used GDI+ Helper Types

Type Description

Color struct Represents an RGB or ARGB color (where A represents alpha,
or transparency). Also used in Windows Forms.

Font class Represents a font consisting of a name (referred to as the
font “family”), a size, and a combination of styles (such as
bold or italic). Also used in Windows Forms.

Brush class Describes a fill color and style for areas and shapes. A brush
can consist of solid color, graded color, a bitmap, or hatching.

Pen class Describes a line color and style. A pen has a color, thickness,
dash-style, and can itself contain a brush describing how the
line should be rendered.

www.syngress.com

Table 4.4 Instantiating GDI+ Helper Types

Type Example Notes

Color

Font

Creates a color from its
red, blue, and green
intensities (0 to 255).
The alpha component
is optional and speci-
fies opacity: 0 is
totally transparent;
255 is totally opaque.
gray is defined above.
Green is a static prop-
erty of the Color
struct.
Use this class if the
color you need is part
of the Windows color
scheme.
When specifying font
styles, use the bitwise
OR operator (|) to
combine members of
the enumeration.
There are 13 ways to
call Font’s constructor.

Color gray = Color.FromArgb

(192, 192, 192);

Color blueWash = Color.FromArgb

(80, 0, 0, 128);

Color grayWash = Color.FromArgb

(80, gray);

Color green = Color.Green;

Color background = SystemColors.Control;

Color foreground =

SystemColors.ControlText;

Font f1 = new Font ("Verdana", 10);

Font f2 = new Font ("Arial", 12,

FontStyle.Bold | FontStyle.Italic);

Font f3 = new Font (f2,

FontStyle.Regular);

Continued

167_C#_04.qxd 12/3/01 5:47 PM Page 184

Windows Forms • Chapter 4 185

In this walkthrough, rather than defining our control as part of a Windows
Forms project, we’ll make a class library—so our control can be used in a
number of different applications:

1. From File | New Project, choose the Windows Control Library
template, calling the library FunStuff.Visual Studio assumes we’ll start
with a user control. However in this case we want a custom control.

2. From the Solution Explorer, delete UserControl1.The project should now
be empty.

www.syngress.com

Table 4.4 Continued

Type Example Notes

Brush

Pen

Returns a solid blue
brush.
The preferred way to
obtain brushes consis-
tent with the
Windows color
scheme.
The Brush class itself is
abstract; however, you
can instantiate its sub-
classes such as
SolidBrush or
HatchBrush.
Creates a violet pen
with thickness of one
pixel.
The preferred way to
obtain pens consistent
with the Windows
color scheme.
A beige pen 30 pixels
wide.
A pen 20 pixels wide
drawn with the criss-
cross brush (defined
earlier in this table).

Brush blueBrush = Brushes.Blue;

Brush border =

SystemBrushes.ActiveBorder;

Brush grayBrush = new SolidBrush

(this.BackColor);

Brush crisscross = new HatchBrush

(HatchStyle.Cross, Color.Red);

Pen p = Pens.Violet;

Pen ht = SystemPens.HighlightText;

Pen thick = new Pen (Color.Beige, 30);

Pen ccPen = new Pen (crisscross, 20);

167_C#_04.qxd 12/3/01 5:47 PM Page 185

186 Chapter 4 • Windows Forms

3. From Project | Add New Item, select Custom Control. Name the
file ScrollingText.cs.

4. Switch to the Code View. Notice that Visual Studio has based our class
on Control, and that it has added code to overwrite the OnPaint method.
This is where we use GDI+ to draw the control—for now, we’ll just fill
the control’s area with red, and then draw a green ellipse in the middle.

5. Enter the following code into the overridden OnPaint method:

protected override void OnPaint(PaintEventArgs pe)

{

pe.Graphics.Clear (Color.Red);

Brush b = Brushes.Green;

pe.Graphics.FillEllipse (b, ClientRectangle);

b.Dispose();

base.OnPaint (pe);

}

The PaintEventArgs parameter contains a Graphics object used to
access GDI+ methods—such as Clear and FillEllipse.We use static prop-
erties of the Color and Brushes types as shortcuts to creating Color and
SolidBrush objects. ClientRectangle describes the inside bounds of the
control based on a (0, 0) origin. (In this case, the inside and outside areas
are equivalent because there are no Windows-imposed borders or scroll-
bars).We call base.OnPaint so that the Paint event still fires—in case the
end user of our control wants to attach to this event for any reason.

6. Build the project.We now have a custom control (ScrollingText) as part of
a reusable library (FunStuff).

www.syngress.com

Using GDI+ to Draw Custom Controls
To obtain a Graphics object:

■ From within a subclassed OnPaint method, use
PaintEventArgs parameter’s Graphics property.

Developing & Deploying…

Continued

167_C#_04.qxd 12/3/01 5:47 PM Page 186

Windows Forms • Chapter 4 187

Testing the Control
Now that we’ve built the custom control, we can use it two different ways:

■ From a new Windows Forms project, we can add the compiled custom
control to the toolbox.We do this by right-clicking the toolbox,
selecting Customize Toolbox, and from the .NET Framework
Components tab, clicking Browse and locating the Control Library
DLL (in our case, FunStuff\bin\debug\FunStuff.dll).The component
(ScrollingText) will then appear in the list, and if checked, will be added
to the toolbox.

■ We can create a solution containing two projects: both the Control
Library and a new Windows Forms project.

Normally, you opt for the second approach if you are still developing the
control (and have access to its project file and source code), because it means you
can more easily make any necessary changes.This is what we’ll do in our
example:

1. From the Solution Explorer, right-click on the solution and select Add
| New Project.Then choose the Windows Application template,
naming the project TestFunStuff.

www.syngress.com

■ From outside an OnPaint method, use Control.CreateGraphics
or Graphics.FromImage. It’s not often that you should need
to access GDI from outside OnPaint—an example is the use
of MeasureString to calculate how many pixels are required
to display a string in a given font. Remember to call Dispose
when you’re finished.

To draw a bitmap, create an image using the Bitmap class’s con-
structor, and call DrawImage, for example:

Image im = new Bitmap (@"c:\docs\pics\mypic.bmp");

pe.Graphics.DrawImage (im, ClientRectangle);

im.Dispose();

To repaint the control, call Invalidate.
To draw 3D borders, sizing handles, selection frames, disabled text,

and images, use static methods provided in the ControlPaint class.

167_C#_04.qxd 12/3/01 5:47 PM Page 187

188 Chapter 4 • Windows Forms

2. Locate the ScrollingText control in the toolbox, and drag it to Form1. If
the control is not in the toolbox, rebuild the project and look again. If it
still doesn’t appear, right-click the toolbox, select Customize ToolBox,
and from the .NET Framework Components tab, click Browse and
locate the Control Library DLL (try FunStuff\bin\debug\FunStuff.dll),
and then check the ScrollingText component in the list.

You’ll notice that as you resize the control in the Designer, it won’t
render properly because the control doesn’t assume it needs to be
redrawn when resized.We can resolve this in two ways:We can override
its OnResize method, calling Invalidate (marking the control “dirty” so
that it gets redrawn), or in the control’s constructor we can set a special
flag to have this happen automatically. Let’s take the latter approach:

3. Modify the control’s constructor as follows:

public ScrollingText()

{

SetStyle (ControlStyles.ResizeRedraw, true);

}

4. Rebuild the project and return to Form1. It will now render properly in
the Designer when resized (see Figure 4.24).

5. Finally, we should test the form at runtime. Because we started out cre-
ating a control library, the startup project will be a DLL—which can
only compile and not run.We can change this from the Solution
Explorer: Right-click the TestFunStuff project, select Set as Startup
Project, and then run the application.

www.syngress.com

Figure 4.24 Custom Control in Designer

167_C#_04.qxd 12/3/01 5:47 PM Page 188

Windows Forms • Chapter 4 189

Enhancing the Control
Let’s turn this custom control into a real-world example: a scrolling text banner.
This is easier than it sounds: it’s simply a matter of maintaining a text string, to
which with a Timer, we periodically remove a character from the left—and add
to the right.The text is rendered using DrawString in the Graphics class, using a
graded brush for effect.We can also allow the user to start and stop the animation
by overriding the control’s OnClick method.The code for the ScrollingText con-
trol is on the accompanying CD-ROM, in the FunStuff folder. Here’s the com-
plete code listing:

using System;

using System.Collections;

using System.ComponentModel;

using System.Drawing;

using System.Data;

using System.Windows.Forms;

namespace FunStuff

{

public class ScrollingText : System.Windows.Forms.Control

{

Timer timer; // this will animate the text

string scroll = null; // the text we're going to animate

public ScrollingText()

{

timer = new Timer();

timer.Interval = 200;

timer.Enabled = true;

timer.Tick += new EventHandler (Animate);

}

void Animate (object sender, EventArgs e)

{

// Create scroll string field from Text property

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 189

190 Chapter 4 • Windows Forms

if (scroll == null) scroll = Text + " ";

// Trim one character from the left, and add it to the right.

scroll = scroll.Substring (1, scroll.Length-1)

+ scroll.Substring (0, 1);

// This tells Windows Forms our control needs repainting.

Invalidate();

}

void StartStop (object sender, EventArgs e)

{ timer.Enabled = !timer.Enabled; }

// When Text is changed, we must update the scroll string.

protected override void OnTextChanged (EventArgs e)

{

scroll = null;

base.OnTextChanged (e);

}

protected override void OnClick (EventArgs e)

{

timer.Enabled = !timer.Enabled;

base.OnClick (e);

}

public override void Dispose()

{

// Since the timer hasn't been added to a collection (because

// we don't have one!) we have to dispose it manually.

timer.Dispose();

base.Dispose();

}

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 190

Windows Forms • Chapter 4 191

protected override void OnPaint(PaintEventArgs pe)

{

// This is a fancy brush that does graded colors.

Brush b = new System.Drawing.Drawing2D.LinearGradientBrush

(ClientRectangle, Color.Blue, Color.Crimson, 10);

// Use the control's font, resized to the height of the

// control (actually slightly less to avoid truncation)

Font f = new Font

(Font.Name, Height*3/4, Font.Style, GraphicsUnit.Pixel);

pe.Graphics.DrawString (scroll, f, b, 0, 0);

base.OnPaint (pe);

b.Dispose(); f.Dispose();

}

}

}

Figure 4.25 illustrates the control in the test form, at design time, with its Text
and Font properties set.A nice touch in Visual Studio is that the control animates
in the Designer.

Subclassing Controls
Once we’ve designed a user control or custom control we can use inheritance to
subclass it in the same way we did with our reusable dialog earlier in the chapter.
You can also inherit from a standard control such as a TextBox or Button—in

www.syngress.com

Figure 4.25 Completed Scrolling Text Control in Designer

167_C#_04.qxd 12/3/01 5:47 PM Page 191

192 Chapter 4 • Windows Forms

order to modify its appearance or behavior without going to the trouble of
designing a new control from scratch.

Visual Studio distinguishes between inheriting user controls and custom con-
trols.You can create an inherited user control directly—from Project | Add
Inherited Control—whereas to create an inherited custom control (or to sub-
class a standard control) you need to write the class manually.The easiest way to
go about this is to ask Visual Studio to create a custom control, and then in the
Code Editor, to edit the control definition’s base class.

To take an example, suppose your marketing department demands customiz-
able “skins” in your Windows application. One approach (other than skinning the
marketing department!) is to subclass some of the standard controls, such as
Button and Label.The challenge would then be to decorate the controls without
upsetting their existing graphics. Let’s walk through this briefly:

1. From a new or existing Windows Forms project, go to Project | Add
New Item and select Custom Control.

2. Switch to the Code Editor, and change the class definition so that we’re
subclassing Button instead:

public class WashedButton : System.Windows.Forms.Button

Now we need to override OnPaint. First, we’ll have to invoke the
base class’s code so that it renders the button.Then we’ll “wash” the
control with a linear gradient brush—the same brush used in the
scrolling text example, except that we’ll use translucent colors so as not
to erase the existing graphics.This is called alpha blending and activated
simply by using a color with an alpha-value.

3. Update the OnPaint method as follows:

protected override void OnPaint(PaintEventArgs pe)

{

base.OnPaint (pe);

// Create two semi-transparent colors

Color c1 = Color.FromArgb (64, Color.Blue);

Color c2 = Color.FromArgb (64, Color.Yellow);

Brush b = new System.Drawing.Drawing2D.LinearGradientBrush

(ClientRectangle, c1, c2, 10);

pe.Graphics.FillRectangle (b, ClientRectangle);

b.Dispose();

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 192

Windows Forms • Chapter 4 193

}

4. Build the project, and put the custom control onto a form as we did in
the previous walkthrough (see Figure 4.26).

Custom Controls in Internet Explorer
The scrolling textbox we wrote in the “Writing a Custom Control” section is beg-
ging to be hosted on a Web page. Its compiled assembly is small enough to be
downloaded over the Internet in a couple of seconds, and is secure because .NET
code runs in a managed environment, rather like Java’s virtual machine. In fact,
both C# and Windows Forms have their roots in Java—their technical predecessors
being J++ and its supplied Windows Foundation Classes. Of course,Windows
Forms applets require that the client has a Windows operating system—with the
.NET runtime installed. It also requires support at the server-end.

Setting Up IIS
Before starting this walkthrough, you need to check that Internet Information
Services is installed and running. IIS is shipped with Windows 2000 Professional—
you can check that it’s present and install it from the Control Panel (go to
Add/Remove Programs | Windows Components and locate Internet
Information Services).To check that it’s running, choose Administrative
Tools | Services from the Control Panel and locate the World Wide Web
Publishing Service.

Creating a Virtual Directory
We’ll need a Virtual Directory to host the Web page and applet.This is done
using the Internet Services Manager—in Windows 2000, we can access this
through the Control Panel, under Administrative Tools.

www.syngress.com

Figure 4.26 Subclassed Buttons in Designer

167_C#_04.qxd 12/3/01 5:47 PM Page 193

194 Chapter 4 • Windows Forms

1. From Internet Services Manager, expand your computer’s icon and
right-click Default Web Site choosing New | Virtual Directory.
The Virtual Directory Wizard will then appear.

2. When prompted for an alias, type FunStuff.

3. It will then ask for a directory:When testing, it’s easiest to specify the
folder where Visual Studio compiles the component library’s DLL (for
example, FunStuff\bin\debug).

4. The wizard will then prompt for Access Permissions. Check Read and
Run Scripts and uncheck everything else.

Writing a Test Page
We’ll need to create an HTML page to test the component.We can do this
either in Visual Studio or with an independent HTML or text editor program
such as Notepad. In this example, we’ll use Visual Studio’s editor. Note that the
file will have to be in the folder specified when creating the virtual directory:

1. From Visual Studio, reopen the FunStuff solution. Click on the
FunStuff project in the Solution Explorer, then click the Show All
Files icon. Expand the folder containing the compiled DLL (for
example, bin\debug), right-click the folder, and select Add | Add
New Item and use the HTML Page template, naming the file
test.htm.

2. Switch to the HTML view and add the following, inside the <BODY>
section of the page:

<p> Testing our control! </p>

<object id="test"

classid="http:funstuff.dll#FunStuff.ScrollingText"

height="50" width="500">

<param name="Text" value="The quick brown fox...">

</object>

This is rather like inserting a Java applet or ActiveX control. For the
Class ID, we specify the DLL containing the custom control, followed by
the class’s full name, including its namespace (note that this is case-sensi-
tive).The object size is specified in pixels—it’s for this reason that when

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 194

Windows Forms • Chapter 4 195

writing the control, we created a font matching the height of the con-
trol, rather than the other way round.

3. The final step is viewing the test page. Start Internet Explorer, and open
http://localhost/FunStuff/test.htm (see Figure 4.27).

www.syngress.com

Figure 4.27 Custom Control in Internet Explorer

167_C#_04.qxd 12/3/01 5:47 PM Page 195

196 Chapter 4 • Windows Forms

Summary
Tools for writing Windows applications have come a long way since the early
days of Visual Basic and C++; in this chapter we examined Windows Forms,
Microsoft’s modern object-oriented solution.

One of the benefits of an object-oriented framework is consistency:The same
core classes, interfaces, and protocols are used repeatedly throughout the frame-
work.And at the heart of consistency is inheritance:A combo box supports all
the functionality of a control, which supports all the functionality of a compo-
nent.This means that most of the objects we worked with here, were in effect,
components, and it was by virtue of this we could manipulate them in the
Designer, and know that they would be disposed automatically with the host
control.

We dealt in this chapter with many components that hosted child objects:
Forms that hosted controls, tab controls that hosted tab pages, menus that contained
menu items, tree view controls that contained nodes. In all cases, the child objects
were managed through a property returning a collection object—implementing
consistent interfaces for adding, removing, and enumerating the members.

A Windows application is a consumer of events, and we saw in this chapter
how this is modeled in Windows Forms through C# events and delegates. In
adding an event handler programmatically, we saw how to instantiate a delegate
object—a pointer to a method of an agreed signature, and then how it’s attached
to an event, using the += operator.

In writing a text editor, we discovered the default behavior of newly activated
forms—modeless and top-level. But by changing a few properties, we created a
multiple document interface (MDI) application, and later on we saw how we
could use the MdiChildren collection property to enumerate the child forms.We
also created a modal dialog, by building a form with the “look and feel” of a
dialog, and then activating it with ShowDialog.

The anchoring and docking features make it easy to design forms that can be
usefully resized.We found that anchoring was useful in creating a sizable dialog
form, and docking was required when setting up a list view/tree view/splitter
combination. Because docking space is allocated on a “first-come, first-served”
basis—where controls at the back of the z-order are first—we needed to ensure
the z-order of the participating controls was correct.

Windows Forms also provides access to operating system features such as drag
and drop, and we looked briefly at a common scenario—calling DoDragDrop
from a list view’s ItemDrag event; seeing how a DataObject is marshaled to the

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 196

Windows Forms • Chapter 4 197

recipient; and discussing how the DragEnter and DragDrop events on the target are
handled to enable the operation.

The .NET Framework’s object-oriented model is extensible, and by sub-
classing the Windows Forms components and controls—as well as our own, we
can start creating reusable classes. In the text editor example, we built a reusable
dialog; later on we subclassed various Windows Forms classes to build custom
controls.We derived from UserControl to create a composite of existing compo-
nents, while we derived from Control to create a custom control on par with a
label or textbox.

In our custom control, we used the stateless graphics device interface (GDI+)
to render the graphics, through a Graphics object exposed in the PaintEventArgs
parameter within the control’s OnPaint method. Many of the GDI+ methods,
such as DrawLine or FillRectangle, accept as parameters helper objects, such as
pens, brushes, or images.These objects we created and disposed explicitly.

In the last walkthrough, we hosted a custom control in Internet Explorer.
This raised the issue of C# and Windows Forms as an alternative to Java for
Internet applets—this is currently limited by its requirement for the (less
portable) .NET Common Language Runtime (CLR) on the client machine.
However, it does illustrate how Windows Forms programs can compile to small
executables that can run securely, requiring no special setup or deployment.These
features—combined with other benefits provided by C# and the .NET CLR—
make the platform a good choice for developing modern Internet-connected
Windows applications.

Solutions Fast Track

Writing a Simple Windows Forms Application

Use Visual Studio’s Windows Forms project template to create the
structure of a Windows application.

Add controls and components visually using the Designer, and then use
the Properties window to configure the objects and add event handlers.

To add controls programmatically, first declare, instantiate, and configure
the controls, then add them to the form or parent container’s Controls
collection.

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 197

198 Chapter 4 • Windows Forms

To attach an event handler at runtime, define a method matching the
event delegate’s signature, then attach a delegate instance wrapping the
method to the event using the += operator.

Writing a Simple Text Editor

To add a main menu, use the MainMenu component—and then enter its
items visually in the Designer.

A new form is displayed by instantiating its class and calling Show.This
results in a top-level modeless form.

To implement a multiple document interface, set the parent window’s
IsMdiContainer property to True, and then assign each child’s MdiParent
property to the parent form.

Use form inheritance to encapsulate common functionality. But keep
the abstractions simple to minimize coupling and complexity.

Use a TabControl to simplify forms with many controls.

Use the anchoring and docking features to create resizable forms.

Define public properties in a form’s class to expose its controls to other
forms or classes.

Use the MdiChildren collection of an MDI parent to traverse its child
forms.

Using the ListView and TreeView Controls

First set up one or more ImageList components if icons are required in
the ListView or TreeView.

Add items to a ListView control through its Items collection property.

Use the ListView’s details view for a multicolumn grid-like control.

Add items to a TreeView through its Nodes collection property. Subnodes
can also be added to each node in the same way.

To configure a splitter control, first set the docking properties of the
participating controls, then arrange their z-order.

Start a drag-and-drop operation by calling DoDragDrop from the Itemdrag
event on the source control, passing any data required by the recipient.

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 198

Windows Forms • Chapter 4 199

Enable a drop target by setting its AllowDrop property to True, and then
handling its DragEnter and DragDrop methods.

Creating Controls

To encapsulate a reusable group of controls, build a UserControl and then
add properties to enable access to its data.

When you need to start from scratch, define a custom control—overriding
the Control class’s OnPaint method to render its graphics, using GDI+.

When using GDI+, remember to dispose any Pens and Brushes that
you create.

Utilize inheritance to enhance existing controls, overriding their
methods to add or change functionality.

Use the object tag to insert controls from component libraries into
HTML pages, specifying the assembly’s DLL and the control’s fully
qualified name.

Q: Can I easily rename a solution or project?

A: Yes—right-click from the Solution Explorer and choose Rename.You’ll
also have to edit the namespace declarations in any source code files you’ve
created.

Q: How do I detach an event handler?

A: In the same way you attach an event handler, except using the -= operator.
For example:

button1.Click -= new EventHandler (button1_Click);

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

167_C#_04.qxd 12/3/01 5:47 PM Page 199

200 Chapter 4 • Windows Forms

Q: Where is image data loaded into ImageList controls actually stored in the
project?

A: Each form has an associated resource file (with a .resx extension) where
image data and localized strings are stored.You can see this by clicking the
Show All Files icon in the Solution Explorer.

Q: Can a textbox control contain text in more than one color or font?

A: No. For this you need to use the RichTextBox control.

Q: How can I add icons to menu items?

A: Unfortunately there is no built-in feature for this.You need configure the menu
items to be owner-drawn (set OwnerDraw to True) and then use GDI+ to
draw both the text and graphics (handle the MeasureItem and DrawItem events).
Microsoft’s “Got Dot Net” site (www.gotdotnet.com) is a good place to start
for information about implementing owner-drawn controls.

Q: What’s the difference between tab-order and z-order?

A: Tab-order describes the order of focus as the user moves between controls
using the Tab and Shift+Tab keys.This is determined by the control’s
TabIndex property—set either in the Properties window, or by selecting View
| Tab Order and then clicking each control in order. Z-order describes the
front-to-back order of controls, and this set in the Designer using the Bring
to Front and Send to Back layout options. Z-order matters when controls
visually overlap and also when docking:Those at the back of the z-order will
be assigned docking space first.

Q: I need to determine the current mouse position and state of the Shift,
Control, and Alt keys—but I’m not inside an event handler that provides
this information. How can it be done?

A: Use the MousePosition, MouseButtons, and ModifierKeys static properties of the
Control class.

Q: How can I screen input in a textbox?

A: For this, it’s usually best to start by subclassing the TextBox control so that
your solution is reusable within your project (or outside your project).
Override OnTextChanged, or for more control, OnKeyPress and OnKeyDown.

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 200

Windows Forms • Chapter 4 201

OnKeyPress fires for printable characters; OnKeyDown fires for all key combi-
nations. Both of these offer a Handled property in the event arguments
parameter, which you can set to True to cancel the event.

Q: When designing an inherited or custom control, can I trap windows messages
such as WM_PASTE?

A: Yes—by overriding the WndProc method.

Q: Is there a Windows Forms newsgroup where I can get help?

A: Microsoft provides a newsgroup: microsoft.public.dotnet.framework
.windowsforms.

www.syngress.com

167_C#_04.qxd 12/3/01 5:47 PM Page 201

167_C#_04.qxd 12/3/01 5:47 PM Page 202

Network
Programming:
Using TCP and UDP
Protocols

Solutions in this chapter:

■ Introducing Networking and Sockets

■ Example TCP Command Transmission
and Processing

■ Example UDP Command Transmission
and Processing

■ Creating a News Ticker Using
UDP Multicasting

■ Creating a UDP Client Server
Chat Application

■ Creating a TCP P2P File
Sharing Application

■ Access to Web-Resources

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 5

203

167_C#_05.qxd 12/4/01 3:26 PM Page 203

204 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Introduction
Networking can be defined, in a general sense, as inter-process communication.Two or
more processes (such as applications) communicate with each other.The processes
can run on the same or different computers or other physical devices. Connections
between the network nodes are made mostly by a wire (such as local area network
[LAN], wide area network [WAN], and Internet); by wireless via radio frequencies
(such as cell phone, wireless appliances, wireless LAN, Internet, and Bluetooth); or
by infrared (IR) light (such as a cell phone to a laptop).

In this chapter, we cover the basics of networking and how it is accomplished
with C#.We start out with some theory, covering a little bit about the history of
networking and the Internet and sockets; then we discuss commonly used proto-
cols such as the Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP). Subsequently, we have a look at ports and their uses.The last
point of theory is to get to know the .NET classes we use.

Keeping theory in mind, we then go into practice. First, we develop some
very simple communication examples using TCP and UDP.Then we develop a
multicast news ticker.We have a look at a chat server and client, where we com-
bine the learned techniques.After all the client/server-applications, we develop a
P2P file sharing system, and finally, we show how you can use special .NET
classes that encapsulate the networking.

Introducing Networking and Sockets
In the sixties, researchers of the Advanced Research Projects Agency (ARPA) in
the U.S. were requested by the Department of Defense (DoD) to develop a
system for saving information military important in case of a war.The result of
their work was an electronic network—the ARPAnet. Military information was
stored on all computers that were part of the network.The computers were
installed in different places far away from each other and information was
exchanged in several different ways. New or updated data on the computers was
to be synchronized in a very short time so that in case of the destruction of one
or more computers, no data would be lost.

In the 1970s, the DoD allowed nonmilitary research institutes to access the
ARPAnet.The researchers were more interested in the connected computers
than in synchronizing data.They used it for exchanging information, and students
at these institutes used a part of the network as a blackboard for communicating
with each other—this was the beginning of Usenet.

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 204

www.syngress.com

In the 1980s, the military and civil parts of the ARPAnet were divided. In other
countries, similar activities led to national networks.At the end of the 1980s, most
of the national networks became connected to each other.The Internet was born.

It was necessary to have a standardized way to communicate over different
types of networks and with different kinds of computers. So TCP/Internet
Protocol (TCP/IP), which was developed by ARPA, became a worldwide standard.

TCP/IP is a “protocol family” that allows connected computers to communi-
cate and share resources across a network. (TCP and IP are only two of the pro-
tocols in this family, but they are the most widely recognized. Other protocols in
this set include UDP.) For all protocols provided by .NET, have a look at the
.NET reference documentation (class System.Net.Sockets.Socket).

To access IP-based networks from an application, we need sockets.A socket is
a programming interface and communication endpoint that can be used for con-
necting to other computers, sending and receiving data from them. Sockets were
introduced in Berkeley Unix, which is why sockets are often called Berkeley
Sockets. Figure 5.1 shows the general architecture of IP-based communication.

Generally, three types of sockets exist:

■ Raw sockets This type is implemented on the network layer (see
Figure 5.2).An example for a protocol on this layer is IP.

■ Datagram sockets Datagrams are packets of data.This type of sockets
is implemented on the transport layer (see Figure 5.2). However, the
assignment to a layer is not strict, because, for instance, IP is also data-
gram-oriented.We go more in detail on this type of sockets later in this
section.

■ Stream sockets In contrast to datagram sockets, these sockets provide
a stream of data.We go into more detail on this type of sockets later in
this section.

Network Programming: Using TCP and UDP Protocols • Chapter 5 205

Figure 5.1 General Communication Architecture

Computer

Application

Socket

Computer

Application

Socket

167_C#_05.qxd 12/4/01 3:26 PM Page 205

206 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Modern communication architectures use a stack of different protocol layers
where data is given to the top layer. Each layer is adding layer-specific protocol
information to the data and then it is given to the next layer.The lowest layer is
sending the data to another process running on another computer (or maybe the
same computer) where the data goes up in the same stack of layers. Each layer
removes the protocol-specific information until the application layer is reached.
Figure 5.2 shows such a stack.

The application layer can be divided into sublayers.You may think of an
application using the XML-based Simple Object Access Protocol (SOAP) using
the Hypertext Transfer Protocol (HTTP) for sending SOAP commands in XML.
This is called HTTP tunneling and is used especially with firewalls, so that the
firewalls do not have to be reconfigured for passing through SOAP.

Introduction to TCP
The Transmission Control Protocol is a connection- and stream-oriented, reliable
point-to-point protocol.TCP communication is analogous to a phone call.You
(the client) may want to talk with your aunt (the server).You establish a connec-
tion by dialing the number of your aunt’s phone (point-to-point).This is shown
in Figure 5.3.

If your aunt is at home, she will pick up her phone and talk to you (see
Figure 5.4).The phone company guarantees that the words you and your aunt
are speaking are sent to the other end and in the same order (reliability).As long
as you are on the phone, you can speak continuously (stream-oriented).

www.syngress.com

Figure 5.2 Communication Protocol Stack

Application Layer
(HTTP, FTP, ...)

Transport Layer
(TCP, UDP, ...)

Network Layer
(IP, ...)

Physical Layer
(Ethernet, ...)

167_C#_05.qxd 12/4/01 3:26 PM Page 206

Network Programming: Using TCP and UDP Protocols • Chapter 5 207

The connection will be established until you and your aunt are finished with
your conversation (connection-oriented). See Figure 5.5 for an example of dis-
connecting.

TCP uses IP as its network protocol. IP is datagram-oriented and a best-effort
protocol.As mentioned before, datagrams are packets of data. Best-effort means that
datagrams are sent without the guarantee of delivery and correct order.

As we have seen,TCP is stream-oriented.TCP must simulate the streaming of
data.Therefore, it is necessary that TCP controls the order and correct occurrence
of the datagrams. If a datagram is corrupt or lost, it must be resent. If this does
not function, an error is reported.TCP also implements a number of protocol
timers to ensure synchronized communication.These timers also can be used to
produce timeouts, if needed.

The advantage of TCP is its reliability—TCP is the base of most reliable pro-
tocols such as HTTP, File Transfer Protocol (FTP), or Telnet.Those protocols are
needed if delivery and order of packets is important. For instance, if you send an

www.syngress.com

Figure 5.3 Calling Your Aunt (Point-to-Point Connection)

RING
 RING

Figure 5.4 Talking to Your Aunt (Reliability and Stream-Orientation)

"Hello
Aunt!""Hello

Aunt!"

Figure 5.5 Aunt Hangs Up (Connection-Orientation)

CLICK

167_C#_05.qxd 12/4/01 3:26 PM Page 207

208 Chapter 5 • Network Programming: Using TCP and UDP Protocols

e-mail to your aunt starting with “Hello,Aunt,” first it must be delivered, and
second, it should not be delivered as “Hlnt Aeluo.”The disadvantage to TCP is
the loss of performance due to the administration overhead for handling the reli-
ability. Figure 5.6 shows a sample stack of communication layers with HTTP.

If reliability is not needed, you can choose the protocol UDP.We discuss this
protocol in the next section.

Introduction to UDP
The User Datagram Protocol is a connection-less and datagram-oriented best-
effort protocol.A UDP-communication is analogous to sending a letter.You (a
peer) may want to send a letter to your aunt (another peer).You don’t have to
hand-deliver the letter to your aunt—the post office delivers the letter (a data-
gram), and it delivers it as a whole entity, rather than delivering page by page (see
Figure 5.7).

Sending a letter is mostly, but not always, reliable.The post office offers a
best-effort service.They don’t guarantee an order in sending letters. If you send
letter 1 today and send letter 2 tomorrow, your aunt may receive letter 2 before
letter 1 arrives (see Figure 5.8).

On the other hand, one of your letters may get lost.The post office doesn’t
guarantee that a letter will be delivered (see Figure 5.9).

www.syngress.com

Figure 5.6 HTTP Communication Layers Stack

HTTP

TCP

IP

Ethernet

HTTP

TCP

IP

Ethernet

Application
Layer

Transport
Layer

Network
Layer

Physical
Layer

Reliable

Best Effort

Client Server

167_C#_05.qxd 12/4/01 3:26 PM Page 208

Network Programming: Using TCP and UDP Protocols • Chapter 5 209

So why should you use such a protocol? For the following reasons:

■ Performance UDP is faster than TCP because there is no administra-
tive overhead to bring data in order or for resending lost packets. So it
can be used for time-critical applications such as video- or audio-
streaming.

■ If your application doesn’t care about a lost packet. Consider a
time server: If the server sends a packet and the packet is lost, it doesn’t
make sense to resend it.The packet will be incorrect if the client
receives it on the second try.

www.syngress.com

Figure 5.7 Sending a Letter to Your Aunt (Whole Communication Delivery)

Figure 5.8 No Delivery Order Guaranteed

1

2

Figure 5.9 Loss of a Communication Is Possible

167_C#_05.qxd 12/4/01 3:26 PM Page 209

210 Chapter 5 • Network Programming: Using TCP and UDP Protocols

■ UDP causes less network traffic. UDP needs 8 bytes for protocol
header information, whereas TCP needs 20 bytes. In times where we
speak of gigabyte hard drives, 16 bytes doesn’t seem like it should be a
problem, but think of the sum of all packets sent in global communica-
tion—then 16 bytes becomes a very heavy weight.

■ If your application needs a best-effort protocol for analyzing the
network. For instance, the ping command is used to test communication
between two computers or processes. It needs to know about lost or cor-
rupt packets to determine the quality of the connection. It doesn’t make
sense to use a reliable protocol for applications such as ping.

UDP is typically used for Domain Name System (DNS), Simple Network
Management Protocol (SNMP), Internet telephony, or streaming multimedia.

Another advantage of UDP is in multicasting, which means that a number of
processes can be grouped together by a special IP address (see Figure 5.10).The IP
address must be in the range 224.0.0.1 to 239.255.255.255, inclusive. Every process
contained in the group can send packets to all other processes of the group.

No process of the group knows how many other processes the group con-
tains. If one application wants to send data to the others, it has to send the data to
the IP address of the group. On the protocol layer, no process is a specialized
server.Your job is to define clients and servers if needed. For more details, see the
section “Creating a News Ticker Using UDP Multicasting” later in this chapter.

The next section introduces ports. Ports are important for identifying applica-
tions running on a computer.

www.syngress.com

Figure 5.10 UDP Multicasting

Process 2

Process 4

Process3Process1
Group

IP

167_C#_05.qxd 12/4/01 3:26 PM Page 210

Network Programming: Using TCP and UDP Protocols • Chapter 5 211

NOTE

Many firewalls are configured not to allow UDP. Firewalls are used to
permit unauthorized access from outside the firewall. Using UDP, the
firewall cannot determine if a packet comes from inside or outside
because no connection is made explicitly. Remember that TCP is connec-
tion-oriented, as in a direction from the client to the server.

Introduction to Ports
Generally, a computer has a single connection to the network. If all data arrives
through one connection, how can it be determined which application running
on the computer receives the data? The answer is through the use of ports.

A port is a 16-bit number in the range or 0 to 65535.The port numbers 0 to
1023 are reserved for special services such as HTTP (port 80), Mail (port 25), and
Telnet (port 23).

A connected application must be bound to at least one port. Binding means that
a port is assigned to a socket used by an application.The application is registered
with the system.All incoming packets that contain the port number of the applica-
tion in the packet header are given to the application socket (see Figure 5.11).

Please note that Figure 5.11 for TCP does not mean that only one socket can
be bound to one port. If a socket is waiting on a port for an incoming connec-
tion, normally the port is blocked for other applications (“normally” means that
this feature can be switched off—for more details, please have a look at the .NET
reference documentation System.Net.Sockets.Socket.SetSocketOption() method). Let’s
call a socket waiting on a connection to a server socket. If a connection is
accepted by a server socket, it creates a new socket representing the connection.

www.syngress.com

Figure 5.11 Ports

Application

Application

Application

TCP
or

UDP

Port

Port

Port

Port# Data Client

Datagram

167_C#_05.qxd 12/4/01 3:26 PM Page 211

212 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Then, the server socket can wait for a new connection request. So, multiple
clients can communicate concurrently over the same port.

An example for an application using this feature is a Web server. For instance,
while a Web page you requested is loaded by the browser, you can use a second
browser to request another page from the same server.The next sections intro-
duce the most important .NET classes we use for our examples.

NOTE

In this book, we focus more on real-life examples than on theory.
Because classes like the .NET Socket class are complex in use, we show
.NET classes that simplify the developing rather than the core networking
classes.

System.Net Namespace
Whereas the namespace System.Net.Sockets provide classes for more basic net-
working functionality, the System.Net namespace contains classes that encapsulate
these basics for easier access.The classes of System.Net are a simple programming
interface for some protocols used for networking.

At the core of this namespace are the classes WebRequest and WebResponse.
These abstract classes are the base for protocol implementations.Two protocols
are pre-implemented: HTTP with HttpWebRequest (with corresponding
HttpWebResponse) and file system access (request-URIs starting with file://”) with
FileWebRequest (with corresponding FileWebResponse).The other classes are mostly
helper-classes, such as IP addresses, authorization and permission classes, excep-
tions, and certificates.Table 5.1 shows the classes we use for our examples.

Table 5.1 System.Net Classes

Class Description

IPAddress Represents an IP address.
IPEndPoint Identifies a network endpoint. A network endpoint is an IP

address and a port.
WebRequest Makes a request to a Uniform Resource Identifier (URI). This

class is abstract and must be extended for the destination
protocol.

www.syngress.com

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 212

Network Programming: Using TCP and UDP Protocols • Chapter 5 213

WebResponse Represents a response to a URI. This class is abstract and
must be extended for the destination protocol.

WebProxy Identifies an HTTP proxy. It contains all proxy settings used
by WebRequest.

System.Net.Sockets Namespace
As mentioned earlier in the chapter, the System.Net.Sockets namespace contains
classes that provide basic networking functionality.The central class is Socket.As
mentioned, a socket is the most basic programming interface for networking.We
use most of the classes of this namespace for our example.Table 5.2 shows the
class we use.

Table 5.2 System.Net.Sockets Classes

Class Description

Socket Implements the Berkeley sockets programming interface.
NetworkStream Allows easy access to data of stream sockets.
TcpClient Provides a TCP client that can connect to a server socket.
TcpListener Implements a TCP server socket listening for incoming

connection-requests.
UdpClient Provides a UDP peer with the possibility of multicasting.

Enough theory—let’s go into practice.The next section describes a simple
command transmission and processing using TCP.

NOTE

For simplifying the code, all examples presented in this chapter do
not contain any exception handling. (Refer to Chapter 2 for more infor-
mation on exception handling.) Please have a look at the .NET class
reference for each method which exceptions must be handled.

www.syngress.com

Table 5.1 Continued

Class Description

167_C#_05.qxd 12/4/01 3:26 PM Page 213

214 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Example TCP Command
Transmission and Processing
The example in this section has a strict separation between the presentation layer
and the functional layer.The presentation layer is the user interface (UI). In this
example, you use a console application because you should focus first on com-
munication and then concentrate on creating a good-looking UI.The functional
layer is the part of the application that does all the work—for example, a business
object for calculating something. Figure 5.12 shows the simplified architecture of
the first example.

For the presentation layer, where the functionality is executed is unimportant.
You can implement the functional layer within the same application, in another
process on the same computer, or on another computer anywhere in a LAN or on
the Internet.To make this architecture more flexible, you will add a command pro-
cessor between the presentation and functional layers.The command processor is a
standardized interface for the functional layer.The presentation layer is giving its
requests in the form of commands to the processor.The processor is executing
methods of the functional layer based on the commands. Finally, the command pro-
cessor will take the results and give it back to the presentation layer. Figure 5.13
shows the extended architecture.

The command processor makes it simple to access the functional layer in var-
ious ways—either within the same application or via network communication on
another computer. Figure 5.14 shows an example with a remote functional layer.
The advantage of this model is that the presentation layer does not have to know
where the functional layer is running. It just gives commands to the command
processor and receives the result.

A typical example of such an architecture is a Web-browser-to-Web-server
communication.You are typing in an URL in the address field of your browser.

www.syngress.com

Figure 5.12 Example Architecture

Presentation Layer

1. Request

Functional Layer

2. Response

167_C#_05.qxd 12/4/01 3:26 PM Page 214

Network Programming: Using TCP and UDP Protocols • Chapter 5 215

The browser is converting the URL to a GET request for a Web server and is
sending the request to the Web server.The Web server analyzes the request and
returns an HTML page to the browser.

www.syngress.com

Figure 5.13 Example Architecture with Command Processor

Presentation Layer

1. Request

Command
Processor

4. Response

2. Request

Functional Layer

3. Response

Figure 5.14 Example Architecture with Communication

Presentation Layer

1. Request

Communication
Layer

10. Response

3. Request

Communication
Layer

8. Response

5. Request

Functional Layer

6. Response

Client

Server

Network

Command
Processor

2. Request 9. Response

4. Request 7. Response

Command
Processor

167_C#_05.qxd 12/4/01 3:26 PM Page 215

216 Chapter 5 • Network Programming: Using TCP and UDP Protocols

This example performs the same action in a very simplified form.A console
client is sending a request to a server and the server returns “Hello World !” to
the client.This example implements a simple communication protocol with two
commands: GET and EXIT.A sample communication looks like this:

c: (establish tcp connection to the server)

s: (accept connection)

c: GET<CRLF>

s: "Hello World !"<CRLF>

c: EXIT<CRLF>

s: BYE<CRLF>

c: (close connection)

s: (close connection)

c: indicates the client and s: the server. <CRLF> means a carriage return fol-
lowed by a line feed to indicate that the line is finished.This is commonly used
with communication protocols such as HTTP or SMTP.

General Usage of Needed .NET Classes
You need two main network classes for this example. On the client side, you
use System.Net.Sockets.TcpClient and on the server side it is System.Net.Sockets
.TcpListener.

Generally, on the client side a TcpClient connects to the server.Then you
work with a stream given by the client on the connection.After all the work is
done, you close the client:

// connect client to the server 127.0.0.1:8080

TcpClient client = new TcpClient ("127.0.0.1", 8080);

// get the network stream for reading and writing something

// to the network

NetworkStream ns = client.GetStream ();

// read/write something from/to the stream

// disconnect from server

client.Close ();

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 216

Network Programming: Using TCP and UDP Protocols • Chapter 5 217

The server side involves one more step, but generally the code looks like the
client code.You bind a TcpListener on a local port.Then, if a client connects to
the listener, you get a socket.With this socket, you create a stream. From this
point on, the code is the same as on the client side:

// create a listener for incoming TCP connections on port 8080

TcpListener listener = new TcpListener (8080);

listener.Start ();

// wait for and accept an incoming connection

Socket server = listener.AcceptSocket ();

// create a network stream for easier use

NetworkStream ns = new NetworkStream (server);

// read/write something from/to the stream

// disconnect from client

server.Close ();

After having a look at the general use of the networking classes, let’s go fur-
ther in our first example.

The Server
Let’s start with the server.The class is called TCPHelloWorldServer.The source
code of Figures 5.15 to 5.18 is included on the CD in a file named
TCPHelloWorldServer.cs. For simplification, only the client has a command pro-
cessor component. Later, we show examples where the server also has a processor.
For the server (see Figures 5.15 to 5.18), you need the following namespaces;
again, for simplification, the class has a Main() method only.

Figure 5.15 Needed Namespaces in TCPHelloWorldServer.cs

using System;

using System.IO;

using System.Net.Sockets;

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 217

218 Chapter 5 • Network Programming: Using TCP and UDP Protocols

The code in Figure 5.16 is a snippet of the Main() method in
TCPHelloWorldServer. It shows the server initialization. For waiting for
incoming connections on port 8080, use a TcpListener instance.

Figure 5.16 Server Initialization in TCPHelloWorldServer.cs

Console.WriteLine ("initializing server...");

TcpListener listener = new TcpListener (8080);

listener.Start ();

Console.WriteLine ("server initialized, waiting for " +

"incoming connections...");

Socket s = listener.AcceptSocket ();

// create a NetworkStream for easier access

NetworkStream ns = new NetworkStream (s);

// use a stream reader because of ReadLine() method

StreamReader r = new StreamReader (ns);

The listener listens on port 8080 for incoming connections.The AcceptSocket()
method returns a socket representing the connection to the client.This method
blocks the program until a client opens a connection to the listener.

After a connection is established, the socket returned by AcceptSocket() is used
for exchanging data with the connected client.The easiest way to do this is the
use of a NetworkStream.This class is located in the namespace System.Net.Sockets.
NetworkStream encapsulates the methods for reading and writing data with a
socket. So, you can use this stream with code working only on streams.

The next step is creating a StreamReader.This class is part of the System.IO
namespace.This class simplifies the access to a stream. Here, you use it because of
its ReadLine() method.This method reads a single line of characters.The .NET
reference documentation defines a line as follows:“A line is defined as a sequence
of characters followed by a carriage return (“\r”), a line feed (“\n”), or a carriage
return immediately followed by a line feed.”

After the client establishes a connection, it sends a command to the con-
nected server. Now the incoming commands must be parsed and executed by the
server.The code is shown in Figure 5.17.

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 218

Network Programming: Using TCP and UDP Protocols • Chapter 5 219

Figure 5.17 Command Processing in TCPHelloWorldServer.cs

bool loop = true;

while (loop)

{

// read a line until CRLF

string command = r.ReadLine ();

string result;

Console.WriteLine ("executing remote command: " +

command);

switch (command)

{

case "GET":

result = "Hello World !";

break;

// finish communication

case "EXIT":

result = "BYE";

loop = false;

break;

// invalid command

default:

result = "ERROR";

break;

}

if (result != null)

{

Console.WriteLine ("sending result: " + result);

www.syngress.com

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 219

220 Chapter 5 • Network Programming: Using TCP and UDP Protocols

// add a CRLF to the result

result += "\r\n";

// convert data string to byte array

Byte[] res = System.Text.Encoding.ASCII.GetBytes (

result.ToCharArray ());

// send result to the client

s.Send (res, res.Length, 0);

}

}

If the GET command is received, the server returns the string “Hello World
!”, and the loop continues.The loop also continues if an unknown command
arrives. In that case, the string “ERROR” is returned. On the EXIT command,
the server stops the loop.After that, the connection must be closed (see Figure
5.18).You can do this by simply calling the Close() method of the socket. Finally,
the server waits for the pressing of the Return key.

Figure 5.18 Server Shutdown in TCPHelloWorldServer.cs

Console.WriteLine ("clearing up server...");

s.Close ();

Console.Write ("press return to exit");

Console.ReadLine ();

That’s all for the server. Let’s move on to the client.

The Client
The client is a bit more complex than the server. It has two parts: the UI (a
simple console application), and the command processor, which contains the
communication components.

Let’s have a look at the command processor, named
TCPRemoteCommandProcessor.The source code for Figures 5.19 to 5.25 is

www.syngress.com

Figure 5.17 Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 220

Network Programming: Using TCP and UDP Protocols • Chapter 5 221

included on the CD in a file named Base.cs.This file is compiled to a library
named Base.dll that is also contained on the CD. For the command processor, the
needed namespaces are as shown in Figure 5.19.

Figure 5.19 Used Namespaces in Base.cs

using System;

using System.IO;

using System.Net.Sockets;

First, you will write an interface.This interface gives you the flexibility to
implement more than one type of command processor with different underlying
network protocols, so a client gets only an object that implements the interface.
This makes the client independent from the used network protocol (see Figure
5.20).

Figure 5.20 CommandProcessor Interface in Base.cs

public interface CommandProcessor

{

// execute a command and return the result

// if the return value is false the command processing loop

// should stop

bool Execute (string command, ref string result);

}

Now, create the TCPRemoteCommandProcessor class that implements the
CommandProcessor interface.The class has three methods: a constructor, a Close()
method, and the implementation of the Execute() method.The command pro-
cessor has two different running modes. In the Hold Connection mode, the con-
structor establishes the connection to the server directly from the constructor.
Disconnecting will be done at the moment the Close() method is called. In the
Release Connection mode, every time the processor is requested to send a com-
mand to the server, the connection is established.After retrieving the result, the
connection is closed.The first mode is for short-term or high-performance com-
munication.The second mode is for long-term communication and can be used
for saving money on the Internet or reducing use of network resources.

Let’s start with the class fields. Figure 5.21 shows all the information and
objects needed for running the communication process.

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 221

222 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Figure 5.21 Class Fields of TCPRemoteCommandProcessor in Base.cs

// remote host

private string host = null;

// remote port

private int port = -1;

// connection mode

private bool releaseConnection = false;

// communication interface

private TcpClient client = null;

// outgoing data stream

private NetworkStream outStream = null;

// ingoing data stream

private StreamReader inStream = null;

Now for the constructor (see Figure 5.22). It has three parameters: the name
and port of the host to connect with and a Boolean flag determining the mode.
If the flag is true, the command processor works in Release Connection mode.
Otherwise, the Hold Connection mode is active. If the processor runs in the last
mentioned mode, the constructor connects immediately to the server specified by
the host name and port. Finally, it initializes the stream input and output stream
fields.

Figure 5.22 Constructor of TCPRemoteCommandProcessor in Base.cs

public TCPRemoteCommandProcessor (string host, int port,

bool releaseConnection)

{

// add parameter checking here

this.host = host;

this.port = port;

this.releaseConnection = releaseConnection;

if (!this.releaseConnection)

{

Console.WriteLine ("connecting to " + this.host + ":" +

www.syngress.com

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 222

Network Programming: Using TCP and UDP Protocols • Chapter 5 223

this.port + "...");

this.client = new TcpClient (this.host, this.port);

this.outStream = this.client.GetStream ();

this.inStream = new StreamReader (this.outStream);

Console.WriteLine ("connected to " + this.host + ":" +

this.port);

}

}

The Close() method is quite simple. It closes only the connection (see Figure
5.23).This will be done only in Release Connection mode. If the command pro-
cessor is in Hold Connection mode, this method does nothing because the client
field will be null.

Figure 5.23 Close() Method of TCPRemoteCommandProcessor in Base.cs

public void Close ()

{

if (this.client != null)

{

this.client.Close ();

Console.WriteLine ("connection closed: " + this.host +

":" + this.port);

}

}

NOTE

You do not have to flush the streams by using the Flush() methods of
NetworkStream because these are not buffered streams. But if you
develop classes that work only on streams without knowing which kind
of streams it uses, you should always consider flushing them.

www.syngress.com

Figure 5.22 Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 223

224 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Execute() is more complex. If the command processor is in the Release
Connection mode, it first must connect to the server and finally close the con-
nection after sending the command (see Figure 5.24). For sending, the command
is concatenated with a trailing carriage return and line feed.After that, it is con-
verted to a byte array.This array is given to the output stream.Then the processor
reads the response from the input stream. Finally, it checks if the response in the
string is “BYE”. If so, false is returned; true otherwise.

Figure 5.24 Execute() Method of TCPRemoteCommandProcessor in Base.cs

public bool Execute (string command, ref string result)

{

// add parameter checking here

bool ret = true;

if (this.releaseConnection)

{

Console.WriteLine ("connecting to " + this.host + ":" +

this.port + "...");

// open connection to the server

this.client = new TcpClient (this.host, this.port);

this.outStream = this.client.GetStream ();

this.inStream = new StreamReader (this.outStream);

Console.WriteLine ("connected to " + this.host + ":" +

this.port);

}

// add a CRLF to command to indicate end

command += "\r\n";

// convert command string to byte array

Byte[] cmd = System.Text.Encoding.ASCII.GetBytes (

command.ToCharArray ());

www.syngress.com

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 224

Network Programming: Using TCP and UDP Protocols • Chapter 5 225

// send request

this.outStream.Write (cmd, 0, cmd.Length);

// get response

result = this.inStream.ReadLine ();

if (this.releaseConnection)

{

// close connection

this.client.Close ();

Console.WriteLine ("connection closed: " + host + ":"

+ port);

}

ret = !result.Equals ("BYE");

return ret;

}

Finally, you need a client using the command processor. Call it
TCPHelloWorldClient.The source code for Figure 5.25 is included on the CD in
the file TCPHelloWorldClient.cs. It creates a TCPCommandProcessor instance for
communicating with the server.Then, it sends the GET command and displays
the result on the console.After that, it sends the EXIT command and closes the
connection.

Figure 5.25 TCPHelloWorldClient Listing in TCPHelloWorldClient.cs

using System;

using System.IO;

using System.Net.Sockets;

public class TCPHelloWorldClient

www.syngress.com

Figure 5.24 Continued

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 225

226 Chapter 5 • Network Programming: Using TCP and UDP Protocols

{

public static void Main ()

{

Console.WriteLine ("initializing client...");

TCPRemoteCommandProcessor proc = new

TCPRemoteCommandProcessor ("127.0.0.1", 8080, false);

string result;

Console.WriteLine ("requesting...");

proc.Execute ("GET", ref result);

Console.WriteLine ("result: " + result);

Console.WriteLine ("closing connection...");

proc.Execute ("EXIT", ref result);

proc.Close ();

Console.Write ("press return to exit");

Console.ReadLine ();

}

}

Now you can compile and run the example.

Compiling and Running the Example
Go to the directory where you can find the files TCPHelloWorldServer.cs and
TCPHelloWorldClient.cs. For compiling, batch file exists called compile.bat.
Because we are using TCP for this example, you must start the server before the
client is running.

Now you can start the client by double-clicking on TCPHelloWorldServer
.exe.A Console window like the one shown in Figure 5.26 will appear.

Now you can start the client by double-clicking on TCPHelloWorldClient
.exe.Another Console window like Figure 5.27 will appear.

www.syngress.com

Figure 5.25 Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 226

Network Programming: Using TCP and UDP Protocols • Chapter 5 227

The server window now looks like Figure 5.28. Now you can stop both
applications by pressing any key.The next section uses the same example using
UDP as underlying transport protocol.

NOTE

Because you are using TCP, you must always start the server before the
client begins trying to connect to the server.

Example UDP Command
Transmission and Processing
In this section, you rewrite the example from the section “Example TCP
Command Transmission and Processing” for using UDP as the transport protocol.

www.syngress.com

Figure 5.26 Server Waiting for Client Connection

Figure 5.27 Running Client

Figure 5.28 Server after Doing Its Work

167_C#_05.qxd 12/4/01 3:26 PM Page 227

228 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Refer back to that section for the introduction to the architecture and the imple-
mented communication protocol.

NOTE

As mentioned earlier, UDP is normally not used for request/response pro-
tocols like client/server command processing. This example is used for
showing the differences in using UDP and TCP.

General Usage of Needed .NET Classes
In contrast to TCP, in using UDP only one main network class is needed for this
example.This is because the handling is like peer-to-peer (P2P). On both sides
(client and server), we use System.Net.Sockets.UdpClient.

As a matter of principle, we can say a UDP client binds to a local port from
which it receives data. Data is sent directly to another UDP client without con-
necting explicitly.That is what is meant by connection-less communication.

Generally, the code on both sides looks the same.A UdpClient is bound to a
local port. Now it is ready to send and receive data. Because you bind the client
to a local port only, you must use one Send() method that needs the remote host
connection information.This information is used for sending the data to another
UDP client. Because you bind the UdpClient to a local port, you receive data
from this port, and you do not have to specify a receive point for the Receive()
method.That is the reason why we use the dummy variable that is set to null.

// bind client to local port where it receives data

UdpClient client = new UdpClient (8081);

// create a byte array containing the characters of

// the string "a request"

Byte[] request = System.Text.Encoding.ASCII.GetBytes (

"a request".ToCharArray ());

// send request to the server

client.Send (request, request.Length, "127.0.0.1", 8080);

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 228

Network Programming: Using TCP and UDP Protocols • Chapter 5 229

// create a dummy endpoint

IPEndPoint dummy = null;

// receive something from the server

byte[] response = client.Receive (ref dummy);

// do something with the response

// unbind the client

client.Close ();

After having a look at the general use of the networking classes, let’s move on
to the second example.

The Server
First, let’s have a look at the server.The class is called UDPHelloWorldServer and is
included on the CD in the file UDPHelloWorldServer.cs.The code does not
differ very much from the code of the TCPHelloWorldServer class (see the section
“Example TCP Command Transmission and Processing”).

For simplification, the class also has a Main() method only.The initialization of
the server is very simple.You just have to bind a UdpClient to a local port.The
code of Figure 5.29 appears at the beginning of the Main() method.

Figure 5.29 Server Initialization in UDPHelloWorldServer.cs

Console.WriteLine ("initializing server");

UdpClient server = new UdpClient (8080);

Because UDP is a connection-less protocol, you cannot send back a response
directly without the knowledge of where a request comes from.The header of a
UDP datagram, among other things, contains the port where the sending socket is
bound to (source port). On the IP layer, you can say the UDP datagram is
embedded in an IP datagram.The header of the IP datagram contains the sender’s
IP address. But with C#, you cannot access this information with the simple API
you use (at least with the Beta 2 of the .NET Framework). So the simplest way is
to add the sender’s information to a datagram if you want a receiver returning data.
The syntax of command that will be sent to the server is as follows:

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 229

230 Chapter 5 • Network Programming: Using TCP and UDP Protocols

IP ADDRESS ":" PORT ":" COMMAND

where IP ADDRESS and PORT are the IP address and port of the sender.
COMMAND is the command to execute.The server code for receiving a com-
mand is shown in Figure 5.30.After receiving the command string, it will be split
into the parts described earlier.

Figure 5.30 Receiving a Command in UDPHelloWorldServer.cs

// an endpoint is not needed the data will be sent

// to the port where the server is bound to

IPEndPoint dummy = null;

bool loop = true;

while (loop)

{

Console.WriteLine ("waiting for request...");

byte[] tmp = server.Receive (ref dummy);

// split request string into parts, part1=client IP

// address or DNS name, part2=client port, part3=command

string dg =

new System.Text.ASCIIEncoding ().GetString (

datagram);

string[] cmd = dg.Split (new Char[] {':'});

string remoteClientHost = cmd[0];

int remoteClientPort = Int32.Parse (cmd[1]);

string command = cmd[2];

string result = null;

// command execution

The command execution code is the same as in the TCPHelloWorldServer
class.Also the result-sending code is similar to the code of the mentioned class
(see Figure 5.31).

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 230

Network Programming: Using TCP and UDP Protocols • Chapter 5 231

Figure 5.31 Result Sending in UDPHelloWorldServer.cs

// convert data string to byte array

Byte[] d = System.Text.Encoding.ASCII.GetBytes (

result.ToCharArray ());

// send result to the client

server.Send (d, d.Length, remoteClientHost,

remoteClientPort);

The shutdown code is also the same as the code you knew from
TCPHelloWorldServer. Now let’s have a look at the client.

The Client
The client is called UDPHelloWorldClient and is included on the CD in the file
UDPHelloWorldClient.cs. It is modified code from TCPHelloWorldClient with
only one difference: the command processor and its instantiation.The command
processor is called UDPCommandProcessor, and you can find it on the CD in the
file Base.cs. Figure 5.32 shows the only different line of the code.

Figure 5.32 Instantiation of the Command Processor in
UDPHelloWorldClient.cs

UDPRemoteCommandProcessor proc = new

UDPRemoteCommandProcessor (8081, "127.0.0.1", 8080);

The parameter 8081 is the local port where the command processor is
bound.The other two parameters of the constructor are the remote IP address
and port of the server to which the command processor connects.

Now comes the command processor, called UDPCommandProcessor. Just like
TCPCommandProcessor, this class has three methods: a constructor, a Close()
method, and an Execute() method. First, let’s have a look at the class fields (see
Figure 5.33).

Figure 5.33 Class Fields of UDPCommandProcessor in Base.cs

// the local port where the processor is bound to

private int localPort = -1;

www.syngress.com

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 231

232 Chapter 5 • Network Programming: Using TCP and UDP Protocols

// the remote host

private string remoteHost = null;

// the remote port

private int remotePort = -1;

// communication interface

private UdpClient client = null;

The next stop is the constructor. It sets all class fields and binds the UDP
client to a local port (see Figure 5.34).

Figure 5.34 Constructor of UDPRemoteCommandProcessor in Base.cs

public UDPRemoteCommandProcessor (int localPort,

string remoteHost, int remotePort)

{

// add parameter checking here

this.localPort = localPort;

this.remoteHost = remoteHost;

this.remotePort = remotePort;

this.client = new UdpClient (localPort);

}

The Close() method is very simple. It calls the Close() method of the UDP
client (see Figure 5.35).

Figure 5.35 Close() Method of UDPRemoteCommandProcessor in Base.cs

public void Close ()

{

this.client.Close ();

}

The Execute() method is very similar to the same named method of
TCPCommandProcessor.You have a different handling in communication because

www.syngress.com

Figure 5.33 Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 232

Network Programming: Using TCP and UDP Protocols • Chapter 5 233

of UDP.You need code for adding the local IP address and port to the command.
Also, the sending and receiving of data is different. See Figure 5.36 for the UDP
code.

Figure 5.36 Execute() Method of UDPRemoteCommandProcessor in Base.cs

public bool Execute (string command, ref string result)

{

// add parameter checking here

bool ret = true;

Console.WriteLine ("executing command: " + command);

// build the request string

string request = "127.0.0.1:" + this.localPort.ToString ()

+ ":" + command;

Byte[] req = System.Text.Encoding.ASCII.GetBytes (

request.ToCharArray ());

client.Send (req, req.Length, this.remoteHost,

this.remotePort);

// we don't need an endpoint

IPEndPoint dummy = null;

// receive datagram from server

byte[] res = client.Receive (ref dummy);

result = System.Text.Encoding.ASCII.GetString (res);

ret = !result.Equals ("BYE");

return ret;

}

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 233

234 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Compiling and Running the Example
Go to the directory where you can find the files UDPHelloWorldServer.cs and
UDPHelloWorldClient.cs and start the compile.bat batch file.

Now, after successfully compiling all files, you are ready to run the example.
Start the server by double-clicking on UDPHelloWorldServer.exe in Windows
Explorer.A console window like the one shown in Figure 5.37 will appear.

Start the client by double-clicking on UDPHelloWorldClient.exe.Another
console window like Figure 5.38 will appear.

The server window now looks like Figure 5.39.

Now you can stop both applications by pressing any key.The next section
discusses how to write a UDP multicasting application.

www.syngress.com

Figure 5.37 Server Waiting for Client Connection

Figure 5.38 Running Client

Figure 5.39 Server after Doing its Work

167_C#_05.qxd 12/4/01 3:26 PM Page 234

Network Programming: Using TCP and UDP Protocols • Chapter 5 235

Creating a News Ticker
Using UDP Multicasting
A news ticker is an application where a news server sends messages to a number
of clients.A client subscribes to the news server. From the moment of subscrip-
tion, the client is allowed to receive new messages from the server.

You can implement implement such an architecture in several ways, but the
easiest is using UDP multicasting.As described in the section “Introduction to
UDP,” with UDP, you can group applications (peers) together.An IP address
together with a port is the alias for the group; that means a peer sends data to
that IP address and port and all peers of that group will receive the data.

In this section, you will see how to develop a simple news ticker server and
client.The server is a simple Windows Forms application with a text box and a
button.The user types in the news in the text box. By clicking on the button, the
server sends the news to the group (see Figure 5.40).The server must send news
continuously so that a client can be started at any time for receiving the news.

The client also is a simple Windows Forms application with only one text
box. If news arrives, it will be displayed in the text box by shifting the text from
the right to the left like a marquee (see Figure 5.41).

www.syngress.com

Figure 5.40 UDP Multicast News Server

Click to Send News New Text Box

Figure 5.41 UDP Multicast News Client

Shifting Characters

167_C#_05.qxd 12/4/01 3:26 PM Page 235

236 Chapter 5 • Network Programming: Using TCP and UDP Protocols

General Usage of Needed .NET Classes
As you have seen with UDP, you need only one class: System.Net.Sockets.UdpClient.
In addition to the methods discussed in the section “Example UDP Command
Transmission and Processing,” you can use the UdpClient.JoinMulticastGroup()
method.This method registers a UDP peer to a multicast group.

The initialization of the news server and client is done by the same code.
First, you bind a UdpClient to a local port.Then you register this client to a mul-
ticast group by calling its method JoinMulticastGroup().This method gets the IP
address of the group. Finally, you create an IPEndPoint to receive data from.As
mentioned in the introduction, an IPEndPoint is the combination of an IP address
and a port:

// create a peer bound to a local port

UdpClient peer = new UdpClient (LOCAL_PORT);

// create the group IP address

IPAddress groupAddress = IPAddress.Parse (GROUP_IP);

// add the peer to the group

peer.JoinMulticastGroup (groupAddress);

// create an end point for sending data to the group

IPEndPoint groupEP = new IPEndPoint (groupAddress,

GROUP_PORT);

The code for sending and receiving is similar to the code in the section
“Example UDP Command Transmission and Processing”:

// send data to the group, d is a byte array

peer.Send (d, d.Length, groupEP);

// receiving data from the group

IPEndPoint dummy = null;

byte[] d = peer.Receive (ref dummy);

After having a look at the general use of the needed classes, let’s go further into
the news ticker example. Let’s first have a look at a class that is used by the news

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 236

Network Programming: Using TCP and UDP Protocols • Chapter 5 237

client and news server.This class is called UDPPeer, and it is included on the CD
in the file Base.cs. It represents a simplified interface to the UdpClient class.

The server can be driven in unicast or multicast mode. If the class is instanti-
ated with the local port, only the unicast mode is active. If it is instantiated with
an additional UDP multicast group IP address and port, multicast mode is used.
The Close() method shuts down the server and the Receive() and Send() methods
are used for receiving and sending data, respectively.

Let’s now go more in detail and start with the class fields (see Figure 5.42).

Figure 5.42 Class Fields of UDPPeer in Base.cs

// udp peer

private UdpClient server = null;

// multicast group IP address

private IPAddress groupAddress = null;

// multicast group endpoint (IP address and port)

private IPEndPoint group = null;

The server field is needed as a communication interface for unicasting and
multicasting.The groupAddress and group fields are only needed in case of multi-
casting.The groupAddress field is the IP address of the UDP multicast group and
group is the end point where the data is sent to.

The next is the unicast constructor (see Figure 5.43). It is very simple; it just
binds the UDP peer to a local port.

Figure 5.43 Unicast Constructor of UDPPeer in Base.cs

public UDPPeer (int localPort)

{

// add parameter checking here

Console.WriteLine ("initializing UDP server, port=" +

localPort + "...");

this.server = new UdpClient (localPort);

Console.WriteLine ("UDP server initialized");

}

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 237

238 Chapter 5 • Network Programming: Using TCP and UDP Protocols

The multicast constructor calls the unicast constructor for binding the UDP
peer to a local port and additionally registers the peer with the multicast group (see
Figure 5.44). For registering an instance of IPAddress initialized with the group IP
address is needed.This address is represented by the field groupAddress.The field
group is an instance of the IPEndPoint class and is needed later for receiving data.

Figure 5.44 Multicast Constructor of UDPPeer in Base.cs

public UDPPeer (int localPort, string groupIP,

int groupPort) : this (localPort)

{

// add parameter checking here

Console.WriteLine ("adding UDP server to multicast " +

"group, IP=" + groupIP + ", port=" + groupPort + "...");

this.groupAddress = IPAddress.Parse (groupIP);

this.group = new IPEndPoint (this.groupAddress,

groupPort);

this.server.JoinMulticastGroup (this.groupAddress);

Console.WriteLine ("UDP server added to group");

}

The Close() method is very simple. In case of multicasting, it deletes the peer
from the multicast group. Finally, it calls the Close() method of UdpClient (see
Figure 5.45).

Figure 5.45 Close() Method of UDPPeer in Base.cs

public void Close ()

{

if (this.groupAddress != null)

this.server.DropMulticastGroup (this.groupAddress);

this.server.Close ();

}

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 238

Network Programming: Using TCP and UDP Protocols • Chapter 5 239

The Receive() method is a simple method that encapsulates the byte-array
handling (see Figure 5.46).The received byte array is converted to a string, and it
is returned to the caller of this method.

Figure 5.46 Receive() Method of UDPPeer in Base.cs

public String Receive ()

{

IPEndPoint dummy = null;

// receive datagram

byte[] data = this.peer.Receive (ref dummy);

return new System.Text.ASCIIEncoding ().GetString (

data);

}

The Send() method is also simple.After converting the given string to a byte
array, it calls the Send() method of the UDP peer (see Figure 5.47).

Figure 5.47 Send() Method of UDPPeer in Base.cs

public void Send (string message)

{

// add parameter checking here

Console.WriteLine ("sending " + message + "...");

// convert news string to a byte array

Byte[] d = System.Text.Encoding.ASCII.GetBytes (

message.ToCharArray ());

this.server.Send (d, d.Length, this.group);

Console.WriteLine ("message sent");

}

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 239

240 Chapter 5 • Network Programming: Using TCP and UDP Protocols

The next section discusses the UI of the news server.

The Server
The UDPPeer class now makes it very easy to develop a simple user interface
class for the news server.The class is named UDPNewsServer and is included on
the CD in the file UDPNewsServer.cs.

The class has one constructor and three methods: an event handler for a
window-closed event, an event handler for a button contained in the UI, and a
method that is used by a thread for sending news continuously.

The news server class is derived from System.Windows.Forms.Form. Let’s first
have a look at the class fields, in Figure 5.48.

Figure 5.48 Class fields of UDPNewsServer in UDPNewsServer.cs

// local port where the UDP server is bound to

private const int LOCAL_PORT = 8080;

// multicast group IP address

private const string GROUP_IP = "225.0.0.1";

// multicast group port

private const int GROUP_PORT = 8081;

// UDP server

private UDPPeer server = null;

// a thread for sending new continuously

private Thread serverThread = null;

// a data field for typing in a new message

private TextBox text = null;

// a button for setting the new message

private Button setButton = null;

// the news message

private string news = "";

Figure 5.49 shows the constructor code whereby the initialization of the UI
components is not shown. If the Send button is clicked, the news server should
update the news to be sent to the multicast group. In order to get notified by the
button, register the OnSet() method with the button as a click event handler.The
OnClosed() method is registered with the window for the Closed event. Finally,

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 240

Network Programming: Using TCP and UDP Protocols • Chapter 5 241

start a thread with the Run() method that continuously sends the news typed in
the text field.

Figure 5.49 Constructor of UDPNewsServer in UDPNewsServer.cs

public UDPNewsServer ()

{

// UI components initialization

// add an event listener for click-event

this.setButton.Click += new System.EventHandler (OnSet);

// add an event listener for close-event

this.Closed += new System.EventHandler (OnClosed);

// create communication components

this.server = new UDPPeer (LOCAL_PORT, GROUP_IP,

GROUP_PORT);

// start communication thread

this.serverThread = new Thread (

new ThreadStart (Run));

this.serverThread.Start ();

Console.WriteLine ("initialization complete");

}

The thread is needed because the server must send the news continuously.
Let’s now have a look at the thread (see Figure 5.50). Every second it sends the
content of the class field news to the multicast group and writes a message to the
console that it is sending data.After sending, this method puts the thread to sleep
for one second by calling the static method Sleep() of the Thread class.The value
1000 means one-thousand milliseconds—that is, one second.This call causes the
current thread to sleep for the specified time.

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 241

242 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Figure 5.50 Sending Thread of UDPNewsServer in UDPNewsServer.cs

// sending thread

public void Run ()

{

while (true)

{

if (!this.news.Equals (""))

{

Console.WriteLine ("sending " + this.news);

this.server.Send (this.news);

}

// wait one second

Thread.Sleep (1000);

}

}

The news field is set by the event handler that is registered for the click event
of the Set button (see Figure 5.51).

Figure 5.51 Button Event Handler of UDPNewsHandler in
UDPNewsHandler.cs

// button click event handler

public void OnSet (Object sender, EventArgs e)

{

this.news = this.text.Text;

}

Finally, let’s look at the shutdown code. It is placed in an event handler that is
called if the form receives the Closed event.The method requests the sending
thread to stop by calling its Abort() method and waits until it is dead.This is done
with the call to the Join() method of the thread.After that, it calls the Close()
method of the UDPPeer object.The code is shown in Figure 5.52.

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 242

Network Programming: Using TCP and UDP Protocols • Chapter 5 243

Figure 5.52 OnClosed() Method of UDPNewsHandler in UDPNewsHandler.cs

public void OnClosed (Object sender, EventArgs e)

{

Console.WriteLine ("server shut down...");

// stop thread

this.serverThread.Abort ();

// wait until it's stopped

this.serverThread.Join ();

this.server.Close ();

Application.Exit ();

}

The Client
The client is also divided into two parts: a UDP multicast client class and a user
interface. First, let’s have a look at the client class. It is called UDPMulticastClient
and is included on the CD in the file Base.cs.

In this example, you develop an asynchronous communication.An example
for asynchronous communication is talking with a friend via e-mail or chat.You
send a message to a friend and then you can do something else while you wait
for the response.After a while, you receive your friend’s answer and you are noti-
fied. Here in this example, asynchronous means that the client UI can be used
while a thread in the background is waiting for incoming data. But the UI must
be notified by the receiving thread if a message arrives.This is done by the thread
calling a delegate that is implemented by the UI form. Figure 5.53 shows the
architecture of the client.

The client is built of three main components; the UI, the ticker thread, and
the receiving thread.The UI is a simple form with a text box.The ticker thread
shifts the characters of the text box content by one position to left.

The receiving thread is implemented in UDPMulticastClient and is listening
permanently for incoming messages. If a message arrives, it calls a Notify() dele-
gate that is implemented as the SetNews() method in the UI.The Notify() delegate

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 243

244 Chapter 5 • Network Programming: Using TCP and UDP Protocols

is shown in Figure 5.54. It is included on the CD in the file Base.cs. It acts a little
bit like an event handler. If the thread receives a new message, it calls the delegate
by passing the message to it.You will see this in the UDPMulticastClient class.

Figure 5.54 The Notify() Delegate in Base.cs

public delegate void Notify (string text);

NOTE

The System.Net.Sockets.Socket class implements an interface to the
Windows sockets DLL. That means that not only the default Berkeley
sockets are supported. You also find methods for asynchronous commu-
nication in this DLL and in the Socket class. For all methods like Accept()
or Receive(), you’ll find asynchronous methods like BeginAccept()/
EndAccept() or BeginReceive()/EndReceive(). For instance, BeginAccept()
initiates the asynchronous wait for an incoming connection. Among
others, this function takes a so-called AsyncCallback, which is a delegate
that is called if a connection is accepted.

Now comes the UDPMulticastClient code. It has one constructor and two
methods.The constructor initializes the UDP client that receives messages from
the news server.The Run() method is used by a thread to listen for news, and the

www.syngress.com

Figure 5.53 Architecture of the News Client

UI

3. SetNews (Message)

Ticker Thread
(Shifting Characters)

Receiving
Thread

1. Message

2. Notify (Message)

167_C#_05.qxd 12/4/01 3:26 PM Page 244

Network Programming: Using TCP and UDP Protocols • Chapter 5 245

Close() method shuts down the news client.We need at least three class fields: the
notification delegate, the communication components, and a thread for asyn-
chronous receiving of data (see Figure 5.55).

Figure 5.55 Class Fields of UDPMulticastClient in Base.cs

// notification delegate

private Notify notify = null;

// communication interface

private UDPPeer peer = null;

// receiving thread

private Thread clientThread = null;

The constructor stores the notification delegate and initializes the UDP peer
with the given group IP address and port. Finally, it starts the news receiving
thread (see Figure 5.56).

Figure 5.56 Constructor of UDPMulticastClient in Base.cs

public UDPMulticastClient (string groupIP, int groupPort,

Notify notify)

{

// add parameter validation here

Console.WriteLine ("initializing UDP multicast " +

"client, group=" + groupIP + ", port=" + groupPort +

"...");

this.notify = notify;

// create communication components

this.client = new UDPPeer (groupPort, groupIP,

groupPort);

// start listener thread

this.clientThread = new Thread (

new ThreadStart (Run));

www.syngress.com

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 245

246 Chapter 5 • Network Programming: Using TCP and UDP Protocols

this.clientThread.Start ();

Console.WriteLine ("UDP multicast client initialized");

}

The receiving thread is implemented by the Run() method. It is an endless
loop that receives available data and gives it directly to the notification delegate
(see Figure 5.57).

Figure 5.57 Receiving Thread of UDPMulticastClient in Base.cs

public void Run ()

{

while (true)

this.notify (this.peer.Receive ());

}

The Close() method shuts down the client. It stops the receiving thread and
calls the Close() method of its UDP peer (see Figure 5.58).

Figure 5.58 Close() Method of UDPMulticastClient in Base.cs

public void Close ()

{

this.clientThread.Abort ();

this.clientThread.Join ();

this.peer.Close ();

}

That’s all there is to the UDP multicast client. Now let’s look at the news
client UI.The UI is a class derived from System.Windows.Forms.Form. It is called
UDPNewsClient and contained on the CD in the file UDPNewsClient.cs. It
simply contains a TextBox.The class also has one constructor and four methods.
The constructor initializes the client application. Furthermore, it includes an
event handler method called OnClosed() registered for the Closed event. Finally,
there are the methods RunTicker() for shifting the characters in the text field and

www.syngress.com

Figure 5.56 Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 246

Network Programming: Using TCP and UDP Protocols • Chapter 5 247

the SetNews() method. SetNews() implements the Notify() delegate and is used by
the listener thread of UDPMulticastClient to update the news text field. First, con-
sider the class fields shown in Figure 5.59.

Figure 5.59 Class Fields of UDPNewsClient in UDPNewsClient.cs

// multicast group IP address

private const string GROUP_IP = "225.0.0.1";

// multicast group port

private const int GROUP_PORT = 8081;

// communication interface

private UDPMulticastClient client = null;

// ticker thread

private Thread tickerThread = null;

// new messages

private TextBox text = null;

// default news displayed at the beginning

private string news = "Please wait...";

The constructor initializes the TextBox, event handler, UDP peer, and ticker
thread. Figure 5.60 shows the constructor without TextBox initialization.

Figure 5.60 Constructor of UDPNewsClient in UDPNewsClient.cs

public UDPNewsClient ()

{

// initialize UI

// add an event listener for close-event

this.Closed += new System.EventHandler (OnClosed);

// start communication thread

this.client = new UDPMulticastClient (GROUP_IP,

GROUP_PORT, new Notify (SetNews));

// start ticker thread

www.syngress.com

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 247

248 Chapter 5 • Network Programming: Using TCP and UDP Protocols

this.tickerThread = new Thread (

new ThreadStart (RunTicker));

this.tickerThread.Start ();

Console.WriteLine ("initialization complete");

}

The news client shutdown method called by the Closed event is shown in
Figure 5.61. It closes the client and stops the ticker thread.

Figure 5.61 Event Handler for Closed Event in UDPNewsClient.cs

public void OnClosed (Object sender, EventArgs e)

{

Console.WriteLine ("client shut down");

this.client.Close ();

this.tickerThread.Abort ();

this.tickerThread.Join ();

Application.Exit ();

}

The ticker thread shifts—every 500 milliseconds—one character of the news
string into the text box on the right and deletes one on the left.The implemen-
tation is not very smart, but for a simulation it is enough. Figure 5.62 also shows
the notification method. It simply sets the message received by the multicast
client to the news variable.

Figure 5.62 Ticker Thread and Notification Method in UDPNewsClient.cs

public void RunTicker ()

{

// initialze the textbox with the default text

this.text.Text = " -+-+- " + this.news + " -+-+- " +

www.syngress.com

Figure 5.60 Continued

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 248

Network Programming: Using TCP and UDP Protocols • Chapter 5 249

this.news + " -+-+- ";

while (true)

{

string data = this.news + " -+-+- ";

// repeat as long as there are characters in the data string

while (!data.Equals (""))

{

// wait 500 milliseconds

Thread.Sleep (500);

// remove the first character from the text field and add the

// first character of the data string

this.text.Text = this.text.Text.Substring (1) +

data[0];

// remove the first character from the data string

data = data.Substring (1);

}

}

}

// notification method, used by multicast client

public void SetNews (string news)

{

this.news = news;

}

You now have everything you need to compile and run the example.

www.syngress.com

Figure 5.62 Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 249

250 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Compiling and Running the Example
Go to the directory where you can find the files UDPNewsClient.cs and
UDPNewsClient.cs. Start the compile.bat batch file.After successful compiling,
double-click UDPNewsClient.exe.A form like Figure 5.63 appears.

Note that the server must not be started first.This is because UDP is connec-
tion-less, that is, the client does not have to connect to the server. If the server
sends data to the UDP multicast group, the clients simply receive the data.

To start the server, open a new console and type in UDPNewsServer or
double-click on UDPNewsServer.exe.After typing in some news, the server
form may looks like Figure 5.64.

Now, click Set, and after a short period, your client looks like Figure 5.65.

In the next section, you will develop a client/server chat application com-
bining TCP and UDP technologies.

Creating a UDP Client
Server Chat Application
For users, a chat application seems to be a classic P2P application.You send a
message to the chat room, and all users that take part at the chat receive the mes-
sage. So far, you have learned something about the client/server protocol TCP,
about the P2P (unicasting), and also peer-to-group (multicasting) protocol UDP.

www.syngress.com

Figure 5.63 UDP News Client Form

Figure 5.64 UDP New Server Form

Figure 5.65 UDP News Client Receiving News

167_C#_05.qxd 12/4/01 3:26 PM Page 250

Network Programming: Using TCP and UDP Protocols • Chapter 5 251

So for a chat application, the UDP multicasting seems to be the best choice
(okay, it is the simplest!).You can develop a UDP multicast peer, send this to your
friends, and give them a common IP address to connect.You can send messages
to this address and all friends that are connected receive these messages—a very
simple but effective chat application.

Let’s do something a little different to show a technique of other applications
like Web servers.The result will be an application that guarantees a reliable
delivery of the messages from a chat client to a chat server.The server will be a
TCP server.You will see how the server can handle more than one client at the
same time on the same port.This is like a Web server that responds to many
requests at the same time on the standard HTTP port 80.Then, the server sends
the messages via UDP to all connected chat clients.

Figure 5.66 shows the three phases from the client’s connect request to client/
server communication:

■ Connect The client connects to the server via TCP.

■ Create thread The server creates a server thread for the client.

■ Communication/listen for new connection The client communi-
cates with the server thread.At the same time, the server listens for new
connections.

More interesting than listening for new connections while communicating is
that the server can communicate with more than one client at the same time.
This can happen at the same port. So a server is not restricted to “only” 65,536
connections.Theoretically the number of concurrent connections is unlimited. In
reality, the number of concurrent connections depends on various conditions—
for simplicity, this example focuses on the technique that builds the base for han-
dling concurrent connections.

www.syngress.com

Figure 5.66 The Three Phases from Connection Request to Communication

Client 1. Connect Server

2. Create Thread

Communication
Thread

3. Communication

3. Listen for New Connection

167_C#_05.qxd 12/4/01 3:26 PM Page 251

252 Chapter 5 • Network Programming: Using TCP and UDP Protocols

You will reuse most of the classes you developed until now. On the client
side, you use TCPCommandProcessor for communicating with the chat server and
UDPMulticastClient for receiving messages from the server that were sent by other
clients. On the server side, you use UDPPeer for sending chat messages received
from the clients.

For handling multiple client connections, you will develop two new classes.
The TCPServer class will be the class that listens for incoming client connections.
If a connection is accepted, TCPServer creates an instance of TCPServerSession
that handles the communication with the client.This instance will be driven by a
thread. TCPServerSession will receive the chat protocol commands from the
TCPCommandProcessor on the client side.The commands will be given to a com-
mand processor object that implements the interface CommandProcessor; corre-
spondingly, they are given to a method of this object that implements the
delegate ExecuteCommand.This method interprets the commands and sends the
containing message to the chat members. Figure 5.67 shows a UML-like
sequence diagram that describes this behavior.

All mentioned classes, including the new ones, are contained on the CD in
the file Base.cs. Let’s start with the delegate ExecuteCommand() (see Figure 5.68).
It has the same signature as the Execute() method of the interface
CommandProcessor and is used to access this method of CommandProcessor imple-
menting instances.

www.syngress.com

Figure 5.67 UML-Like Sequence Diagram of the Chat Client/Server Behavior

UMC TCP

Client Server

TS TSS CP

Connect
Create

Command
Command

Message

UMC: UDPMulticastClient
TCP: TCPCommandProcessor
TS: TCPServer
TSS: TCPServerSession
CP: CommandProcessor

167_C#_05.qxd 12/4/01 3:26 PM Page 252

Network Programming: Using TCP and UDP Protocols • Chapter 5 253

Figure 5.68 The Delegate ExecuteCommand()

public delegate bool ExecuteCommand (string command,

ref string result);

The TCPServerSession Class
This class has a constructor for initializing the server session and two methods.
The Close() method shuts down the session and Run() listens for incoming com-
mands. Let’s start with the class fields of TCPServerSession (see Figure 5.69).

Figure 5.69 Class Fields of TCPServerSession in Base.cs

// command processor

private ExecuteCommand executeCommand = null;

// communication interface

private Socket socket = null;

// open flag

private bool open = false;

The constructor gets a socket for listening for and responding to requests. It
also gets an ExecuteCommand() delegate for executing incoming commands.

public TCPServerSession (Socket socket,

ExecuteCommand executeCommand)

{

this.socket = socket;

this.executeCommand = executeCommand;

this.open = true;

}

public void Close ()

{

// session closing

...

}

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 253

254 Chapter 5 • Network Programming: Using TCP and UDP Protocols

public void Run ()

{

// command execution

...

}

}

The constructor gets the socket and an ExecuteCommand delegate.The socket
represents the connection to the client. Behind the delegate is a command pro-
cessor that executes the incoming commands.

Figure 5.70 shows the Run() method. It reads—in a loop—a command from
the client.The command is given to the ExecuteCommand delegate that returns a
result.The result is returned to the client.These steps are repeated as long as the
delegate returns false or the Close() method was called.

Figure 5.70 Run() Method of TCPServerSession in Base.cs

public void Run ()

{

NetworkStream ns = new NetworkStream (this.socket);

StreamReader reader = new StreamReader (ns);

bool loop = this.open;

while (loop)

{

if (ns.DataAvailable)

{

// read command from client

string cmd = reader.ReadLine ();

string result = "";

// execute command

loop = this.executeCommand (cmd, ref result);

Console.WriteLine ("sending result, result=" + result);

result += "\r\n";

www.syngress.com

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 254

Network Programming: Using TCP and UDP Protocols • Chapter 5 255

Byte[] res = System.Text.Encoding.ASCII.GetBytes (

result.ToCharArray ());

// return result to client

this.socket.Send (res);

Console.WriteLine ("result sent");

}

// repeat until executeCommand() returns false or

// server session is closed

loop = loop && this.open;

}

Close ();

}

The Close() method clears the open flag and closes the connection to the
client (see Figure 5.71). If the thread is still running, the cleared open flag causes
the Run() method to terminate.

Figure 5.71 Close() Method of TCPServerSession in Base.cs

public void Close ()

{

if (this.open)

{

Console.WriteLine ("TCP session is closing...");

this.open = false;

this.socket.Close ();

www.syngress.com

Figure 5.70 Continued

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 255

256 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Console.WriteLine ("TCP session closed");

}

}

The TCPServer Class
The next class is TCPServer.As the name implies, it implements a simple TCP
server. It can handle multiple clients by using a session for each client.The ses-
sions are instances of TCPServerSession. TCPServer contains a constructor and two
methods.The constructor initializes the server.The Close() method shuts down
the server and Run() listens for incoming connection requests. Furthermore,
Run() starts a session for each connected client. First, Figure 5.72 shows the class
fields of TCPServer.

Figure 5.72 Class Fields of TCPServer in Base.cs

// sessions list

private ArrayList sessions = null;

// session threads list

private ArrayList sessionThreads = null;

// command processor

private ExecuteCommand executeCommand = null;

// connection listener

private TcpListener listener = null;

// server thread

private Thread server = null;

// open flag

private bool open = false;

Figure 5.73 shows the constructor.

Figure 5.73 Constructor of TCPServer in Base.cs

public TCPServer (int port, ExecuteCommand executeCommand)

{

www.syngress.com

Figure 5.71 Continued

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 256

Network Programming: Using TCP and UDP Protocols • Chapter 5 257

this.sessions = new ArrayList ();

this.sessionThreads = new ArrayList ();

this.executeCommand = executeCommand;

Console.WriteLine ("initializing TCP server...");

Console.WriteLine ("creating listener...");

this.listener = new TcpListener (port);

Console.WriteLine ("starting listener...");

this.listener.Start ();

this.open = true;

this.server = new Thread (new ThreadStart (Run));

this.server.Start ();

Console.WriteLine ("TCP server initialization complete, port=" +

port);

}

First, it creates two instances of ArrayList.The first is the class field sessions that
contains all sessions.The second one is a list of the session threads and is repre-
sented by the class field sessionThreads.This list is needed for shutting down the
session threads.This will be done by the Close() method. Furthermore, the con-
structor creates a listener that listens on the given port for incoming client con-
nection requests.The other parameter is a delegate that implements a command
processor.This delegate instance will be given to each started session for com-
mand execution. Finally, the constructor starts a thread for listening on incoming
connections and starting a session for each connection.The thread runs the Run()
method (see Figure 5.74).

www.syngress.com

Figure 5.73 Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 257

258 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Figure 5.74 Run() Method of TCPServer in Base.cs

public void Run ()

{

while (this.open)

{

Console.WriteLine ("listening for incomming connections...");

// wait for incoming client connection requests

Socket s = this.listener.AcceptSocket ();

if (s.Connected)

{

Console.WriteLine ("client connected, starting client " +

"session...");

// create a client session

TCPServerSession session = new TCPServerSession (s,

this.executeCommand);

// add it to the session list

this.sessions.Add (session);

// create a thread for the session

Thread th = new Thread (new ThreadStart (session.Run));

// start it

th.Start ();

// add it to the session thread list

this.sessionThreads.Add (th);

}

}

}

The Run() method listens for incoming connections. If the method receives a
connection request, a session is started with the accepted socket and the com-
mand processor delegate.This is repeated as long as the open flag is set. If the
open flag is cleared by the Close() method, the loop terminates (see Figure 5.75).

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 258

Network Programming: Using TCP and UDP Protocols • Chapter 5 259

Figure 5.75 Close() Method of TCPServer in Base.cs

public void Close ()

{

Console.WriteLine ("TCP server is closing...");

if (this.open)

{

this.open = false;

// stop listner

this.listener.Stop ();

// stop server thread

this.server.Abort ();

this.server.Join ();

// stop all session threads and close the sessions

while (this.sessions.Count > 0)

{

// stop session thread

Thread th = (Thread)this.sessionThreads[0];

th.Abort ();

th.Join ();

this.sessionThreads.Remove (th);

// close session

TCPServerSession s = (TCPServerSession)this.sessions[0];

s.Close ();

this.sessions.Remove (s);

}

}

Console.WriteLine ("TCP server closed");

}

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 259

260 Chapter 5 • Network Programming: Using TCP and UDP Protocols

The Close() method stops the listener and the server thread that listens for
incoming connections.Then, each session thread is stopped, and the suitable ses-
sion is closed.

The Chat Protocol
Here, you will implement three commands: HELLO, SAY, and BYE.The general
syntax of a command line is as follows:

user_name ":" command [":" message] CRLF

That syntax means a line contains the username that sends the command line
followed by the actual command.An optional message may follow the command.
The message is part of the command line if the command is SAY.A carriage
return/linefeed terminates the line.The following is a sample communication
between a client c and a server s:

c: <user_name>:HELLO<CRLF>

s: HELLO<CRLF>

(sends via UDP multicast "<user_name> has joined the chat room")

c: <user_name>:SAY:<message><CRLF>

s: OK<CRLF>

(sends via UDP multicast "<user_name>: <message>")

c: <user_name>:BYE<CRLF>

s: BYE<CRLF>

(sends via UDP multicast "<user_name> has left the chat room")

You now can describe the chat server class and client class. Let’s start with the
chat server.

The ChatServer Class
This class is contained on the CD in the file ChatServer.cs. For simplification, the
chat command processor is contained in the user interfaces classes. User interface
is not a correct name; it is a simple console application without any user interac-
tion. Because all functionality is contained in the classes described earlier, the
server is very simple. It implements the CommandProcessor interface and has only
three methods: a constructor, a Close(), and an Execute() method. Figure 5.76
shows the class fields of the ChatServer class.

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 260

Network Programming: Using TCP and UDP Protocols • Chapter 5 261

Figure 5.76 Class Fields of the ChatServer Class in ChatServer.cs

// listening port for incoming connection requests

private const int TCP_PORT = 8080;

// local port for the UDP peer for sending new messages

private const int UDP_LOCAL_PORT = 8081;

// multicast group IP address

private const string UDP_GROUP_IP = "224.0.0.1";

// multicast group port

private const int UDP_GROUP_PORT = 8082;

// TCP server for incoming connection requests

private TCPServer tcpServer = null;

// UDP peer for sending new messages

private UDPPeer udpPeer = null;

// list of currently connected users

private ArrayList users = null;

Now let’s have a look at the constructor (see Figure 5.77). First, it creates the
currently connected users list.Then the constructor starts the TCP server and the
UDP peer.

Figure 5.77 Constructor of ChatServer in ChatServer.cs

public ChatServer ()

{

this.users = new ArrayList ();

this.tcpServer = new TCPServer (TCP_PORT,

new ExecuteCommand (Execute));

this.udpPeer = new UDPPeer (UDP_LOCAL_PORT, UDP_GROUP_IP,

UDP_GROUP_PORT);

}

The next method is the Close() method (see Figure 5.78). It simply shuts
down the UDP peer and TCP server by calling their Close() methods.

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 261

262 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Figure 5.78 Close() method of ChatServer in ChatServer.cs

public void Close ()

{

this.udpPeer.Close ();

this.tcpServer.Close ();

}

The command execution is determined by the chat protocol.A user can send
messages to others only if the HELLO command was sent before. If the server
receives that command, the username is added to the connected users list. Now if
the server receives the SAY command from that user, it sends the message to the
UDP multicast group. If a user wants to leave the chat room, it simply sends the
BYE command.The server now removes the user form the user list and sup-
presses all possible SAY commands from that user. Figure 5.79 shows the Execute()
method.

Figure 5.79 Execute() Method of ChatServer in ChatServer.cs

public bool Execute (string command, ref string result)

{

bool ret = true;

Console.WriteLine ("executing command: " + command);

// split the command into parts

string[] cmd = command.Split (new Char[] {':'});

string user = cmd[0];

string operation = cmd[1];

string message = null;

// if the command string contains more than two ':' concatenate the

// splitted rest, this may happen if the message contains ':'

if (cmd.Length > 2)

{

message = cmd[2];

for (int i = 3; i < cmd.Length; i++)

www.syngress.com

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 262

Network Programming: Using TCP and UDP Protocols • Chapter 5 263

message += cmd[i];

}

// execute the command

switch (operation)

{

// user enters the chat room

case "HELLO":

if (!this.users.Contains (user))

{

result = "HELLO";

// add user to currently connected users list

this.users.Add (user);

// send message to all users

this.udpPeer.Send (user + " has joined the chat room");

}

break;

// user sent message to the chat room

case "SAY":

// execute only if user is currently connected

if (this.users.Contains (user) && (message != null))

{

result = "OK";

// send message to all users

this.udpPeer.Send (user + ": " + message);

}

break;

// user disconnects from chat room

www.syngress.com

Figure 5.79 Continued

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 263

264 Chapter 5 • Network Programming: Using TCP and UDP Protocols

case "BYE":

// execute only if user is currently connected

if (this.users.Contains (user))

{

result = "BYE";

// remove user from currently connected users list

this.users.Remove (user);

// send message to all users

this.udpPeer.Send (user + " has left the chat room");

}

break;

// unknown command, return an error

default:

result = "ERROR";

break;

}

return ret;

}

SECURITY ALERT

A client can track all chat room messages if it knows the group IP
address and port. It doesn’t have to be connected with the HELLO com-
mand. The server’s user administration takes care that unconnected users
do not send messages to the chat room.

www.syngress.com

Figure 5.79 Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 264

Network Programming: Using TCP and UDP Protocols • Chapter 5 265

The ChatClient Class
This class is contained on the CD in the file ChatClient.cs. For simplification, the
client chat functionality is contained in the user interfaces classes. Here we have a
Windows Forms application (see Figure 5.80).

Let’s go through a small chat session.Assume that the chat server and client
are still running.Type in a name to the Name data field.After clicking Connect,
the code of its click event handler is executed (see Figure 5.81).This event han-
dler is the OnConnect() method.

Figure 5.81 OnConnect() Event Handler of the ChatClient Class in
ChatClient.cs

public void OnConnect (Object sender, EventArgs e)

{

this.proc = new TCPRemoteCommandProcessor ("127.0.0.1", TCP_PORT,

true);

string result = null;

this.proc.Execute (this.name.Text + ":HELLO", ref result);

this.connected = result.Equals ("HELLO");

// enable or disable controls on connection status

}

www.syngress.com

Figure 5.80 The Chat Client Form

167_C#_05.qxd 12/4/01 3:26 PM Page 265

266 Chapter 5 • Network Programming: Using TCP and UDP Protocols

The class field proc is the command processor that sends commands to the
chat server.After creating an instance of TCPCommandProcessor, the HELLO
command is sent to the server. If the result of the command is HELLO, the con-
nected flag is set. Now you can type a message into the Message data field.After
clicking Send, the OnSend() method is called.This method is the click event
handler of the Send button (see Figure 5.82).

Figure 5.82 OnSend() Event Handler of the ChatClient Class in ChatClient.cs

public void OnSend (Object sender, EventArgs e)

{

string result = null;

this.proc.Execute (this.name.Text + ":SAY:" + this.message.Text,

ref result);

}

The message is sent within a SAY command to the server. Before you get a
look at the message-receiving code, let’s discuss the disconnect code.The
OnDisconnect() method is the click event handler of the Disconnect button (see
Figure 5.83).

Figure 5.83 OnDisconnect() Event Handler of the ChatClient Class in
ChatClient.cs

public void OnDisconnect (Object sender, EventArgs e)

{

if (this.connected)

{

string result = null;

this.proc.Execute (this.name.Text + ":BYE", ref result);

this.proc.Close ();

this.connected = false;

// enable or disable controls on connection status

}

}

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 266

Network Programming: Using TCP and UDP Protocols • Chapter 5 267

For disconnecting, first the BYE command is sent.After that, the command
processor will be closed and the connected flag will be cleared.

For receiving messages from the chat server, you use an instance of the
UDPMulticastClient class.As you have seen in the section “Creating a News
Ticker Using UDP Multicasting,” the constructor of UDPMulticastClient needs a
Notify delegate.This delegate will be initialized with the SetMessage() method of
ChatClient.The instantiation of the multicast client is done by the constructor of
the ChatClient class. (see Figure 5.84).A closed event handler for the form is reg-
istered here also.

Figure 5.84 Constructor of ChatClient in ChatClient.cs

public ChatClient ()

{

// create controls

// add an event listener for close-event

this.Closed += new EventHandler (OnClosed);

// create communication components

this.group = new UDPMulticastClient (UDP_GROUP_IP, UDP_GROUP_PORT,

new Notify (SetMessage));

}

As a result of receiving a message from the chat server, the SetMessage()
method is called by the multicast client instance.The method simply concatenates
the given string to the text in the multiline data field that shows the messages
(see Figure 5.85).

Figure 5.85 SetMessage() Method of ChatClient in ChatClient.cs

public void SetMessage (string text)

{

if (!this.messages.Text.Equals (""))

this.messages.Text += "\r\n";

this.messages.Text += text;

}

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 267

268 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Finally, we have a look at the OnClosed() method of the form.This method is
registered to the form as a closed event handler. If the window is closed, the code
is executed (see Figure 5.86).

Figure 5.86 OnClosed() Method of ChatClient in ChatClient.cs

public void OnClosed (Object sender, EventArgs e)

{

OnDisconnect (null, null);

this.group.Close ();

}

First, the OnDisconnect() method is called for disconnecting the command
processor if the Disconnect button wasn’t clicked before.Then the multicast
client is closed. Now you can compile and run your example.

Compiling and Running the Example
Please go to the directory on the CD where you can find the files ChatServer.cs
and ChatClient.cs. Start the batch file compile.bat to compile the example.After
successful compiling, start the batch file run.bat.A server and a client is started.
Now you can start a chat session as described in this section. Figure 5.87 shows
the chat client after finishing a very short chat session. Figure 5.88 shows the chat
server after the mentioned session.

www.syngress.com

Figure 5.87 Chat Client after a Short Chat Session

167_C#_05.qxd 12/4/01 3:26 PM Page 268

Network Programming: Using TCP and UDP Protocols • Chapter 5 269

The next section shows one way you can implement a file sharing peer
with .NET.

Creating a TCP P2P File
Sharing Application
The concept of peer-to-peer (P2P) is becoming more and more important in
networks, and P2P Internet applications such as Napster and Gnutella are widely
popular. But what exactly is a peer-to-peer application?

Well, first consider client/server applications, the most common model for
communication today.A client requests or posts data to or from a server.The
client knows how to request or post data and the server knows how to respond.
For instance, a Web server listens for incoming connections until a browser
requests a page.The Web server reacts only to browsers; it cannot arbitrarily con-
tact a browser.Any communication is initiated by a client.

In P2P communication, on the other hand, all applications act as clients and
servers at the same time.When peer A requests data from peer B,A acts like a
client and B as a server. However, B can also request data from A, so B acts as a
client and A as a server. Every peer adds a bigger amount of value to network.
Furthermore, no centralized server is needed, which decreases the effort needed
in administrating the data.Another advantage is that if a peer is down, only a
small portion of data is unavailable.

This model does require additional functionality from the peer application.
First, a peer must be able to find other peers.This is called discovery.There are

www.syngress.com

Figure 5.88 Chat Server after a Short Chat Session

167_C#_05.qxd 12/4/01 3:26 PM Page 269

270 Chapter 5 • Network Programming: Using TCP and UDP Protocols

different strategies for discovery. So-called pure P2P applications can discover
other peers directly.Another approach is to have discovery servers where peers
are registering if they are online.A peer searching for another peer requests the
connection information from the discovery server.

Another key functionality of P2P networks is the so-called content lookup.A
peer must be able to find data contained in the network.A pure P2P application
can directly query the network for data.A second approach is the existence of a
lookup server. Peers send information about their data to the lookup server. For
instance, for file sharing peers, this information can be filename, length, type, and
descriptions about file content.Another possible server is a content server. Peers
upload their files to this server.Then a peer can download the files from this server.

In this section, you create a simplified P2P file sharing application with
reduced functionality.The peer can upload or download files from another peer
only. No discovery or lookup functionality is contained in this peer.

You may think that UDP is the best way to implement such a peer. Indeed
this is how some remote file access systems are implemented.As mentioned, the
advantage of UDP is the performance. However, you would have to implement a
method that guarantees the correct order of the datagrams sent between the
peers, so you’ll use another way to implement the peer.

For the remote functionality, you develop a remote file stream that works in
principle like CORBA, remoting, or RMI—because we’re discussing .NET, we
use the term remoting.

Generally speaking, all remote object architectures work in the same way.A
remote object is divided into two parts. On the client side is a proxy object.The
actual object functionality is implemented on the server side. For communication
between the proxy and the server object, SOAP is used. Figure 5.89 shows this
very simplified remoting architecture.

A proxy object acts like a normal object.The application using that object
doesn’t notice anything about the remote activity (except maybe a lower perfor-
mance while executing object methods). Every method call to the proxy object

www.syngress.com

Figure 5.89 Very Simplified Remoting Architecture

Client

Proxy

Server

Server
Object

SOAP

167_C#_05.qxd 12/4/01 3:26 PM Page 270

Network Programming: Using TCP and UDP Protocols • Chapter 5 271

leads to a protocol request to the server object.The parameters of the method
must be serialized for sending.At the server side, the server object executes the
called method with the deserialized data and returns a result as a response to the
client request.This response also is serialized by the server object and deserialized
at the client side. Now the client object returns the result as a normal object.

Based on this architecture, you develop a similar one.Your proxy server object
is an instance of a class called RemoteFileStreamProxy and RemoteFileStreamServer
respectively. Both classes are contained on the CD in the file Base.cs. Because a
peer is both a client and a server, your peer class FileSharingPeer uses both remote
file classes.The FileSharingPeer class is also contained on the CD in the file
Base.cs. Figure 5.90 shows the architecture of our example.

The Remote File Stream Protocol
Let’s start with the protocol between the proxy and the server.The commands of
the protocol reflect the most important methods of a stream:

■ OPEN Reflects the proxy object instantiating.

■ READ Sent if the Read() method of the proxy is called.

■ WRITE Sent if the Write() method of the proxy is called.

■ CLOSE Sent if the Close() method of the proxy is called.

Now let’s look at some example communications. Here we describe the
communication between the proxy and the server class.The proxy requests are
marked with c: and the server responses with s:.

Let’s first have a look at a download scenario.The proxy calls the server for
reading from a file:

www.syngress.com

Figure 5.90 Architecture of File Sharing Peer Example

Peer

Remote
File Stream

Proxy

Remote
File Stream

Server

Download()

Upload()

Peer

Remote
File Stream

Proxy

Remote
File Stream

Server

Download()

Upload()

Remote File Stream Protocol

167_C#_05.qxd 12/4/01 3:26 PM Page 271

272 Chapter 5 • Network Programming: Using TCP and UDP Protocols

c: OPEN:<file_name>:true<CRLF>

s: (opens the file <file_name> for reading and returns the file length

of <file_name>)

c: READ:<count><CRLF>

s: (returns max. <count> bytes of the file <file_name>)

c: CLOSE<CRLF>

s: (closes connection)

If <count> is bigger than the file length, only the contained bytes of the file
are sent. On the other hand, if <count> is less than the file length, the READ
command will be repeated as long as the end of the file is reached.

The next example shows an upload scenario.The proxy calls the server for
writing to a file:

c: OPEN:<file_name>:false<CRLF>

s: (opens the file <file_name> for writing)

c: WRITE:<count><CRLF>

s: (reads <count> bytes from the client and writes it to the file

<file_name>)

c: CLOSE<CRLF>

s: (closes connection)

If <count> is less than the client’s file length, the WRITE command will be
repeated as long as the end of the file is reached.

The RemoteFileStreamServer Class
This class is used by a thread and has only two methods: a constructor and the
Run() method.Additionally, it has a private class field client of the type
System.Net.Sockets.NetworkStream.The constructor initializes only the client field
(see Figure 5.91).

Figure 5.91 Constructor of RemoteFileStreamServer in Base.cs

public RemoteFileStreamServer (Socket socket)

{

Console.WriteLine ("initializing remote filestream server...");

www.syngress.com

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 272

Network Programming: Using TCP and UDP Protocols • Chapter 5 273

this.client = new NetworkStream (socket);

Console.WriteLine ("remote filestream server initialized");

}

As you will see later, the socket comes from a connection request from a
RemoteFileStreamProxy instance.

The Run() method is used by a thread that runs as long as the connected
RemoteFileStreamProxy instance closes the connection. In a loop, all protocol
request commands are handled. Figure 5.92 shows a snippet of the Run() method.
For clarity, we first show the method frame without command processing.

First, a StreamReader is created for easier access to CRLF-terminated com-
mand lines from the proxy class.Then the method reads command lines in an
endless loop.After reading a line, it is split into the parts described in the protocol
section above. Now the parts are processed in the command processing.

Figure 5.92 Snippet of the Run() Method of RemoteFileStreamServer in
Base.cs

public void Run ()

{

Console.WriteLine ("starting remote filestream server...");

StreamReader cmdIn = new StreamReader (this.client);

FileStream f = null;

int count = -1;

byte[] buffer = null;

bool loop = true;

while (loop)

{

// read the request line

string[] buf = cmdIn.ReadLine ().Split (new Char[] {':'});

www.syngress.com

Figure 5.91 Continued

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 273

274 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Console.WriteLine ("request received, req=" + buf[0]);

// buf[0] is the command

switch (buf[0])

{

// command processing

...

}

Console.WriteLine ("request executed, req=" + buf[0]);

}

Console.WriteLine ("stopping remote filestream server...");

}

Have a look at the OPEN command processing (see Figure 5.93). On the
OPEN command, the server opens a local file.The file mode, reading or writing,
depends on the read flag—true means reading and false means writing. If the file
is opened for reading, the server returns the number of bytes of the file.

Figure 5.93 OPEN Command Processing of RemoteFileStreamServer in Base.cs

case "OPEN":

// the name of the local file to open

string file = buf[1];

// open for reading or writing

bool read = bool.Parse (buf[2]);

// open the local file

f = new FileStream (".\\" +

(read ? "download" : "destination") + "\\" + file,

(read ? FileMode.Open : FileMode.Create));

www.syngress.com

Figure 5.92 Continued

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 274

Network Programming: Using TCP and UDP Protocols • Chapter 5 275

// return the file length to client

if (read)

{

string length = f.Length.ToString () + "\r\n";

Byte[] l = System.Text.Encoding.ASCII.GetBytes (

length.ToCharArray ());

this.client.Write (l, 0, l.Length);

}

break;

On the READ command, the server reads the requested number of bytes
from the local file and returns it to the client (see Figure 5.94).

Figure 5.94 READ Command Processing of RemoteFileStreamServer in Base.cs

case "READ":

// number of bytes to read

count = int.Parse (buf[1]);

// read/write buffer

buffer = new byte[count];

// read from the local file

count = f.Read (buffer, 0, count);

// return the bytes to the client

this.client.Write (buffer, 0, count);

break;

On the WRITE command, the server reads the requested number of bytes
from the client and writes it to the local file (see Figure 5.95).

www.syngress.com

Figure 5.93 Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 275

276 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Figure 5.95 WRITE Command Processing of RemoteFileStreamServer in Base.cs

case "WRITE":

// number of bytes to write

count = int.Parse (buf[1]);

// read/write buffer

buffer = new byte[count];

// read bytes from the client

count = this.client.Read (buffer, 0, count);

// write bytes to the local file

f.Write (buffer, 0, count);

break;

On the CLOSE command, the server closes the local file and the connection
to the client.The loop terminates and the so does the thread (see Figure 5.96).

Figure 5.96 CLOSE Command Processing of RemoteFileStreamServer in Base.cs

case "CLOSE":

// close local file

f.Close ();

// close connection to the client

this.client.Close ();

// stop the loop

loop = false;

break;

The RemoteFileStreamProxy Class
This class is derived from the abstract class System.IO.Stream.An instance of this
class can be used as a normal stream. For instance, it can be given to a method

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 276

Network Programming: Using TCP and UDP Protocols • Chapter 5 277

that generally works on streams. Here we focus on the constructor and the
Read(), Write(), and Close() methods. For all other methods and properties that
must override abstract method’s properties, refer to the class code in the file
Base.cs on the CD.

First, the constructor (see Figure 5.97) opens the connection to the server,
sends the OPEN command, and receives the remote file length if the open mode
is read.

Figure 5.97 Constructor of RemoteFileStreamProxy in Base.cs

public RemoteFileStreamProxy (string host, int port, string file,

bool read)

{

this.read = read;

this.remoteFile = new TcpClient (host, port).GetStream ();

this.open = true;

Send ("OPEN:" + file + ":" + read);

if (read)

{

this.length = int.Parse (

new StreamReader (this.remoteFile).ReadLine ());

}

}

The next one is the Read() method (see Figure 5.98). It sends the READ
command to the server and receives the bytes sent by the server.

Figure 5.98 Read() Method of RemoteFileStreamProxy in Base.cs

public override int Read (byte[] buffer, int offset, int count)

{

// to do: implement exceptions here as described in .NET reference

if (!CanRead)

throw new NotSupportedException ("stream cannot read");

www.syngress.com

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 277

278 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Send ("READ:" + count);

return this.remoteFile.Read (buffer, offset, count);

}

Now, let’s look at the Write() method (see Figure 5.99). It sends the WRITE
command and the bytes to write to the server.

Figure 5.99 Read() Method of RemoteFileStreamProxy in Base.cs

public override void Write (byte[] buffer, int offset, int count)

{

// to do: implement exceptions here as described in .NET reference

if (!CanWrite)

throw new NotSupportedException ("stream cannot write");

Send ("WRITE:" + count);

this.remoteFile.Write (buffer, offset, count);

}

Finally, the Close() method (see Figure 5.100). It sends the CLOSE command
to the server and then it closes the connection.

Figure 5.100 Close() Method of RemoteFileStreamProxy in Base.cs

public override void Close ()

{

this.open = false;

Send ("CLOSE");

this.remoteFile.Close ();

}

www.syngress.com

Figure 5.98 Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 278

Network Programming: Using TCP and UDP Protocols • Chapter 5 279

As you have seen, the methods of the proxy are simpler than those of the
server because the functionality is implemented in the server.

The FileSharingPeer Class
FileSharingPeer has two main parts.The first part is a thread that accepts proxy con-
nections.The thread creates for each connection request a RemoteFileStreamServer
instance that handles the commands coming from the proxy.The second part con-
tains two methods: Download() and Upload(). Both methods each create an instance
of RemoteFileStreamProxy that communicates with the server for the requested func-
tionality. Have a look at the class fields (see Figure 5.101).

Figure 5.101 Class Fields of FileSharingPeer in Base.cs

// listener for incoming connections

private TcpListener listener = null;

// listening server thread

private Thread server = null;

Now, let’s discuss the constructor (see Figure 5.102). It first initializes and
starts a listener for incoming connection requests.Then it creates and starts a
thread that uses the Run() method.This method is described later.

Figure 5.102 Constructor of FileSharingPeer in Base.cs

public FileSharingPeer (int localPort)

{

Console.WriteLine ("initializing file sharing peer, local port=" +

localPort);

// initialize proxy listener

this.listener = new TcpListener (localPort);

this.listener.Start ();

// start listening thread for incoming connection requests

this.server = new Thread (new ThreadStart (Run));

this.server.Start ();

www.syngress.com

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 279

280 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Console.WriteLine ("file sharing peer initialized");

}

In the constructor, you see the use of the Run() method for the server
thread.This method handles the incoming connection requests (see Figure
5.103).After a proxy connects to the server, the resulting socket is given to the
RemoteFileStreamServer instance.Then a thread for this instance is created and
started.The Run() method of the RemoteFileStreamServer instance is used by this
thread for handling the proxy requests.

Figure 5.103 Run() Method of FileSharingPeer in Base.cs

public void Run ()

{

while (true)

{

Socket s = listener.AcceptSocket ();

Console.WriteLine ("client connected");

RemoteFileStreamServer srv = new RemoteFileStreamServer (s);

Thread th = new Thread (new ThreadStart (srv.Run));

th.Start ();

}

}

The Close() method stops the proxy listener and the server thread (see
Figure 5.104).

Figure 5.104 Close() Method of FileSharingPeer in Base.cs

public void Close ()

{

// stop proxy listener

this.listener.Stop ();

www.syngress.com

Figure 5.102 Continued

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 280

Network Programming: Using TCP and UDP Protocols • Chapter 5 281

// stop server

this.server.Abort ();

this.server.Join ();

}

As mentioned before, the proxy class is derived from System.IO.Stream.
System.IO.FileStream is also derived from this class. So, downloading and
uploading file is nothing else than reading data from one stream and writing this
data to another stream. In other words, for downloading and uploading, you need
only one method for a copy functionality.And now you have found a name for
the method: Copy() (see Figure 5.105).

Figure 5.105 Copy() Method of FileSharingPeer in Base.cs

protected void Copy (Stream sin, Stream sout)

{

byte[] buf = new byte[4096];

long l = 0;

while (l < sin.Length)

{

int n = sin.Read (buf, 0, 4096);

sout.Write (buf, 0, n);

l += n;

}

sout.Close ();

sin.Close ();

}

The Download() and Upload() methods are opening a local file and a proxy
stream. Download() reads from the proxy stream and writes to the local file.
Upload() does the inverse. Figure 5.106 shows both methods.

www.syngress.com

Figure 5.104 Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 281

282 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Figure 5.106 Download() and Upload() Methods of FileSharingPeer in
Base.cs

public void Download (string remoteHost, int remotePort,

string file)

{

Console.WriteLine ("downloading file, host=" + remoteHost +

", port=" + remotePort + ", file=" + file + "...");

Stream sin = new RemoteFileStreamProxy (remoteHost, remotePort,

file, true);

Stream sout = new FileStream (".\\destination\\" + file,

FileMode.Create);

Copy (sin, sout);

Console.WriteLine ("file downloaded, host=" + remoteHost +

", port=" + remotePort + ", file=" + file);

}

public void Upload (string remoteHost, int remotePort, string file)

{

Console.WriteLine ("uploading file, host=" + remoteHost +

", port=" + remotePort + ", file=" + file + "...");

Stream sin = new FileStream (".\\upload\\" + file, FileMode.Open);

Stream sout = new RemoteFileStreamProxy (remoteHost, remotePort,

file, false);

Copy (sin, sout);

Console.WriteLine ("file uploaded, host=" + remoteHost +

", port=" + remotePort + ", file=" + file);

}

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 282

Network Programming: Using TCP and UDP Protocols • Chapter 5 283

Now you can compile and run our example.You will learn something about
the user interface in the next section.

Compiling and Running the Example
Please go to the directory on the CD where you can find the file
FileSharingPeer.cs. Start the compile.bat batch file. Start the resulting
FileSharingPeer.exe two times.You can do this by simply starting the run.bat file
in the same directory.

Two forms appear.Try the download or upload by choosing a file and
pressing the button for the functionality you want to try.Also have a look at the
two DOS consoles. Now the forms should be similar to Figure 5.107.

Note that this peer class just simulates a file sharing peer. It has a download
and upload functionality only, and it knows which files can be found on the
other peer.

Access to Web Resources
We’ve now investigated remote operating classes that encapsulate communication
protocols and work like local classes; now we’ll have a short look at some Web
access classes of the .NET Framework.Three classes are of particular interest:
System.Net.WebRequest, System.Net.WebResponse, and System.Net.WebProxy.

As mentioned in the introductory sections, the abstract classes WebRequest and
WebResponse are general APIs to underlying protocol handlers like an HTTP
handler.Your goal is to develop a small application that makes a request via an
HTTP proxy to a Web server and receives the response.You could use such an
application as a base for a Web browser or a crawler, for instance.

www.syngress.com

Figure 5.107 File Sharing Peers in Action

167_C#_05.qxd 12/4/01 3:26 PM Page 283

284 Chapter 5 • Network Programming: Using TCP and UDP Protocols

A crawler is an application that “walks” through the Web along the links in the
HTML documents to track the structure behind. Crawlers are used by search
engines to create a searchable database of documents.A search request to a search
engine means that a query to the database of the engine is made.A crawler can
also be useful for intranets to determine the structure, for example, for creating
index pages.

General Usage of Needed .NET Classes
Today many companies use proxies to channelize and control outgoing requests
from the company to the Web (see Figure 108).

So, you can first define the parameters for the proxy to give them to the
requesting class.This class then makes the request and receives the results page:

// create a request to the Syngress homepage

WebRequest request = WebRequest.Create (

"http://www.syngress.com/");

// set the proxy IP address an port

request.Proxy = new WebProxy (proxyHost, proxyPort);

// set the proxy user and password

request.Proxy.Credentials = new NetworkCredential (proxyUser,

proxyPassword);

// get the reponse page

www.syngress.com

Figure 5.108 Clients Access the Internet via Proxy

Client 1

ProxyClient 2

Client n

Internet

167_C#_05.qxd 12/4/01 3:26 PM Page 284

Network Programming: Using TCP and UDP Protocols • Chapter 5 285

WebResponse response = request.GetResponse ();

// get the response stream

Stream s = response.GetResponseStream ();

// read from the stream

// close the stream

s.Close ();

WebRequest.Create() is a static method that creates a request object depending
on the protocol defined in the URL parameter.The resulting object is of the
type System.Net.HttpWebRequest because the protocol of the URL is HTTP.The
string proxyHost and the int proxyPort are the IP address and port of your proxy.
The System.Net.NetworkCredential class holds the authorization parameters for the
proxy, that is, proxyUser and proxyPassword are the username and password needed
to go through the proxy.

A Web Access Client
Now, let’s develop a small form that shows the HTML code of a Web page. It
looks a little bit like a Web browser (see Figure 5.109).

On the top of the form are fields for the proxy parameters.The URL field is
for typing in the destination URL (for example, http://www.syngress.com/).The
untitled field contains the source of the HTML page specified by the URL.

www.syngress.com

Figure 5.109 HTML Page Source Viewer

167_C#_05.qxd 12/4/01 3:26 PM Page 285

286 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Before going into the form, you need to use a small class that allows easier
handling of the Web access classes. It is called WebAccessClient and is included on
the CD in the file Base.cs.The class has two constructors and the Get() method.
One constructor is for initializing without using a proxy and one with a proxy.
The constructor for initializing the client without a proxy simply does nothing.
The Get() method returns a Web page based on a request URI. Figure 5.110
shows the class fields of WebAccessClient.

Figure 5.110 Class Fields of WebAccessClient in Base.cs

// proxy parameters

private WebProxy proxy = null;

The proxy field holds the proxy parameters and is initialized by the con-
structor.The constructor code using a proxy looks like Figure 5.111.

Figure 5.111 Constructor Using Proxy of WebAccessClient in Base.cs

// with proxy

public WebAccessClient (string proxyHost, int proxyPort,

string proxyUser, string proxyPassword)

{

// create a proxy

WebProxy proxy = new WebProxy (proxyHost, proxyPort);

// set user name and password for proxy

proxy.Credentials = new NetworkCredential (proxyUser,

proxyPassword);

// disable proxy use when the host is local

proxy.BypassProxyOnLocal = true;

// all new requests use this proxy info

GlobalProxySelection.Select = proxy;

}

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 286

Network Programming: Using TCP and UDP Protocols • Chapter 5 287

First, we create a proxy object as shown in the general usage section. But now
comes something new—the property BypassProxyOnLocal is a flag that advises the
request class not to try to connect through the proxy if a local URL such as
localhost is requested (for example, a local Web server on the same computer).
The other new element is the GlobalProxySelection class of the namespace
System.Net.This class has a static property Select.This property is a proxy instance
that WebRequest instances use to connect to the outside.You can set this once, and
you don’t have to set the Proxy property of WebRequest. (Note that this doesn’t
make a lot of sense in your class because there is only one constructor, but it’s
worth mentioning.)

The Get() method requests and returns a stream containing a Web page for a
given URL (see Figure 5.112). It is a very simple method that does nothing too
different from the example code in the general usage section.

Figure 5.112 Get() Method of WebAccessClient in Base.cs

public Stream Get (string url)

{

// create a request based on the URL

WebRequest req = WebRequest.Create (url);

// get the response

WebResponse res = req.GetResponse ();

// return a stream containing the response

return res.GetResponseStream ();

}

Now we come to the form.The class is called WebAccessClientForm and is
contained on the CD in the file WebAccessClient.cs.This class has only two
methods: a constructor that initializes all controls, and a key event handler that is
called if the URL field receives a KeyUp event. Let’s focus here on the event han-
dler (see Figure 5.113).

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 287

288 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Figure 5.113 KeyUp Event Handler of WebAccessClientForm in
WebAccessClient.cs

public void OnKeyUp (Object sender, KeyEventArgs a)

{

// read a page if the return key was pressed

if (a.KeyCode == Keys.Return)

{

// clear the result field

this.text.Text = "";

// create a Web access client

WebAccessClient client = null;

if (this.proxyHost.Text.Equals (""))

client = new WebAccessClient ();

else

client = new WebAccessClient (this.proxyHost.Text,

int.Parse (this.proxyPort.Text),

this.proxyUser.Text, this.proxyPassword.Text);

// get the response stream

StreamReader s = new StreamReader (

client.Get (this.url.Text));

// read the response and write it to the text field

int BUFFER_SIZE = 4096;

Char[] buf = new Char[BUFFER_SIZE];

int n = s.Read (buf, 0, BUFFER_SIZE);

while (n > 0)

{

this.text.Text += new String (buf, 0, n);

n = s.Read (buf, 0, BUFFER_SIZE);

}

www.syngress.com

Continued

167_C#_05.qxd 12/4/01 3:26 PM Page 288

Network Programming: Using TCP and UDP Protocols • Chapter 5 289

// close the stream

s.Close ();

}

}

The request should be made if the Return key was pressed in the URL
field.This a little bit browser-like. First, you can create a WebAccessClient instance
based on the proxy parameter fields.Then, you can make the request by calling
the Get() method.The StreamReader is for your convenience because its Read()
method reads into a char array that you can easily convert to a string.This string
is simply concatenated with the content of your result text field. Finally, the
stream is closed. Now you can compile and run the example.

Compiling and Running the Example
Please go to the directory on the CD where you can find the file
WebAccessClient.cs. Start the compile.bat batch file.After successful compiling,
double-click on WebAccessClient.

Now a form appears. Please type in the proxy information and an URL.
Finally press the Return key while the cursor resides in the URL field. Now the
form should be similar to Figure 5.114.

This example is only a start into Web access with .NET WebRequest classes.
These classes offer many more features. Here you’ll focus on HttpWebRequest.An

www.syngress.com

Figure 5.113 Continued

Figure 5.114 HTML Page Source Viewer after Doing a Request

167_C#_05.qxd 12/4/01 3:26 PM Page 289

290 Chapter 5 • Network Programming: Using TCP and UDP Protocols

instance of this class is returned by the Create() method of WebRequest if the given
URL starts with http://.

The HttpWebRequest class has a large number of properties to directly influ-
ence the HTTP request.Among others are properties for directly manipulating
HTTP request header fields such as Accept, Content-Length, Content-Type, and so
on.All headers can be accessed by the property Headers.This property is an
instance of WebHeaderCollection and contains the headers exposed by the
HttpWebRequest properties or unchangeable headers needed by the system. Please
see the .NET reference documentation for mutable and immutable headers.

Some other functionality can be influenced directly by manipulating proper-
ties of HttpWebRequest.The following sections describe a part of it, especially the
request method, redirection, authentication, and cookie handling.

Request Method
By default, an HttpWebRequest instance created by the Create() method requests
with the HTTP GET. If you want to use another method, such as POST, you
can do this by setting the Method property of HttpWebRequest.

Other HTTP 1.1 methods are HEAD, PUT, DELETE, TRACE, or
OPTIONS. If you want to use a version other than 1.1, you must set the
ProtocolVersion property with the needed version. Please have a look at the .NET
reference documentation for the HttpVersion class.The default HTTP version of
HttpWebRequest is HttpVersion.Version11.

Redirection
Normally, if you are implementing an HTTP client, you must react on the
HTTP status codes starting with 301.These codes define redirection methods.To
see which status code the response to your request has, have a look at the
StatusCode property of the HttpWebResponse instance returned by the
GetResponse() method of HttpWebRequest.

Mostly, redirection means that the requested page is not available anymore
under the specified URL (see the W3C Web site for HTTP specifications, at
www.w3.org).The response then contains the new URL of the requested page
or another redirection page, so you then have to re-request with the new URL.

With the HttpWebRequest class you do not have to do this by hand if you do
not want to. If the Boolean property AllowAutoRedirect is set to true the class does
all the work for you. If this property is set to false, you must implement redirec-
tion by yourself.The default value of this property is true.

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 290

Network Programming: Using TCP and UDP Protocols • Chapter 5 291

Authentication
Sometimes a Web site requests an authentication from you for login.This is, if the
response has the HTTP status code 401 Unauthorized. Normally, if you know what
you need for authentication (for example, username and password) you re-request
the page with these requirements contained in the WWW-Authenticate HTTP
header.With the HttpWebRequest class, you can do this easily with the
PreAuthenticate and Credentials properties.

The following procedure is the same whether you get a 401 Unauthorized
response or you know before for which Web site you need an authentication:

1. Set the PreAuthenticate property to true.

2. Create an instance of NetworkCredential. It is the same procedure as
described for proxies in this section.

3. Set the Credentials property to the credential you created in Step 2.

4. Request or re-request the page.

Cookies
Normally, cookies are used to store a state needed during long-term communica-
tion, such as revisiting a page. For instance, a Web site stores some customer infor-
mation in a cookie on your computer. If you revisit the site it requests the
cookie, in order to know immediately who you are, so that a page may be cus-
tomized especially for you.

Because cookies are particular to the sites you request, we can only give you
direction to get more detail about cookies:

■ If you are new to cookies, please have a look at general documentation
about cookies (RFC 2965, Proposed Standard for HTTP State
Management Mechanism).

■ In the .NET reference documentation, you will find the System.Net
.Cookie class.As the name implies, this class represents an HTTP cookie.

■ The HttpWebRequest class has a property named CookieContainer.This is
an instance of the System.Net.CookieContainer class and contains all
cookies for the request.

■ The HttpWebResponse class has a property named Cookies.This is an
instance of the System.Net.CookieCollection class and contains all cookies
of the response.

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 291

292 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Summary
This chapter presents some examples of how to implement networking applica-
tions with the .NET Framework.

The most widely used protocols in networking are TCP and UDP.You can use
TCP for reliable client/server applications because it is a reliable and connection-
oriented protocol. On the other hand, you can use UDP for applications such as
DNS, time servers, Internet telephony, and streaming multimedia in general because
it is faster than TCP.The better performance is caused by the relative unreliability
of the protocol. If a packet of data gets lost, no administrative overhead is needed to
resend it. UDP also supports another option: multicasting. Multicasting means that
one application sends data simultaneously to a group of applications without the
knowledge of which kinds of applications are listening, or how many.

The chapter discussed the meaning of ports for developing networking appli-
cations—only if an application is registered with a port it can be reached by
other processes.

As introductory examples, we developed simple remote command processing
with TCP and UDP.These examples show how you can use the .NET net-
working classes for networking and what the differences are in using the TCP
and UDP classes.These differences are caused by the different natures of the pro-
tocols.TCP is a connection- and stream-oriented client/server protocol. So, the
.NET TCP classes reflect the client/server model by providing client and server
classes. Clients have methods for connecting to and disconnecting from a remote
host. Servers have methods for listening for and accepting incoming connections.
Furthermore, after successful connection,TCP classes provide stream classes for
accessing the data streams between client and server.The .NET UDP classes on
the other hand have no connection establishment and stream functionality.
Because UDP is connection-less and packet-oriented, these classes need send and
receive methods only where network addresses and data are given directly. Data is
sent and received without making a connection. UDP is peer-oriented, reflected
in the absence of explicit client and server classes.The same class is used for
sender and receiver applications.

The TCP and UDP examples are followed by a UDP multicasting example
and a news ticker application. Multicasting is an option of UDP where a sender
application sends data to an IP address.This address represents a group of applica-
tions.All these applications are able to receive the sent data.An application can
take part in the group simply by registering with the group IP address.

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 292

Network Programming: Using TCP and UDP Protocols • Chapter 5 293

The next example was a client/server chat application. It showed how you
can use TCP and UDP in combination.You can use TCP to send messages to a
server in a reliable way.You can use UDP multicasting for sending the chat mes-
sages to all clients that take part in the chat room.The most important technique
shown with this example is how Web servers handle multiple client requests at
the same time. If a TCP client establishes a connection to a server listener class,
the server creates a socket for only this connection, then the server is ready for
listening on its port for new clients.

A simple P2P file sharing application was the next example. Here we showed
how to use the client/server-like protocol TCP for developing P2P applications.A
peer must act like a TCP server and a TCP client simultaneously. Such a peer must
be divided in two parts. First, a TCP client that connects to another peer for
sending and receiving data (upload and download of files). Second, there must be a
TCP server that accepts connection from another peer, so that this peer can down-
load and upload files from the TCP server.The most important technique in this
section is how to implement remote object access—such as remoting or
CORBA—in a very simplified way.We developed a remote file stream. On the
client side, we have a proxy, and on the server side a server class.The remote file
stream on the client side is used similar to a “normal” file stream. But methods such
as Open(), Close(), Read(), and Write() are working over a network using a simple
communication protocol.The remote file stream class is derived from the .NET
stream class and can be used in the same way as other stream classes.An application
that works only on streams does not recognize a difference from other streams.

Finally, we show how to use special .NET classes for accessing Web resources.
With the System.Net.WebRequest and System.Net.WebResponse classes, accessing a
Web server is simple using only a few methods.These classes encapsulate HTTP
or FTP handling.We also have shown how to request a Web page through a
proxy.A proxy is an intermediate process between a Web client and server to
channelize and control communication. Finally, we mentioned some other tech-
niques in accessing Web resources by using .NET classes.

We described how to change request methods with the System.Net
.HttpWebRequest class.The default method of this class is the HTTP GET,
but for instance, some applications need the HTTP POST method.

Another point mentioned was redirection of Web pages. Sometimes it is neces-
sary to change the URL of a Web page. Maybe this is caused by changing the host
name of the Web server or other administrative work. But the page should still be
accessible via the old URL.The Web server then returns a special redirection
status code and a new URL for the page.The client then requests the page with

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 293

294 Chapter 5 • Network Programming: Using TCP and UDP Protocols

the new URL.With .NET, we do not have to develop this by ourselves—the
HttpWebRequest class does this work for us.

This class also does authentication handling. If a Web server requests authenti-
cation for accessing a page, we do not have to develop the HTTP authentication
procedure. If authentication is requested by a Web server, it returns a special status
code.The client now must re-request by adding the authentication information,
for instance, username and password.This work is done by the HttpWebRequest.

Finally, we mentioned cookie handling. Cookies are small packets of informa-
tion that bring states to the state-less HTTP. State-less means that every HTTP
request/response pair is independent from former and further communication.
State information on the client side can be stored with cookies.The Web server
requests a cookie and knows in which state, for instance, a Web shop transaction
is. Because of the special character of cookies depending on the application and
their use, we showed only the .NET cookie class and where to find cookies in
request and response classes.

Solutions Fast Track

Introducing Networking and Sockets

Networking is inter-process communication.Two or more processes
communicate with each other.The processes can run on the same or
different computers or other technical devices.

The most important networking API is the socket.

Most networks today use the Internet Protocol (IP) as base protocol.The
most widely used application protocols are the Transmission Control
Protocol (TCP) and the User Datagram Protocol (UDP).TCP and UDP
run on IP.

TCP is a reliable connection- and stream-oriented point-to-point
protocol.The communication is client/server–oriented.The delivery and
order of data is guaranteed.

UDP is a connection-less and datagram-oriented best-effort protocol.
The delivery and order of data is not guaranteed. It can be used as a
point-to-point protocol (unicasting) or as a point-to-group protocol
(multicasting).

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 294

Network Programming: Using TCP and UDP Protocols • Chapter 5 295

Example TCP Command Transmission and Processing

For TCP communication, the easiest way is to use the System.Net
.TcpListener and System.Net.TcpClient classes.

This section showed how a TcpClient on the client side connects to a
TcpListener on the server side.

The client sends a command and receives a result.

This is similar to a browser making a request to a Web server and
receiving a Web page.

Example UDP Command
Transmission and Processing

For UDP communication, the easiest way is to use the System.Net
.UdpClient classes.

This section showed how a UdpClient on the client side communicates
to another UdpClient on the server side.The client sends a command
and receives a result.

This example is similar to the example in the “Example TCP Command
Transmission and Processing” section for showing the differences
between TCP and UDP.

Creating a News Ticker Using UDP Multicasting

UDP can be used for sending data to a group of peers (multicasting).

For multicasting, System.Net.UdpClient can also be used.

This section showed how to develop multicasting between UDP peers.

Creating a UDP Client Server Chat Application

This example combined our TCP and UDP knowledge.

TCP is used for transferring messages to the chat server; UDP is used
for sending the messages to all connected chat clients.

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 295

296 Chapter 5 • Network Programming: Using TCP and UDP Protocols

Creating a TCP P2P File Sharing Application

This example showed how to develop TCP P2P applications.

A TCP peer has one TCP server and one TCP client.

This example showed in a very simplified way how remote object access
such as remoting or CORBA is implemented.This is done by a so-called
remote file stream.

Access to Web-Resources

You can easily create access to Web resources with the .NET classes
System.Net.WebRequest and System.Net.WebResponse.

WebRequest makes a request to a Web resource, such as a Web server.The
result of the request is WebResponse instance that gives access to a stream,
such as representing the requested Web page.

Communicating through proxies is made with help of the
System.Net.WebProxy class.

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 296

Network Programming: Using TCP and UDP Protocols • Chapter 5 297

Q: What is TCP and how does is work?

A: Today, most networks use the Internet Protocol (IP) on the network protocol
layer. IP is an unreliable data packet (datagram) delivery service where the
delivery and order of packets is not guaranteed (best-effort).The Transmission
Control Protocol (TCP) is designed to address this problem—it guarantees
reliability. If packets are lost,TCP can resend them. If the order of packets is
not correct,TCP can put them in the right order. On the other hand,TCP is
stream-oriented, that is, you can read your data byte-by-byte. Finally,TCP is
connection-oriented, that is, a client opens a connection to a server, commu-
nicates with the server, and after finishing, it closes the connection.

Q: What is UDP and how does it work?

A: The User Datagram Protocol (UDP) provides an unreliable datagram-oriented
protocol on top of IP.The delivery and order of datagrams are not guaranteed.
It is connection-less, that is, a UDP application does not have to connect
explicitly to another. Datagrams are simply sent or received.

Q: What is multicasting?

A: Multicasting means that a set of applications can be grouped together by an
IP address. If an application sends data to that IP address, all members of the
group receive the data. UDP provides this service.

Q: When do I use TCP, and when do I use UDP?

A: You should use TCP if a reliable connection is necessary.You can use UDP
when you don’t need reliability when or you need more performance.

Q: Why does UDP multicasting sometimes not work under the German version
of Windows 2000?

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

167_C#_05.qxd 12/4/01 3:26 PM Page 297

298 Chapter 5 • Network Programming: Using TCP and UDP Protocols

A: We encountered problems with the German version of Windows 2000
Professional and Service Pack 2 using the Beta 2 of the .NET Framework.At
the time of this writing, no solution has been found, either on the Microsoft
Web site or from other sources.This problem seems to be deeper than the
.NET Framework.Tests with Java applications also lead to negative results.At
the time of this writing, we do not know if the problems also exist with
other Windows 2000 versions.

Q: Why does the UDP unicast example sometimes not work under the German
version of Windows NT 4?

A: We encountered a problem with the Beta 2 of the .NET Framework running
under German Windows NT 4 Service Pack 6a. If the example is started
with the run.bat file, UDP unicasting doesn’t work. If the example is started
directly, it works well.At press time, we do not know if the problems also
exist with other Windows NT versions.With Windows 2000, the example
works well when started directly or via batch file.

www.syngress.com

167_C#_05.qxd 12/4/01 3:26 PM Page 298

Remoting

Solutions in this chapter:

■ Introducing Remoting

■ Creating a Simple Remoting Client Server

■ Creating an Intranet Application

■ Creating Service-Based Applications

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 6

299

167_C#_06.qxd 12/4/01 3:28 PM Page 299

300 Chapter 6 • Remoting

Introduction
Ever since the early days of Windows programming, there has been a gradual
improvement in operating system stability. Much of this is due to the separation
of applications into distinct processes so that each has its own area of memory.
Developers have had to use many tricks to get these applications to communicate
with each other. Some of these methods included using the system clipboard,
sending windows messages, using the Visual Basic (VB) SendKeys function or sim-
ilar, transferring “message” files, or declaring an area of shared memory. Each of
these methods had pros and cons and were generally “hacks” around the separa-
tion of processes.When Microsoft’s Component Object Model (COM) arrived,
the situation vastly improved, and such tricks were no longer needed, but COM
did introduce a number of issues with versioning, registration, and administration
that a generation of Windows developers has had to deal with. Now with the
.NET platform, you get cross-application communication built-in, which pro-
vides you with an amazing amount of flexibility and control as to how you want
your applications to communicate with each other.

Every application on the .NET platform exists in its own unique Application
Domain.And every Application Domain is able to expose objects to the outside
world from any type of application—from simple console applications to Windows
Forms and Internet Information Server (IIS)–hosted applications.To enable appli-
cations running in one Application Domain to communicate with other applica-
tions in another Application Domain, you use remoting. Or you could say remoting
allows you to call methods and pass objects across Application Domains.

The Remoting API on the .NET platform takes a different approach than the
other application programming interfaces (APIs), such as Distributed COM
(DCOM) and Remote Method Invocation (RMI) for communication and mes-
sage format. Rather than relying on a proprietary message and protocol, the
Remoting API uses well-established standards such as Simple Object Access
Protocol (SOAP) for messaging and Hypertext Transfer Protocol/Transmission
Control Protocol (HTTP/TCP) protocols for communication.This allows appli-
cations to communicate just as easily across the Internet as they do within the
enterprise.

To understand how remoting works, imagine that you need to create your
own method of cross-application communication. Imagine that you have an
object that needs to accept calls from client applications across HTTP. First, you’d
need to define your object’s location as a URL of some kind.Then you would
need to choose a port that the object should listen to.You would also need some

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 300

www.syngress.com

way of publishing the interface of your object so that clients would know what
methods are available to call, and you would need a method of describing the
interface and handling the messaging between objects.The creators of the .NET
Framework have done just that and have exposed the remoting functionality as a
powerful way for programmers to start getting their applications to communicate.

This chapter introduces the remoting framework and provides many examples
from real-world scenarios that occur during development. First, we get an
overview of how remoting works and look at the variety of choices available to
the developer as to how remoting is configured.

In the second part of the chapter, we produce a simple remoting example that
is gradually extended to use a range of remoting services.We also take a look at
how to deal with issues that developers face during the development lifecycle in
regard to deployment, debugging, administration, documentation, and versioning
while using the remoting framework.

Introducing Remoting
Remoting provides you with a number of choices as to the method and configura-
tion of communication used. Configuration areas are the choice of channel, type
of hosting application, the activation model, the configuration method, and the
method of exposing server metadata to the client application.

The channel is the means of communication used by an application to call to
a remote object; the selection is between HTTP and TCP (SMTP doesn’t appear
to be ready in Beta 2).The HTTP channel is mostly used for Internet communi-
cation where firewalls need to be negotiated.The TCP channel has a perfor-
mance gain by using direct socket connections over an arbitrary port selected by
the developer. Both channels use SOAP for communication; the TCP channel
defaults to use a faster (but proprietary) binary representation of the SOAP mes-
sage, whereas the HTTP channel defaults to use the XML standard.The TCP
channel can also use the normal XML-formatted SOAP messaging format.

The selection of the hosting application for the remote object is the next
choice.A hosting application must be configured to listen on a channel and
create the requested object in its own AppDomain when required. In Visual Basic
6, developers often used IIS or COM+ services to host remote objects—the mys-
terious dllhost.exe that you may see running in your Windows 2000 Task
Manager is the hosting application used by COM+.With the .NET Framework,
you can still use these hosting services, but you can gain more control by writing
your own hosting applications.When creating your own hosting application, as

Remoting • Chapter 6 301

167_C#_06.qxd 12/4/01 3:28 PM Page 301

302 Chapter 6 • Remoting

we do in the first example, you may choose from a Console application,
Windows Service, or Windows Forms application.

Choice number three is the activation model for the remote object. SingleCall
objects are stateless in that they handle only single calls from clients and do not
hold state between calls.After the call is handled, the object is discarded. Singleton
objects can be shared between multiple clients.They are often used when the
resources needed to initialize the object are large and the object’s state needs to
be preserved between method calls.You need to remember that Singleton objects
do have a default lifetime and may be recycled—we’ll see later how developers
can control the object’s lifetime to suit their needs. Client Activated Objects
(CAOs) allows a client application to create a remote instance of the object for
exclusive use and to preserve state between remote method calls.

Choice number four is the method of configuring the remote server.The
host application can programmatically configure itself on startup or a configura-
tion file can be used. Of course, using an external file to hold remoting configu-
ration data enables changes to be made without a recompile of the source code.
The configuration information contains the channel, port, activation model, type
name, and assembly name of the object.A Uniform Resource Identifier (URI),
which clients use to identify the object, is also specified.

The final choice is how the client obtains the remote object’s metadata.Again
comparing with Visual Basic 6, a server object’s interface definition had to be on
the client, either as a type library or an exported MTS package, to enable the
client VB code to make the call over DCOM.With remoting, the situation is
similar but improved by the .NET Framework’s use of metadata.The first method
is to set a reference to the remote object’s DLL in the client project so that the
compiler can extract the metadata.The second method, but only if using the
HTTP channel, is to use the soapsuds.exe utility to generate a “proxy” class from
the remote object’s URI.This proxy class can then be included in the client pro-
ject and used as if it is a local .NET type. Internally, the proxy class will route the
call to the remote object.

Remoting Architecture
An end-to-end picture of remoting is as follows.The host application is loaded
and registers a channel and port on which to listen for incoming calls.The con-
figuration file, if any, is read and an object’s remoting information is loaded—the
host application can now map a URI to the physical assembly and instantiate the
object when required.The client application also registers the same channel and
then attempts to create a new instance of the remote class.The remoting system

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 302

Remoting • Chapter 6 303

handles the request for a new instance by providing a proxy object in place of the
actual object on the server.The actual object is either created immediately for
CAOs or on the first method call for Singleton/Singlecall objects—the remoting
framework takes care of this for you automatically.When the client calls a
method on the proxy object, the information is sent across the channel to the
remote object.The remoting system will then pass back the results of the method
across the channel in the same manner.

Creating a Simple
Remoting Client Server
We’ll now create a simple client server application to demonstrate the usage of
the remoting framework.The code for the server side is located in the ListServer
directory of the CD—double-click on the solution file ListServer.sln so that you
load both the server and the hosting application together. First, we’ll create the
remote class named CompanyLists that contains the functionality.All of the fol-
lowing code is on the CD.

NOTE

The code in this chapter uses localhost as the target server—this will self-
reference your local computer so that you may use both the client and
server code on the same PC. If you wish to place the server-side code on
a remote server, you will need to replace localhost with the correct server
name.

Creating the Remote Server Object
The remote server object contains all the server-side functionality for our
application:

1. Create a new Class Library application in Visual Studio named
ListServer.

2. Right-click the default Class1.cs module in the Solution Explorer and
choose Delete.

3. Right-click the ListServer project in the Solution Explorer, select Add
| Add Class, and name your new class CompanyLists.cs.

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 303

304 Chapter 6 • Remoting

4. Modify the class declaration to inherit from MarshalByRefObject so that a
reference to the object can be passed remotely:

public class CompanyLists: MarshalByRefObject

{

}

5. Add a private variable to the CompanyList class that contains an array of
strings:

private String[] Countries = {"Spain","France","Italy"};

6. Add a public method to CompanyList that returns the array of strings
defined in the preceding step.The complete class should appear as:

public class CompanyLists: MarshalByRefObject

{

private String[] Countries = {"Spain","France","Italy"};

public String[] getCountryList()

{

return Countries;

}

}

The CompanyList class can now be loaded by a hosting application for
remoting. If you already have classes that you’d like to make remoting aware of,
it’s as simple as inheriting from MarshalByRefObject and then recompiling.

NOTE

If your class must receive and send objects during method calls, you
will need to use the <Serializable> custom attribute to pass these
objects by value or inherit from MarshalByRefObject to pass by reference.
An example of this is shown later. If your class already inherits from
another class, you’ll need to make the parent class inherit from
MarshalByRefObject because multiple inheritance is not allowed in C#.

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 304

Remoting • Chapter 6 305

Creating the Hosting Application
Now we create the hosting application.This will be a console application initially,
but in the real world, this would probably be a Windows Service application:

1. From the Visual Studio menu, choose File | Add Project | New
Project. Select Console Application and name the new project
ListHost.

2. Rename the default Class1.cs file to CompanyListHost.cs.

3. Add a reference to the System.Runtime.Remoting namespace and the
ListServer project.

4. Add the following using statements at the top of the code window to
reference the relevant namespaces:

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtim.Remoting.Channels.Http;

5. Add the following code to the Main method.This code creates
an HttpChannel object that uses port 8080.The RegisterChannel
method is then used to register the channel, after which the
RegisterWellKnownServiceType method is called to register the class with
the remoting framework.The RegisterWellKnownServiceType method con-
tains three parameters that specify the type of the remoting class, the
URI, and the object activation mode.After this method has been called,
your class is then ready to accept requests from client applications.

static void Main(string[] args)

{

HttpChannel myChannel = new HttpChannel (8080);

ChannelServices.RegisterChannel(myChannel);

RemotingConfiguration.RegisterWellKnownServiceType

(typeof(ListServer.CompanyLists),

"CompanyLists", WellKnownObjectMode.Singleton);

}

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 305

306 Chapter 6 • Remoting

6. Build the console application to create the ListHost.exe console
application.

The CompanyList class can now accept calls from remote clients.You’ll notice
that we have chosen port 8080 to listen to for client requests.The choice of port
is rather arbitary, although port 80 should be used to be firewall friendly.You
need to remember that a port can only be registered once per machine.To see
what happens when an attempt is made to register the same port twice, perform
the following experiment:

1. In Windows Explorer, find and run the host application ListHost.exe.

2. While the console application is running, run the same host application
from within the Visual Studio IDE.You may need to right-click the
ListHost project in the Solution Explorer and select Set as StartUp
Project to enable the IDE to do this.

3. Figure 6.1 shows the exception that occurs when the same port is
reused.

Creating the Client Application
The client application will be a standard Windows Application with a main form,
but it could also be any other type of .NET application.The source for this pro-
ject is located under the ListClient directory of the CD:

1. From the Visual Studio menu choose File | New | Project. Select
Windows Application, and name the new project ListClient.

2. Rename the Form1.cs file to ListClient.cs.

3. Add a reference to the System.Runtime.Remoting namespace and also to
the ListServer.dll.

4. Add the following using statements at the top of the ListClient.cs code
window to reference the relevant namespaces:

www.syngress.com

Figure 6.1 The Exception Generated after an Attempt to Reuse a Port

167_C#_06.qxd 12/4/01 3:28 PM Page 306

Remoting • Chapter 6 307

using ListServer;

using System.Runtime.Remoting;

using System.Runtime.Remoting Channels;

using System.Runtime.Remoting.Channels.Http;

5. Modify the code in the Form1 constructor to appear as follows so that a
new HttpChannel object is created and registered on application startup:

public Form1()

{

InitializeComponent();

HttpChannel c = new HttpChannel();

ChannelServices.RegisterChannel(c);

}

6. Add a button and a textbox to the form. In the button’s click event, add
the following code.This code will create a reference to the remote
object by using the Activator.GetObject method.Three parameters are
used by this method to specify the type of the remote class, its URI, and
the creation mode.The list of countries is then retrieved and used to
populate the form’s ListBox control:

private void button1_Click(object sender, System.EventArgs e)

{

CompanyLists cLst = (CompanyLists)Activator.GetObject(typeof(

CompanyLists),"http://localhost:8080/CompanyLists",

WellKnownObjectMode.Singleton);

listBox1.DataSource = cLst.getCountryList();

}

7. Run the host application ListHost.exe and leave the console window
open. Figure 6.2 shows the host application.

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 307

308 Chapter 6 • Remoting

8. Run the ListClient application. Click the button to retrieve the list
country list from your server object. In Figure 6.3, you can see that the
county list has been successfully obtained from the remote object.

Understanding the Remoting Code
The host application simply needs to register a channel and port
using RegisterChannel and to register the remoting object using
RegisterWellKnownServiceType.The RegisterWellKnownServiceType method
takes three parameters—the type of the object, the object’s URI as defined
by the developer, and the creation mode.The first parameter provides the link
between the hosting application and the remoting object—this is why having a
reference to your class library’s DLL is necessary. Developers that have used pre-
vious versions of Visual Basic may notice that we cannot magically determine the
location of a DLL using CreateObject.We must explicitly tell the compiler the
DLL’s location.This is actually a major benefit of the .NET Framework because
we no longer must trust that the Registry has accurate information to instantiate
an object.

Another important point is that an object does not “own” a channel.You are
free to register as many channels and objects in the hosting application as you
like. Communication on the server side is multithreaded, so there is no need to
worry about a request blocking a channel while processing is done.You may also
want to use one channel for Internet clients and another for intranet clients and
force this policy by screening ports on your proxy server.

www.syngress.com

Figure 6.2 The Server Application Waiting for Clients

Figure 6.3 The Client Application

167_C#_06.qxd 12/4/01 3:28 PM Page 308

Remoting • Chapter 6 309

The client application must also register a channel, but in this case the port
does not need to be specified.This may seem strange at first—doesn’t the client
need to know which port to communicate with? The confusion lies in the
double life of the HttpChannel class. Creating a HttpChannel object actually cre-
ates a ClientChannel and a ServerChannel object.The ClientChannel object does
not need a port number because it can communicate with any port specified in
the URL.You could replace HttpChannel with ClientChannel in the client code
and everything would still work fine.The ServerChannel object is given to us for
free by the remoting framework so that the server object can call back to the
client if needed. By specifying a port when creating a HttpChannel, we are
allowing our client app to “listen” on this port, but it has no influence on what
port our app may talk to.Also, if you are a lazy programmer, you can actually
forget about registering a channel altogether.The remoting framework will create
one for you the first time you attempt to reference a remote object.Try com-
menting out the two lines of code that create and register a channel on the client
(shown in Step 5 in the previous section) and then rerun the application.

The client application also needs a reference to ListServer.dll but for a dif-
ferent reason than the hosting application has a reference.The hosting application
needs the reference so that it can create the remoting object to handle incoming
requests.The client application needs the reference only so that it can access the
DLL’s metadata.As you will see soon, the SoapSuds.exe utility removes the need
to reference the DLL by extracting the metadata and providing it to the client in
the form of a proxy class.

To obtain a reference to the remote object, Activator.GetObject is used.This
method takes two parameters—the type of the object and the remote object’s
URI.The reference returned by GetObject is actually a reference to a proxy
object that routes messages to the remote server.The remote object is not created
until the client makes the first method call.This explains why the first time the
button is clicked in our example application that there is a delay—the remoting
framework is instantiating the remote object.And for those developers that
deleted the code to register the channel, there will be a slightly longer delay
while the framework sets up a default channel for you to use.

Note that if you are using the HTTP channel then the host application can
be tested by typing the remote object’s URI into a browser.Try typing in
http://localhost:8080/CompanyLists?wsdl into Internet Explorer.As long as
the host application is running and configured correctly, you’ll see the SOAP def-
inition of the remote class as it appears in Figure 6.4.

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 309

310 Chapter 6 • Remoting

Improving the Sample Application
Although the sample application is a good start and has shown how to execute
calls to a remote object, some areas need improving in order to become a more
real-world application.We introduce these improvements by adding to the sample
code one step at a time.

Adding Event Logging and Error Handling
A good coding standard would be to always have a hosting application write to
the event log information regarding startup success or failure, the application
name, server port number, and any other useful data.We now add event logging
and error handling to the sample hosting application.This updated code is in the
CompanyListHost2.cs file on the CD.The complete code for the host is shown
in Figure 6.5.

Figure 6.5 Adding Event Logging and Error Handling to the Hosting
Application

using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Http;

using System.Diagnostics;

namespace ListHost

{

public class CompanyListHost

www.syngress.com

Figure 6.4 The SOAP Definition of the Remoting Class

Continued

167_C#_06.qxd 12/4/01 3:28 PM Page 310

Remoting • Chapter 6 311

{

EventLog myLog = new EventLog();

myLog.Source = "ListHost";

bool failed = false;

try

{

HttpServerChannel myChannel = new HttpServerChannel (8080);

ChannelServices.RegisterChannel(myChannel);

myLog.WriteEntry("Registered HTTPChannel(8080)");

}

catch (Exception e)

{

myLog.WriteEntry("Failed to register HTTPChannel(8080) " +

e.Message,System.Diagnostics.EventLogEntryType.Error);

failed = true;

}

try

{

RemotingConfiguration.RegisterWellKnownServiceType(typeof(

ListServer.CompanyLists), "CompanyLists",

WellKnownObjectMode.Singleton);

myLog.WriteEntry("Registered ListServer.CompanyLists as

Singleton");

}

catch (Exception e)

{

myLog.WriteEntry("Failed to register ListServer.CompanyLists

" + e.Message);

www.syngress.com

Figure 6.5 Continued

Continued

167_C#_06.qxd 12/4/01 3:28 PM Page 311

312 Chapter 6 • Remoting

failed = true;

}

if (failed)

{

System.Console.WriteLine("Errors at startup –

see Event Log.");

}

System.Console.WriteLine("Press [Enter] to exit...");

System.Console.ReadLine();

}

}

The code that writes messages to the event log is quite straightforward.The
WriteEntry method of the EventLog object is used to write error messages from
within the catch blocks. Error handling has been added to trap exceptions caused
while setting up the remoting configuration.

Using the soapsuds Tool
The need for every client application to have a reference to the remote assembly
may be inconvenient for some third-party services.You use the soapsuds.exe tool
to create a proxy object from the remote assembly’s metadata so that a reference
to the assembly is not needed.We now modify the sample application to use this
proxy object by following the next few steps (The updated ListClient code is
located in the ListClient2.cs file on the CD):

1. Open the ListClient project in Visual Studio.

2. From the command prompt, type soapsuds –url:http://
localhost:8080/CompanyLists?wsdl –gc.This creates a proxy
class named ListServer.cs.

3. Copy the ListServer.cs file to your source code directory.

4. Remove the project’s reference to ListServer from the Solution Explorer
window.

www.syngress.com

Figure 6.5 Continued

167_C#_06.qxd 12/4/01 3:28 PM Page 312

Remoting • Chapter 6 313

5. Right-click the ListClient project in the Solution Explorer window.
Select Add | Existing Item and choose the ListServer.cs file to add
it to your project.

6. Modify the button1_click method so that the code is as follows:

private void button1_Click(object sender, System.EventArgs e)

{

CompanyLists cLst = new ListServer.CompanyLists();

listBox1.DataSource = cLst.getCountryList();

}

7. Build the application.

Notice that the ListServer.cs file has taken the place of the reference to the
remote assembly. Inspection of the ListServer.cs code reveals that this class is
acting as a proxy by routing the remoting calls to the remote object’s URI.This
allows us to do away with the use of Activator.GetObject to obtain a remote refer-
ence—we can now program against ListServer as if it was a local class.

NOTE

The soapsuds utility has a range of command line options to aid client-
side development—see the Microsoft documentation for details. When
using this utility, it helps to remember that wsdl means Web Services
Description Language and -gc means generate code. You’ll then be able
to amaze your friends and colleagues when you can type in soapsuds
commands from memory.

Using Configuration Files
Many settings to the configuration of .NET applications can be achieved not
only inside code but with configuration files as well.All of these files use XML
so that they are humanly readable and easily parsed by the .NET Framework.
With remoting, you can use configuration files to handle all of the work neces-
sary to expose and consume remoting objects.

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 313

314 Chapter 6 • Remoting

You use the Configure method of the RemotingConfiguration class to configure
the remoting framework by specifying the configuration file’s location.We now
modify the ListHost hosting application to read a configuration file at startup:

1. Open the ListHost project in Visual Studio.

2. Add a new file to the project called ListHost.exe.config (which is also
located on the CD) with the following contents:

<configuration>

<system.runtime.remoting>

<application name="ListServer">

<service>

<wellknown mode="Singleton" type=

"ListServer.CompanyLists,ListServer" objectUri="CompanyLists"/>

</service>

<channels>

<channel type="System.Runtime.Remoting.Channels.Http.HttpChannel,

System.Runtime.Remoting" port="8080"/>

</channels>

</application>

<debug loadTypes="true" />

</system.runtime.remoting>

</configuration>

3. Modify the Main() method to use this configuration file on startup
(CompanyListHost3.cs on the CD):

static void Main(string[] args)

{

EventLog myLog = new EventLog();

myLog.Source = "ListHost";

bool failed = false;

try

{

RemotingConfiguration.Configure(@"..\..\ListHost.exe.config");

myLog.WriteEntry("Configuration from ListHost.exe.cfg

successful");

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 314

Remoting • Chapter 6 315

}

catch (Exception e)

{

myLog.WriteEntry("Failed to configure host application: " +

e.Message,System.Diagnostics.EventLogEntryType.Error);

failed = true;

}

if (failed)

{

System.Console.WriteLine("Errors at startup - see Event Log.");

}

System.Console.WriteLine("Press [Enter] to exit...");

System.Console.ReadLine();

}

Note that while running the host application in the Visual Studio IDE, the
bin\debug directory will contain the executable.You’ll therefore need to use the
“..\..\” syntax in the file path to reach the configuration file in your source code
directory.A further improvement would be to use a command line argument to
specify the CFG file location.This would help during deployment, and you could
test out a variety of configuration options easily without recompiling.
Configuration files may also contain multiple channels definitions and object
URI entries.

NOTE

The Microsoft standard for configuration files is that they should have
the same name as the assembly, but with a .config extension. For
example, myapp.exe will have the configuration file myapp.exe.config.
This configuration file must be placed in the same directory as the
assembly to enable utilities such as the .NET Framework Configuration
tool to locate configuration information.

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 315

316 Chapter 6 • Remoting

The type parameter is of the format type=“TypeName,AssemblyName”.These
parameters can be difficult to debug if they are wrong—no error message will be
displayed during the call to RemotingConfiguration.Configure.To help with debug-
ging, the <debug loadTypes=“true” /> attribute has been added, which causes the
types specified in the configuration file to be loaded.Any errors in the spelling of
a type name will then appear as a FileNotFoundException type exception.

On the client side a slightly different configuration file can be used:

<configuration>

<system.runtime.remoting>

<application name="ListClient">

<client>

<wellknown type="ListServer.CompanyLists, ListServer"

url="http://localhost:8080/CompanyLists"/>

</client>

<channels>

<channel type="System.Runtime.Remoting.Channels.Http.HttpChannel,

System.Runtime.Remoting"/>

</channels>

</application>

</system.runtime.remoting>

</configuration>

The client code also uses the Configure method of the RemotingConfiguration
class to read the configuration file on startup.A client that uses a configuration
file still needs a reference to the remoting application’s DLL but can use the new
keyword to instantiate the class.The client-side configuration actually redirects
the object creation to the server and returns the remote reference. By using this
method, it can be difficult to know if you are successfully creating the remote
object.A mistake in the configuration file can cause the object to be instantiated
locally instead of remotely.To avoid such subtle bugs, you can simply close down
the remote hosting application and make sure that the object creation code
causes an exception when running the client.

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 316

Remoting • Chapter 6 317

www.syngress.com

Remoting Applications
Remoting applications on the .NET platform have a great deal of flexi-
bility as to how objects communicate with one another. It is even pos-
sible to “plug-in” your own (or a third party’s) functionality to handle
custom formatting, encryption, and more. This makes it all the more
important for remoting issues to be considered up front in any design
work. The areas that need to be examined include the following:

■ Should objects be sent over the network by value or by
reference?

■ How large are these objects?
■ How often will these objects need to be sent?
■ For every remote method call, how many bytes of data

would a typical call contain?
■ How many client applications will a Singleton object need to

handle?
■ What are the lifetime issues with these objects? (that is, for

how long must they maintain state?)
■ Can a stateful object be used to increase performance?
■ Will your firewalls allow your remoting calls through?
■ Do your server-side objects need to call back to the clients? If

so, will these clients have their own firewalls?
■ If you need to shut down a hosting application to upgrade

the server object, how will the clients handle this?

Deployment of remoting applications seems quite easy—and
indeed it is. You could send the client-side executables with their con-
figuration files via e-mail to a friend and he would only need to copy
them to a directory and double-click the EXE to get started.

But wait, what happens if you want to move your server-side objects
to another server? When version 2 of the server-side functionality is
released, how do you let the client-side applications know? The solution
to these issues is largely dependent on the type of applications you
create, whether they are Internet- or intranet-based, and the number of
clients that must be administered. One idea to get you started is to have

Developing & Deploying…

Continued

167_C#_06.qxd 12/4/01 3:28 PM Page 317

318 Chapter 6 • Remoting

Updating Configuration Files Using
the .NET Framework Configuration Tool
Most developers are happy to use Notepad to update configuration files, but as the
number of files increases, locating the necessary files in the directory tree can be
troublesome.The .NET Framework provides you with a Microsoft Management
Console (MMC) snap-in that serves as a central location for .NET configuration.
Although in Beta 2 this snap-in appears to still need some improvement, it does
hold promise of being a very useful tool.To start the snap-in, open a command
prompt window and change the current directory to the installation directory of
the .NET Framework, which will be WINNT\Microsoft.Net\Framework\vx.y.z
(where WINNT is your windows directory and x.y.z is the version of the .NET
Framework).Type mscorcfg.msc to start the .NET Framework Configuration
tool.You will see a screen similar to Figure 6.6.

www.syngress.com

your client configuration files actually located on your Web server. This
would need to be a server that is almost guaranteed not to have a
domain name change. Instead of having thousands of client configura-
tion files distributed around the globe—you now have only one. When
client applications start up, they can get the configuration file via HTTP
from your server and always have the latest version.

Figure 6.6 The .NET Framework Configuration Tool

167_C#_06.qxd 12/4/01 3:28 PM Page 318

Remoting • Chapter 6 319

To add ListHost.exe to the Applications node, simply click the Add an appli-
cation to be configured hyperlink and select the ListHost.exe file from the
dialog.As long as your configuration file is named ListHost.exe.config and located
in the same directory as the executable, you’ll be able to modify the remoting
configuration settings.To update the settings, right-click the Remoting Services
node under ListHost.exe and select Properties from the context menu.

Changing the Hosting Application to a Service
Hosting all of your remoting objects from console applications does appear strange
at first sight. It’s the 21st century and we still haven’t completely got rid of those
character-based applications! The fact is that console applications do provide a
good environment for debugging applications that use remoting—you can imme-
diately see if your hosting application is running, and you can easily send debug
messages to the console window in real-time while you run your client-side app.

Once your server-side classes are ready for deployment, a Windows Service
provides a better hosting environment. System administrators can easily start and
stop your service, you can view your service from within Visual Studio’s new Server
Explorer, and you can guarantee that your service will be started after a reboot of
the server.The service application we will create is located under the ListService
directory on the CD.To create a new hosting service, follow these steps:

1. Load the ListHost project into Visual Studio.

2. Select and copy all the code from within the Main() method.

3. Select File | New | Project. Select the Windows Service template
and type in ListService for the project name. Make sure that the Add
to Solution option is set and then click OK.

4. While the Service1.cs file is in design view, use the Properties window
to set the service name to ListService.

5. Switch to code view and paste the code you copied in Step 2 into the
OnStart() method. Remove any code that was used to write to the con-
sole window. Replace any text within the code that refers to ListHost
to be ListService.

6. Add the line using System.Runtime.Remoting to the start of
Service1.cs.

7. Switch back to the Service1.cs design view.At the base of the Properties
window, select the Add Installer link—see Figure 6.7.

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 319

320 Chapter 6 • Remoting

8. Select the serviceProcessInstaller1 component (if this component is
not visible, double-click the ProjectInstaller.cs file in the solution
explorer) and set its Account property to Local System.

9. Copy the ListHost.exe.config file to the winnt\system32 directory and
rename as ListService.exe.config.

10. Change the method call that reads the configuration file to the following:

RemotingConfiguration.Configure("ListService.exe.config")

11. Build the ListService project.

12. Open a command prompt window and change the current directory to
the installation directory of the .NET Framework, which will be
WINNT\Microsoft.Net\Framework\vx.y.z (where WINNT is your
windows directory and x.y.z is the version of the .NET Framework).

13. Type installutil appPath where appPath is the directory path to
ListService.exe.This will install your service.

14. The service is now installed.You can now start the service by using the
Server Explorer from within Visual Studio.

You can also view the Event Log from the Server Explorer making Visual
Studio the central hub of your development activities. Notice that the configura-
tion file was placed in the winnt/system32 directory because this is a Windows
Service application. If you need to keep the configuration file together with the
executable, you will have to use the absolute path. Installing the service with the
installutil tool has to be done only once.To update the executable, simply stop the
service and rebuild the project.

www.syngress.com

Figure 6.7 Setting the Properties of a Windows Service Application

167_C#_06.qxd 12/4/01 3:28 PM Page 320

Remoting • Chapter 6 321

Using the TCP Channel with the Binary Formatter
Within a corporate intranet, you can gain more speed by using the TCP channel.
To change the sample application to use the TCP channel all you need to do is
do a search and replace of every “Http” with “Tcp” within the configuration
files.The TCP channel uses binary formatting by default, whereas the HTTP
channel defaults to SOAP formatting.Two downsides of using the TCP channel
is that communication may be blocked by firewalls, and you cannot use your
browser to examine the SOAP description of your hosting application.

Summary of the Improved Sample Application
Your sample application now contains enough bells and whistles to provide a base
for a real-world multitier application.You have seen how to host your remoting
objects from within a Windows Service, how to write to the event log, how to
handle exceptions on startup, and how clients can easily communicate with your
remote objects.To further enhance the application you could connect to a
database to obtain various lists of data that are in common use across all corpo-
rate applications—countries, clients, customers, languages, application settings, and
so on. On the client side, you could then subclass a ComboBox control and add a
property called ListType, which would load the corresponding list of items from
your remote object on initialization.This control would save development time
and provide a standardized user interface.ASP.NET applications could also use
your remote objects in the same way.

Creating an Intranet Application
The remoting framework provides fine control over how objects are sent to and
from remote applications and also how objects are created and destroyed.We now
look at an example of how you can use these features in a remoting application.

Object Lifetime and Leasing
In the COM world, object lifetime was controlled by reference counting.As
clients disconnected from the server object, the reference count was decremented
until it reached zero.The server object was then unloaded immediately, and any
hold on system resources was released.With the .NET Framework, no reference
counting occurs. Instead, an object is marked to be garbage collected when no
other object holds a reference to it. Because the garbage collector cannot detect

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 321

322 Chapter 6 • Remoting

remote references (because they are in another AppDomain), .NET uses another
method for handling object lifetime called leasing.

Objects have a default lease time—when this time has passed, the object will
be ready for garbage collection provided there are no references to the object
from its own AppDomain.An object can change its own lease period on startup
or even set it to infinity to maintain state forever (forever = until a server
reboot!). Clients are able to renew this lease if they wish to keep communicating
with the same object instance.Also, the client can register a sponsor for a lease.
When the lease expires, the sponsor is given the opportunity to renew the lease.

We now create a sample application that uses the leasing features of the
remoting framework.The source code for this project is in the CountServer
directory—opening up the solution file CountServer.sln will make sure that both
the server and the hosting application are loaded into Visual Studio.

Creating the CountServer Project
This project contains the server-side functionality.The Count class implements a
counter that can be incremented and decremented with the inc and dec methods
respectively:

1. Create a new Class Library application in Visual Studio named
CountServer.

2. Right-click the default Class1.cs module in the Solution Explorer and
choose Delete.

3. Right-click the ListServer project in the Solution Explorer, select Add
| Add Class and name your new class Count.cs.

4. Add the following code to Count.cs:

using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Lifetime;

namespace CountServer

{

public class Count: MarshalByRefObject

{

private int mVal;

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 322

Remoting • Chapter 6 323

public Count()

{

mVal = 0;

}

public override Object InitializeLifetimeService()

{

ILease lease = (ILease)base.InitializeLifetimeService();

if (lease.CurrentState == LeaseState.Initial)

{

lease.InitialLeaseTime = TimeSpan.FromSeconds(5);

lease.RenewOnCallTime = TimeSpan.FromSeconds(1);

lease.SponsorshipTimeout = TimeSpan.FromSeconds(5);

}

return lease;

}

public int inc()

{

mVal++;

return mVal;

}

public int dec()

{

mVal—;

return mVal;

}

}

}

This code is quite straightforward except for the InitializeLifetimeService
method. Every remoting object has this method because InitializeLifetimeService is

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 323

324 Chapter 6 • Remoting

a method of the inherited MarshalByRefObject class.This method obtains the cur-
rent lease for the object, and by overriding this method, an object can control/set
its own lease properties.These lease properties can be set only before the object
has been marshaled to the client—the CurrentState property is used to check that
the lease is in its initial state and can therefore be modified.The three lease prop-
erties used in the code are the following:

■ InitialLeaseTime The time of a lease.The object will be ready for
garbage collection after this amount of time. Setting this property to null
gives an infinite lease time.

■ RenewOnCallTime Every call to the object will increase the lease
time by this amount.

■ SponsorshipTimeout When the lease has expired, the lease will con-
tact any registered sponsors.The sponsor then has the opportunity of
extending the lease.The SponsorshipTimeout value is the amount of time
that the object will wait for a response from the sponsor.The sponsor
class will be introduced shortly in the client-side code.

These default lease settings can also be placed within the configuration file as
follows:

<application name="CountServer">

<lifetime leaseTime="5S" sponsorshipTimeOut="5S" renewOnCallTime="1S"/>

. . .

</application>

The units of time used in the configuration file are D for days, M for minutes,
S for seconds, and MS for milliseconds.

NOTE

For a lease on the server to contact a sponsor on the client, the client
must register a ServerChannel to listen on a port. If the lease attempts to
contact your client-side sponsor and you do not have a ServerChannel,
the contact will fail and the remoting object will be deactivated after the
specified SponsorshipTimeout value. You will not receive an error in this
situation.

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 324

Remoting • Chapter 6 325

Creating the CountHost Project
This host application will configure the Count class for remoting as a Singleton
object. Being a Singleton object, it is shared between all client applications:

1. Add a new Console Application project named CountHost to the cur-
rent solution and add a reference to the CountServer project.

2. Add the call to RemotingConfiguration in the main method and reference
the System.Runtime.Remoting namespace so that the complete console
application code appears as follows:

using System;

using System.Runtime.Remoting;

namespace CountHost

{

class Class1

{

static void Main(string[] args)

{

try

{

RemotingConfiguration.Configure(@"..\..\CountHost.exe.config");

}

catch (Exception e)

{

System.Console.WriteLine("Failed to configure

hostapplication:

"

+e.Message,System.Diagnostics.EventLogEntryType.Error);

}

System.Console.WriteLine("Press [Enter] to exit...");

System.Console.ReadLine();

}

}

}

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 325

326 Chapter 6 • Remoting

3. Create the configuration file named CountHost.exe.config and place
in the project directory:

<configuration>

<system.runtime.remoting>

<application name="CountServer">

<channels>

<channel displayName="MyChannel"

type="System.Runtime.Remoting.Channels.Http.HttpChannel,

System.Runtime.Remoting" port="8085" />

</channels>

<service>

<wellknown displayName="MyService" mode="Singleton"

type="CountServer.Count,CountServer"

objectUri="CountServer" />

</service>

</application>

<debug loadTypes="true" />

</system.runtime.remoting>

</configuration>

4. Build the project to produce the hosting application—CountHost.exe.

Creating the CountClient Project
The CountClient project is a Windows Application that will remote to the server-
side Count object and update the counter value.The app will also have two but-
tons that allow us to renew the lease and to also add a sponsor for the object.
Follow the next steps to create the project or alternatively access the code from
the CountClient directory on the CD:

1. Create a new Windows Application for the client side called
CountClient.

2. Add four buttons to the form—btnInc, btnDec, btnRenew, and
btnSponsor with the captions—“Inc”,“Dec”,“Renew Lease”, and
“Add Sponsor”.Also add a textbox called txtValue.

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 326

Remoting • Chapter 6 327

3. Add click event handlers to each button and add the following code to
the form:

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Lifetime;

namespace CountClient

{

public class Form1 : System.Windows.Forms.Form

{

private System.Windows.Forms.Button btnInc;

private System.Windows.Forms.Button btnDec;

private System.Windows.Forms.Button btnRenew;

private System.Windows.Forms.Button btnSponsor;

private System.Windows.Forms.TextBox txtValue;

private System.ComponentModel.IContainer components;

private CountServer.Count objCount;

private ClientSponsor mSponsor;

private ILease mLease;

public Form1()

{

InitializeComponent();

RemotingConfiguration.Configure(

@"..\..\CountClient.exe.config");

objCount = new CountServer.Count();

}

private void btnInc_Click(object sender, System.EventArgs e)

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 327

328 Chapter 6 • Remoting

{

txtValue.Text = objCount.inc().ToString();

}

private void btnDec_Click(object sender, System.EventArgs e)

{

txtValue.Text = objCount.dec().ToString();

}

private void btnRenew_Click(object sender, System.EventArgs e)

{

mLease = (ILease)RemotingServices.

GetLifetimeService(objCount);

try

{

mLease.Renew(System.TimeSpan.FromSeconds(10));

MessageBox.Show(this,"Lease renewed for 10 seconds");

}

catch

{

MessageBox.Show(this,"Lease has expired");

}

}

private void btnSponsor_Click(object sender, System.EventArgs e)

{

mLease = (ILease)RemotingServices.

GetLifetimeService(objCount);

mSponsor = new ClientSponsor();

mSponsor.RenewalTime = TimeSpan.FromSeconds(15);

try

{

mLease.Register(mSponsor);

}

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 328

Remoting • Chapter 6 329

catch

{

MessageBox.Show(this,"Lease has expired");

}

MessageBox.Show("Sponsor registered with object");

}

}

}

4. Create the client-side configuration file:

<configuration>

<system.runtime.remoting>

<application name="CountClient">

<client>

<wellknown type="CountServer.Count, CountServer"

url="http://localhost:8085/CountServer"/>

</client>

<channels>

<channel type="System.Runtime.Remoting.Channels.Tcp.TcpChannel,

System.Runtime.Remoting" port="8011"/>

</channels>

</application>

</system.runtime.remoting>

</configuration>

Understanding the Leasing and Sponsorship Code
The increment and decrement buttons simply call the corresponding methods on
the server-side Count object and display the result in the textbox. By observing
the returned value, you can determine if you are still using the original class
instance.

The Renew Lease button renews the lease of the current server-side Count
object.To do this, the lease is obtained by calling GetLifetimeService on the remote
object.A remote reference to the server-side lease is then returned and the Renew
method is called on the lease. Note that the lease is also acting as a remote object

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 329

330 Chapter 6 • Remoting

in this scenario.The Renew method takes a TimeSpan parameter that specifies the
new lease time.

The Add Sponsor button registers a sponsor so that you can receive a notifi-
cation when the lease has expired.The code obtains a remote reference to the
lease, creates a sponsor, and then registers the sponsor with the lease. In the pre-
ceding code, the sponsor will set the lease time to 15 seconds when notified by
the server-side lease. By running the client-side application, you will see a form
as shown in Figure 6.8.

To test the object lifetime features of .NET remoting, click on the Inc
button two times so that the value in the textbox is 2.The InitialLeaseTime set by
the server-side Count object is 5 seconds—if you wait more than 5 seconds and
then click on Inc again, you will notice that the counter has been reset.The
remoting framework has destroyed the original instance after 5 seconds and has
created a new object to handle the latest call.

The server-side lease property, RenewOnCallTime, has a value of 1 second.
This will cause 1 second to be added to the lease time on every call to the
remote object.You can test this by clicking on the Inc button quickly 20 times—
you will notice that after waiting 20 seconds, and clicking Inc again, that the
counter has not been reset.

Clicking Renew Lease will set the current lease time to 10 seconds.Again, by
clicking on Inc a couple of times, waiting about 8 seconds, and then clicking
Renew Lease, you will notice that the counter’s life is extended. Clicking Add
Sponsor has the effect of having a permanent Singleton object on the server.The
sponsor will always set the lease time of the remote object to 15 seconds whenever
it is notified by the server that the lease has expired.After the client application is
closed, the server site lease will eventually attempt to notify the client of lease expi-
ration. In our example, 15 seconds will pass while the server lease waits for an
answer.When that answer doesn’t arrive, the remote object will be shut down.

As a final experiment, start up two instances of the CountClient.exe and run
them side-by-side. By clicking on the Inc and Dec buttons of each application,
you will see that they both share the same Singleton instance of the server-side

www.syngress.com

Figure 6.8 Controlling Object Lifetime with Leases and Sponsors

167_C#_06.qxd 12/4/01 3:28 PM Page 330

Remoting • Chapter 6 331

object.Also, if all client-side applications are shut down, the server-side compo-
nent will still maintain its state if a new application calls the component before its
lease expires.

Client Activated Objects
The server-activated objects that we have been using so far in this chapter have
been of two types, Singleton and SingleCall.The third type of remoting object is
the CAO or Client Activated Object, which allows a client application to create a
remote instance of the object for exclusive use, similar to the way that clients do
in the COM world.These objects can maintain state without you having to

www.syngress.com

Remoting Applications
Anyone that has started learning the .NET remoting framework will
know how easy it is to accidentally stop an application from working. A
wrong port number or a misspelled type name can take some time to
track down. In a perfect world, you would get an error message like
“You tried to communicate with server xyz on port 8050. There is
nothing listening on that port but 8051 has something that may interest
you.” To help avoid these problems, a base application might help—this
application would contain the three projects needed for a remoting app
(server, host, and client) plus any boilerplate code and configuration
files. This application could then serve as a starting point for all your
remoting applications.

Another method to help (or avoid) debugging your applications is
to start with the simplest case. A simple “test” method on each remote
object could be used to test the communication channels between the
tiers of your application. Such an approach is better than calling a com-
plex method on an object that may contain other object references and
serialized objects as parameters—there would just be too many places
where something could go wrong. This “test” method would also help
in the construction of a monitoring application that could ping your
remote objects every few minutes and e-mail an administrator if an
object does not respond.

Debugging…

167_C#_06.qxd 12/4/01 3:28 PM Page 331

332 Chapter 6 • Remoting

worry about another client connecting to the remoting object and changing its
state without your knowledge.

Making your objects ready for client activation is as easy as modifying the
configuration file on the server. For example, the CountClient’s configuration file
has the following section:

<service>

<wellknown mode="Singleton" type="CountServer.Count,CountServer"

objectUri="CountServer" />

</service>

To change this to a CAO, the activated attribute is used with only the type
parameter instead of the wellknown attribute:

<service>

<activated type="CountServer.Count,CountServer">

</activated>

</service>

The client-side configuration file then requires a modified <client> specifica-
tion that uses the same activated attribute parameters as the server-side configura-
tion file:

<client url="http://localhost:8085">

<activated type="CountServer.Count,CountServer"/>

</client>

When the client-side uses new to create a remote instance, the remote object
is created immediately for the exclusive use of the client. Lifetime leasing and
sponsorship need to be used in the same way as in the previous example—even
though the object “belongs” to the client, it still has a lease that may expire,
causing the object to lose state.

Sending and Receiving Objects by Value
For more complex remoting applications, you may need to pass objects as parame-
ters to remote method calls or receive such objects in return. For example, instead
of passing a customer name and a customer ID in separate calls, it is more efficient
to create a Customer object containing the required information and send the
whole object to the server in one call.To achieve this, the remoting framework
needs to be able to serialize your class so that it can be sent over a channel.

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 332

Remoting • Chapter 6 333

The [serializable] attribute is used to specify a class as being serializable and
able to be remoted by value. Using the customer example, the class definition
would appear as follows:

[Serializable]

class Customer

{

public Customer()

{}

int ID;

String Name;

}

NOTE

It is important to consider the suitability of a class for remoting. If the
class can hold large amounts of data and must be sent over a slow con-
nection, application performance will suffer. Also, some types of data
(for example, a file path) would have no meaning on a remote server.

Sending and Receiving Objects by Reference
For overly large objects, passing them by reference to remote servers may be
more efficient.This is roughly equivalent to simplified remoting—the remoting
framework will create a proxy for your object on the server.As the server calls
methods on your object, the proxy will route the calls to the real object on the
client side.As you are controlling the creation of the object instance and handling
the calls explicitly, you don’t need to consider ports, channels, and object lifetime
issues (although if you would like the server to call-back to your client object,
keeping a reference to it would be a good idea to prevent it from being garbage
collected).

For a class to be sent by reference, it is necessary for the class to inherit from
MarshalByRefObject.The customer class would then appear as follows:

class Customer: MarshalByRefObject

{

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 333

334 Chapter 6 • Remoting

public Customer()

{}

int ID;

String Name;

}

Creating Service-Based Applications
A major improvement of .NET components compared to legacy COM compo-
nents is the ability to use side-by-side deployment. Upgrading COM components
is an all-or-nothing affair, which can cause problems with client applications
relying on a specific version of a component.With the .NET Framework, you
can have different versions of the same component running at the same time.To
achieve this with your remoting applications, you need to give your server-side
assemblies what is known as a strong name.

Building a Versioned Remoting Application
A strong name is a unique identifier for an assembly, which is generated by com-
bining a text name, the version number, culture information (if it exists), a public
key, and a digital signature.This may sound complicated, but it is in fact quite
easy.We now create a remoting class and build the assembly with a strong name.
The following code is in the VersionServer directory on the CD:

1. Create a new Class Library application in Visual Studio named
VersionServer.

2. Right-click the default Class1.cs module in the Solution Explorer and
choose Delete.

3. Right-click the ListServer project in the Solution Explorer, select Add
| Add Class and name your new class Test.cs.

4. Add the following code to Test.cs.The getVersion method will be used to
return the current version string back to the client application:

using System;

using System.Windows.Forms;

using System.Reflection;

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 334

Remoting • Chapter 6 335

namespace VersionServer

{

public class Test:MarshalByRefObject

{

public Test()

{

}

public String getVersion()

{

return Assembly.GetAssembly(this.GetType()).

GetName().Version.ToString();

}

}

}

5. Now, use the strong name utility (sn.exe) to generate a new strong name
key.To do this, use the -k parameter with the output file name. From the
Visual Studio .NET Command Prompt type in sn –k mykey.snk. Copy
the new key file to the source code area of the VersionServer project.

6. Now, add the key to the assembly manifest. Open the AssemblyInfo.cs
file, which contains the assembly attributes, and find the AssemblyKeyFile
attribute.Add the path to the key file to the AssemblyKeyFile attribute as
shown here:

[assembly: AssemblyKeyFile("..\\..\\mykey.snk")]

7. Also, set the desired version number using the AssemblyVersion attribute
as shown here:

[assembly: AssemblyVersion("1.0.0.99")]

8. After building the VersionServer.dll, you need to install the assembly into
the Global Assembly Cache (GAC).The GAC is located in the Assembly
directory under the Windows system directory. For example
C:\WINNT\Assembly.To install the assembly, you can drag and drop
the DLL into the GAC or you can use the gacutil.exe utility.

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 335

336 Chapter 6 • Remoting

9. Now update the version to 2.0.0.0. Rebuild the project and repeat
Step 8. Update the version to 3.0.0.0 and repeat Step 8 again.You will
now have three versions of the VersionServer in the GAC, as shown in
Figure 6.9.

Creating the VersionHost Project
The VersionHost project is a simple console application that will host the ver-
sioned components.The code for the project is located in the VersionHost direc-
tory on the CD.This code is the same as that used for the earlier examples
except a slightly different configuration file is used (see Figure 6.10). In this con-
figuration file, the required version has been added to the wellknown attribute.
Even though you earlier created a version 3 of the assembly, you are able to
choose version 2 (or any other version) by modifying this configuration file.

Figure 6.10 Configuring a Versioned Remoting Application

<configuration>

<system.runtime.remoting>

<application name="CountServer">

<channels>

<channel type="System.Runtime.Remoting.

Channels.Http.HttpChannel,System.Runtime.Remoting"

port="8085"/>

</channels>

<service>

<wellknown mode="SingleCall"

type="VersionServer.Test,VersionServer,Version=2.0.0.0"

objectUri="VersionServer2" />

www.syngress.com

Figure 6.9 Installing Multiple Versions in the GAC

Continued

167_C#_06.qxd 12/4/01 3:28 PM Page 336

Remoting • Chapter 6 337

</service>

</application>

<debug loadTypes="true" />

</system.runtime.remoting>

</configuration>

This version setting will be used whenever a server activated VersionServer
object is needed.This means that clients requesting a server activated object from
a URI are not able to request a specific version—versioning is determined by the
server.To enable client requests for different versions, you need to use a different
URI for each version.You can do this by adding extra wellknown attributes to the
configuration file, as shown in Figure 6.11.

Figure 6.11 Including Multiple Versions in a Configuration File

<wellknown mode="SingleCall"

type="VersionServer.Test,VersionServer,Version=2.0.0.0"

objectUri="VersionServer2" />

<wellknown mode="SingleCall"

type="VersionServer.Test,VersionServer,Version=3.0.0.0"

objectUri="VersionServer3" />

NOTE

If the version is not specified in the server-side configuration file, the
latest version available will always be loaded.

Creating the VersionClient Project
The VersionClient project will be used to connect to a specific version of
VersionServer.This will be done by specifying the corresponding URI in the
client-side configuration file. Follow the next steps to create the project (or access
the code from the VersionClient directory on the CD):

www.syngress.com

Figure 6.10 Continued

167_C#_06.qxd 12/4/01 3:28 PM Page 337

338 Chapter 6 • Remoting

1. Create a new Windows Application called VersionClient.

2. Add a button to the form called btnGetVersion.

3. Add a click event handler to the button and add the following code to
the form.The button will retrieve the version information from the
remote object and display it within a message box:

using System;

using System.Drawing;

using System.ComponentModel;

using System.Windows.Forms;

using System.Runtime.Remoting;

namespace VersionClient

{

public class Form1 : System.Windows.Forms.Form

{

private System.Windows.Forms.Button btnGetVersion;

private System.ComponentModel.Container components = null;

private VersionServer.Test objRemote;

public Form1()

{

InitializeComponent();

RemotingConfiguration.Configure(

@"..\..\VersionClient.exe.config");

objRemote = new VersionServer.Test();

}

private void btnGetVersion_Click(object sender,

System.EventArgs e)

{

MessageBox.Show(objRemote.getVersion());

}

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 338

Remoting • Chapter 6 339

}

}

4. Create the client-side configuration file.The VersionServer2 URI is used
to connect to version 2 of the remote component:

<configuration>

<system.runtime.remoting>

<application name="VersionClient">

<client>

<wellknown type="VersionServer.Test, VersionServer"

url="http://localhost:8085/VersionServer2"/>

</client>

</application>

</system.runtime.remoting>

</configuration>

5. Start the VersionHost.exe console application and then build and run the
VersionClient project. Clicking the button will display the version of the
remote object—see Figure 6.12.

Testing Side-By-Side Execution of Remote Objects
As a final experiment, we get two versions of the remote object running side by
side.To do this, keep the VersionClient application running.Then open up the
client-side configuration file and change the URI from VersionServer2 to
VersionServer3—this will not impact the running application because the configu-
ration file is read only on startup. Now find the VersionClient.exe executable in
Windows Explorer and run it.After clicking the button, you’ll see that version 3
of the remote object is now being used. Click the button of the first application
instance and version 2 is still available! Both application instances can run inde-
pendently on the client, while multiple versions of the server-side objects can
handle client requests at the same time.

www.syngress.com

Figure 6.12 Including Multiple Versions in a Configuration File

167_C#_06.qxd 12/4/01 3:28 PM Page 339

340 Chapter 6 • Remoting

Summary
Remoting is used to allow .NET applications to communicate with each other
across TCP or HTTP protocols.This communication takes place across a channel
which uses SOAP to format message calls.These SOAP messages can either be
XML formatted or sent as a binary stream.Although the HTTP channel is suit-
able for applications distributed on the Internet, the TCP channel is faster and is
often used on corporate networks.

Server-side objects must be hosted in a hosting application to expose them to
requests from client applications.A hosting application may be a Console,
Windows Service, or Windows Forms application.When the hosting application
starts, it must register a channel to listen for client requests by calling
ChannelServices.RegisterChannel.The host will then register remoting configuration
information with the remoting framework either in code (using the
RemotingConfiguration.RegisterWellKnownServiceType method) or by using a config-
uration file (using the RemotingConfiguration.Configure method).

Remoting objects have three activation models—SingleCall, Singleton, and
Client Activated Objects (CAO). SingleCall objects are stateless, whereas Singleton
objects are stateful and able to be shared between client applications. CAO
objects are created by a client application for exclusive use and they preserve state
between remote method calls.

For a client application to be compiled in Visual Studio.NET, the remote
server classes metadata is needed.The easiest method is to reference to the remote
object’s DLL in the client project.The other method is to use the soapsuds.exe
utility to generate a proxy class from the remote object’s URI.

For a client application to use remoting, a channel must be registered and the
remoting framework configured in a similar manner to that used in the hosting
application. If a configuration file is not used on the client and a proxy class is
not available (from the soapsuds utility), the Activator.GetObject method must be
used to create a reference to the remote object.

The lifetime of a remoting object is controlled by a lease. Objects have a
default lease time after which they can be garbage collected.An object may
change its default lease time on startup by overriding the InitializeLifetimeService
method. Clients may also renew a lease to keep a remote object active.When a
lease expires, the remoting framework will notify any registered sponsors so that a
sponsor may renew the lease if required.

An assembly in which remoting classes reside may be versioned by using a
strong name.A strong name allows the assembly to be placed in the Global

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 340

Remoting • Chapter 6 341

Assembly Cache (GAC) so that it may be located by the remoting framework.
The server-side configuration file is used to expose a specific version of a com-
ponent for remoting clients to access. It is possible for multiple versions of
remoting objects to run side-by-side.

Solution Fast Track

Introducing Remoting

Remoting allows cross-application communication, whether they are
located on the same PC or across the Internet.

Channels are used as the communications mechanism—HTTP and TCP
channels may be used.

Server-side objects need a hosting application to handle incoming
requests.A hosting application may be in the form of a console
application,Windows Service, forms-based app, IIS, or COM+ service.

Creating a Simple Remoting Client Server

All remoting objects must inherit from MarshalByRefObject.

Hosting applications use the RegisterWellKnownServiceType method of the
RemotingConfiguration class to register objects for remoting.

Singletons objects only have a single instance and handle multiple client
requests.

SingleCall objects do not maintain state.They handle a single request and
are then recycled by the remoting framework.

Remoting applications that act as servers must listen on a port as
specified by the developer.

External XML configuration files may also be used to configure
remoting on both the server and the client.

Hosting remote objects in a Windows Service application eases the
administration of server-side remoting objects.

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 341

342 Chapter 6 • Remoting

Creating an Intranet Application

A lease controls object lifetime—the lease specifies the time-to-expire
of the object.

The default values of the lease may be specified by the remote object
on startup.

A client application may control the lease to keep a remote object
active.

A sponsor can be attached to a lease.When the lease has expired, the
sponsor will be notified so that the lease may be extended if required.

Creating Service-Based Applications

Versioned assemblies require a strong name so that they can be uniquely
identified by the .NET Framework.

To generate a strong name, a strong name key is needed.The sn.exe
utility is used to create key files.

Versioned assemblies should be placed in the Global Assembly Cache
(GAC)—the .NET Framework will search the GAC for strong-named
(shared) assemblies.

For server activated objects, the server configuration file is used to map a
URI to the version of an assembly.

www.syngress.com

167_C#_06.qxd 12/4/01 3:28 PM Page 342

Remoting • Chapter 6 343

Q: If I have a Singleton object to handle multiple clients and it only listens on a
single port, doesn’t this create a performance bottleneck?

A: Don’t worry. Remoting objects are multithreaded so that one request does
not block another.

Q: With .NET, it seems much easier to maintain state on the server.Will this
change the way applications are developed?

A: The stateless model of development is often the most scalable and robust
architecture.The lessons learned with Windows DNA multitier development
still apply today.

Q: It is also easier now to have the server perform callbacks to the client side, in
what situations can this be used?

A: Callbacks are easier with .NET as compared to VB in the past.They are also
very interesting to program, but in a business setting, you should use them only
when you have no other choice. For example, a callback to notify a user of a
certain situation may be better handled with a generated e-mail instead.You
could develop and debug the e-mail code a lot faster, and the end-user could
then use her e-mail program to assign tasks, forward the e-mail, and so on.

Q: Where can I find out more about remoting?

A: The best newsgroup for this is the
microsoft.public.dotnet.framework.remoting group.Also, the MSDN area on
the Microsoft site often publishes articles on aspects of .NET remoting.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

167_C#_06.qxd 12/4/01 3:28 PM Page 343

167_C#_06.qxd 12/4/01 3:28 PM Page 344

Message Queuing
Using MSMQ

Solutions in this chapter:

■ Introducing MSMQ

■ Creating a Simple Application

■ Creating a Complex Application

■ Creating an Asynchronous Application

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 7

345

167_C#_07.qxd 12/4/01 3:30 PM Page 345

346 Chapter 7 • Message Queuing Using MSMQ

Introduction
The connectivity of local area networks (LANs) and the Internet has made the
concept of distributed applications a reality.Applications now routinely utilize
remote machines to perform tasks and provide services. Unfortunately, a dis-
tributed application has many more points of failure than a nondistributed appli-
cation—servers may be offline, the network may be overloaded, or the scheduled
maintenance or upgrading of servers can also cause problems for distributed
applications.What is needed is for an application to be able to continue running
when distributed resources are unavailable—which is what the messaging infra-
structure of Microsoft Message Queue (MSMQ) provides.

With MSMQ handling the communication between machines in a dis-
tributed application, it has a great deal of responsibility.All communication (mes-
sages) must have guaranteed delivery, security needs must be met, messages must
be logged, and delivery confirmations must be sent, too.The MSMQ product
provides all of these services and more—in fact, by using MSMQ technology, you
can make your applications more robust and scalable. For a small increase in
application complexity, you gain many rewards.

The .NET Framework provides added functionality during the development
of .NET applications. Objects can be serialized to binary or XML and then sent
as a message. By using .NET serialization you send any dataset, image, or file into
a message with very little coding.

In this chapter, we look at how MSMQ uses queues to store messages that
provide a communications mechanism between applications.You’ll see the
options that are available for the usage of queues and the variety of ways in
which messages can be created, sent, and received.We develop a simple MSMQ
example application, and we also discuss debugging and deployment issues.We
then move on to the more advanced areas of MSMQ and develop some addi-
tional example applications to show how MSMQ can be of use in your own
applications.

Introducing MSMQ
MSMQ provides solutions to a range of problem scenarios that appear during
application development.A common example is in client-server architecture
where a direct connection to the server is needed to handle information updates.
In this situation, any disruption to the server will cause all client applications to
fail, possibly causing idle staff and lost productivity. Such a disruption may be

www.syngress.com

167_C#_07.qxd 12/4/01 3:30 PM Page 346

www.syngress.com

caused by a hardware failure, power outage, or a server upgrade.The solution is to
use message queuing to “uncouple” the client and the server by providing a
storage point for communication between them. Now, if a connection to the
server cannot be made, data entered in client application can be stored in a
client-side message queue. Once a connection is reestablished, the messages are
then automatically forwarded to the destination queue on a remote server.An
application on the server will then read the messages from the message queue and
perform the necessary database updates.

A similar situation to the client/server scenario is when it becomes quite
common for client applications to be disconnected from the network. Sales staff
often use notebook computers to run their sales applications while they are on
the road. Some may type in information directly into the notebook, whereas
others may wait until they arrive back at the office. Instead of writing code to
handle the online and offline situations (and possibly an “upload to server” func-
tion), using message queuing to handle both cases is more efficient. In online
mode, all messages will be sent directly to the server queue. In offline mode, the
messages will be temporarily stored on the client, ready for forwarding to the
server queue when the network connection is made.

MSMQ also provides the plumbing you need for true distributed processing.
A good example of this is in the area of mathematical computation. If the work
required to find a solution to a mathematical problem can be divided into pieces
then such pieces could be placed on a queue. Each piece would constitute a mes-
sage containing all the information required for an idle computer on a network
to get started on the problem.These computers could take a piece of the mathe-
matical puzzle, calculate their share of the solution, and send the result back to
the queue.A central controlling application could then correlate the response
messages with the request messages and combine these results into the total solu-
tion.You may also need MSMQ when you hear the following during conversa-
tions between IT personnel:

■ “Not again!,This Web server always takes at least three minutes to
respond on Monday morning, and my app slows to a crawl.”

■ “The application locks up when they back up the server every night.
What can we do?”

■ “How can we trace the communication between these applications?”

■ “Last time our server was offline, we had 50 data entry operators idle for
an hour. How can we avoid this in the future?”

Message Queuing Using MSMQ • Chapter 7 347

167_C#_07.qxd 12/4/01 3:30 PM Page 347

348 Chapter 7 • Message Queuing Using MSMQ

A side effect of using MSMQ in your applications is that you can now easily
trace the messages sent between your application tiers.This tracing can help with
auditing and debugging your application.You can also authorize new applications
to hook onto your messaging infrastructure to reuse the services that your mes-
sage queuing applications provide.

The next time you participate in the planning phase of a software project,
keep these scenarios in mind, and you may find areas where MSMQ can really
save development time and increase application stability.

MSMQ Architecture
In the world of MSMQ, you will be dealing with two main objects—queues and
messages.A queue is a storage area for messages on a MSMQ server.A queue
may be public or private. Private queues can only be used on a single machine,
whereas public queues are replicated around the network for all machines to
access.A message can be thought of as an envelope containing data plus informa-
tion that describes the type of data being sent, its priority, security needs,
acknowledgement, and timing information.Applications may send and receive
messages from any queue that they have access to.

Computers running client applications must have MSMQ installed to be able
to send messages.Within the MSMQ architecture are two types of clients:

■ Dependent clients Dependent clients must have direct access to a
Message Queuing server. Client applications will then rely on the server
to carry out all message queuing functions.When many dependent
clients are connected to a Message Queuing server, a performance
penalty can occur.Also, you cannot use the “store and forward” features
of MSMQ with dependent clients—client apps will simply fail when
disconnected from the network. For this and other reasons, independent
clients are the recommended choice where possible.

■ Independent clients Independent clients do not need continuous
access to a Message Queuing server to send messages.Any messages that
are sent while disconnected from the network are stored locally in an
outgoing queue.When a connection is reestablished, the messages in the
outgoing queue will be sent to the destination queue.

www.syngress.com

167_C#_07.qxd 12/4/01 3:30 PM Page 348

Message Queuing Using MSMQ • Chapter 7 349

Installing MSMQ
To get started using MSMQ, you will need a computer running Windows 2000.
Simply choose Add/Remove Programs from the Control Panel, select Add/
Remove Windows Components, and select Message Queuing Services
from the list of components, as shown in Figure 7.1.You may require your
Windows 2000 installation CD to complete the install.

Using Visual Studio to Manage Queues
Visual Studio.NET provides the Server Explorer to handle common server
administration tasks, and you can use it to manage your MSMQ applications. If
the Server Explorer is not visible, just use Ctrl+Alt+S to display it—you will see
under the Servers node a list of computers that are available (see Figure 7.2).Your
own computer will be listed here, but you can connect to other servers by using
the Connect To Server toolbar button. Under a computer node is a list of
application services including Message Queues, which allows you to create/delete
queues and set various queue properties.

Creating a Simple Application
We now create a simple application that will send a string message to a queue
and receive it back.This application will be built upon later to demonstrate other
aspects of Message Queue applications.The code for this application is located on
the CD inside the MSMQapp1 project.

www.syngress.com

Figure 7.1 Selecting Message Queuing Services for Installation

167_C#_07.qxd 12/4/01 3:30 PM Page 349

350 Chapter 7 • Message Queuing Using MSMQ

NOTE

If you are using the example code from the CD, you will need to modify
the path to your message queue. To do this, click on the message queue
component while the form is in design view. In the Property window,
modify the path to a queue on your local Windows 2000 PC or server.

1. Create a new Windows Application type project in Visual Studio and
name the project MSMQapp1.

2. From within the Server Explorer, right-click Private Queues, select
Create Queue, and enter the name Alpha for the queue.

3. While Form1 is in design mode, click and drag the Alpha queue from
the Server Explorer to your form’s design surface.This will create a
queue component for your application to use.

4. Add two Buttons to the form called btnSend and btnReceive.

5. Add a private variable of type int to the class declaration of Form1 as
follows:

public class Form1 : System.Windows.Forms.Form

{

private System.Windows.Forms.Button btnSend;

private System.Windows.Forms.Button btnReceive;

www.syngress.com

Figure 7.2 The Server Explorer Showing Available Queues

167_C#_07.qxd 12/4/01 3:30 PM Page 350

Message Queuing Using MSMQ • Chapter 7 351

private System.Messaging.MessageQueue MyMQ;

private System.ComponentModel.IContainer components;

private int iCount = 0;

. . .

6. Add the following code to the click events of the two buttons.A quick
method of adding event handlers is to view the properties of a button,
switch to event view by clicking the Events toolbar button at the top of
the property window, and then double-click the click event from the
event listing.This will create the event handler method for you and
attach the new event handler to the button. It will also place the cursor
at the correct location in the code for you to start coding the event han-
dler. For those of you in more of a hurry, you can simply double-click
the button on the form.

private void btnSend_Click(object sender, System.EventArgs e)

{

iCount++;

try

{

MyMQ.Send("message contents " + iCount.ToString());

}

catch(Exception ex)

{

MessageBox.Show(this,ex.Message);

}

}

private void btnReceive_Click(object sender, System.EventArgs e)

{

System.Messaging.Message m;

String str;

try

www.syngress.com

167_C#_07.qxd 12/4/01 3:30 PM Page 351

352 Chapter 7 • Message Queuing Using MSMQ

{

m = MyMQ.Receive(new TimeSpan(0, 0, 3));

str = (String)m.Body;

}

catch

{

str = "No messages were receieved";

}

MessageBox.Show(this,str);

}

7. Build and run the MSMQapp1 application.

You can now click Send to send some messages to the Alpha message queue.
Now take a look at the Server Explorer and navigate to the Alpha node to see
the messages that you have sent. If you are running the application from within
Visual Studio, you will need to select Debug | Break All to pause execution so
that you can use the Server Explorer. Notice that as you click on a message in
Server Explorer, the Property window displays a large amount of information
regarding the specific message.

To receive messages, click Receive.A message box will display the contents
of the message received, as shown in Figure 7.3. Notice that the messages are
received in the same order that they were sent—this cannot be relied upon.
Messages that are sent with a higher priority can jump ahead of other messages
on the queue while other applications may remove messages from the queue
without your knowledge.A queue should be thought of as a “bag” of messages to
emphasize that we cannot make assumptions as to the order of messages we will
receive.

www.syngress.com

Figure 7.3 A Simple Messaging Application

167_C#_07.qxd 12/4/01 3:30 PM Page 352

Message Queuing Using MSMQ • Chapter 7 353

As a further experiment, try opening up two or more instances of the
MSMQapp1 application by using Explorer to find and execute MSMQapp1.exe
multiple times. Use one application instance to send messages and another
instance to receive them.You can see that each application is completely inde-
pendent and that they all share the same message queue.

Understanding the Messaging Code
The MSMQ classes are contained within the System.Messaging namespace. Of the
more than 20 classes contained within this namespace, the most important is
MessageQueue. In Step 3 in the previous section, when the Alpha queue was
dragged from Server Explorer to the form’s design surface, four lines of code were
automatically generated that will reference the System.Messaging namespace, declare
and create a MessageQueue object, and set the Path property to the location of the
Alpha queue.The format of the Path property is MachineName\\QueueName for
public queues and MachineName\\$Private\\QueueName for private queues.
Because the amount of generated code is quite small, manually adding similar code
to your applications is quite easy.

To send a message to a queue, you use the Send method of the MessageQueue
object. For the purposes of our example, a simple string was used as a message,
but we will see later how more complex messages may be sent.

To receive a message from a queue, use the Receive method of the MessageQueue
object.This method returns an object of type Message to the caller.The Message
object contains a large amount of information in regard to the message itself—if
you just want to know the content of the message, use the Body property.The Body
is of type object and therefore must be cast to the correct type of the receiving vari-
able, which in the example is type (String).The Receive method accepts a TimeSpan
parameter, which specifies how long we want to wait for the arrival of a message. If
a message exists on the queue, Receive will return quickly, but if no messages exist,
the application’s thread of execution will be blocked while waiting for the next
message. For this reason, keeping the wait time short is a good idea.An asyn-
chronous (nonblocking) method of receiving messages is described later in this
chapter in the section “Creating an Asynchronous Application.”

Sending Messages
Within the System.Messaging namespace is the Message class, which can be consid-
ered to be the “envelope” in which messages are sent.When you call the Send
method of a queue and pass in an object as a parameter, the .NET Framework

www.syngress.com

167_C#_07.qxd 12/4/01 3:30 PM Page 353

354 Chapter 7 • Message Queuing Using MSMQ

creates a new message and sets the Body property of the message to the object.
For example, the following code fragment

MyMQ.Send("content");

is equivalent to

Message m = new Message();

m.Body = "Content";

MyMQ.Send(m);

Be aware, though, that in creating your own Message object that you must set
the other properties of the Message object to suit your needs.When you send an
object that is not a Message, the Message properties are set to those defined in the
DefaultPropertiesToSend property of the queue.

You can test this method of sending messages by adding a button to Form1
called btnSend2 and adding the following code to the click event handler of the
button:

private void btnSend2_Click(object sender, System.EventArgs e)

{

System.Messaging.Message m = new System.Messaging.Message();

m.Body = "Custom Message";

MyMQ.Send(m);

}

NOTE

The code for this change is in the Form2.cs file on the CD. To update
your project as you read the chapter, from within Visual Studio, right-
click the Form1.cs file, choose Exclude From Project, then right-click the
solution, choose Add | Add Existing Item, and select the Form2.cs file.

Then add code to set the queue’s default properties for sending messages
directly after the InitializeComponent call in the form’s constructor:

public Form1()

{

www.syngress.com

167_C#_07.qxd 12/4/01 3:30 PM Page 354

Message Queuing Using MSMQ • Chapter 7 355

InitializeComponent();

MyMQ.DefaultPropertiesToSend.Label = "Default Label";

MyMQ.DefaultPropertiesToSend.Priority =

MessagePriority.Highest ;

}

Now build and run the application. Clicking on the first Send button will
now use the DefaultProperties for the queue because we are only passing a string
to the Send method.After clicking this button, a few times you can use the
Server Explorer to see the labels of the messages have been set to “Default
Label”. Using the second Send button will use the Message object that does not
have a label set. Notice that we are also making all default messages to be of
highest priority.This will cause the messages containing the words “message con-
tents” to always be received before the custom messages that contain the text
“Custom Message”.

Message Formats
All data that is sent to a remote server during Message Queue processing must be
serialized into a stream.The method of serializing an object into a stream is called
formatting.The Message class handles streaming automatically for you by applying a
formatter to whatever object you set as the Body property.The output of the for-
matter appears in the BodyStream property of the message:

■ XMLMessageFormatter Streams objects and value types to human-
readable XML.

■ BinaryMessageFormatter Streams objects to a binary stream.

■ ActiveXMessageFormatter Persists basic data types and enables a
message queuing application to work together with previous versions of
MSMQ.

You can also write a stream directly to the BodyStream property of the
Message object, and we use this method later to send images to a queue.

To examine the contents of the BodyStream property, you can use the Server
Explorer again to display the properties of a message. Click on the BodyStream
property from within the Properties window and you will see a “. . .” button
appear within the property value cell. Clicking on the button will display the
Byte Array Property Editor, as shown in Figure 7.4.

www.syngress.com

167_C#_07.qxd 12/4/01 3:30 PM Page 355

356 Chapter 7 • Message Queuing Using MSMQ

To change the formatter that is used, you can use the property window of the
MessageQueue component and select the formatter from the drop-down list.
From within the code, you can do the same by setting a reference to the
System.Runtime.Serialization.Formatters namespace and attaching a new formatter
to the queue as follows:

MyMQ.Formatter = new BinaryMessageFormatter(FormatterAssemblyStyle.Full,

FormatterTypeStyle.TypesAlways);

The FormatterAssemblyStyle and FormatterTypeStyle parameters determine how
assembly and type names are sent to the stream.These choices handle all situa-
tions by using the most verbose method of describing the types—if a more com-
pact stream is needed, you may want to experiment with the different options
available.

Sending and Receiving
Messages with Complex Objects
Formatters provide a means of streaming not only single objects but also complex
objects within a message.To test the sending of complex objects in a message, we
now add two new classes to the example application, have one class contain a
collection of the other class, instantiate the objects, and then pass them to a mes-
sage queue.The updated code is within the Form3.cs file on the CD.

First, add the following assembly reference to the top of the form’s code:

using System.Xml.Serialization;

Now, add two new classes to the application:

www.syngress.com

Figure 7.4 The BodyStream Contents—The Result of Streaming a
Message to XML

167_C#_07.qxd 12/4/01 3:30 PM Page 356

Message Queuing Using MSMQ • Chapter 7 357

[XmlInclude(typeof(Student))]

public class Teacher

{

public String name;

public System.Collections.ArrayList students;

public int salary;

public Teacher()

{

students = new System.Collections.ArrayList();

}

}

public class Student

{

public String name;

public int minutesInClass;

}

Don’t forget the [XmlInclude] attribute! This is needed when you send an
object of type Teacher to the XML formatter because the formatter will not rec-
ognize the Student objects within the ArrayList.This attribute allows the formatter
to serialize the Student objects found nested within a Teacher object. If this
attribute is not added, you will receive a runtime exception with the following
message:

There was an error generating the XML document. The type

MSMQapp1.Student was not expected. Use the XmlInclude or SoapInclude

attribute to specify types that are not known statically.

Now add a new button to the form called btnTeacher and add the following
code to the button’s click event:

private void btnTeacher_Click(object sender, System.EventArgs e)

{

Student s1 = new Student();

Student s2 = new Student();

Student s3 = new Student();

www.syngress.com

167_C#_07.qxd 12/4/01 3:30 PM Page 357

358 Chapter 7 • Message Queuing Using MSMQ

Teacher t = new Teacher();

s1.name = "Jason";

s2.name = "Marlo";

s3.name = "Jacky";

s1.minutesInClass = 90;

s2.minutesInClass = 5;

s3.minutesInClass = 100;

t.name = "Tom";

t.salary = 50000;

t.students.Add(s1);

t.students.Add(s2);

t.students.Add(s3);

System.Messaging.Message m = new System.Messaging.Message();

m.Body = t;

try

{

MyMQ.Send(m);

}

catch (Exception ex)

{

MessageBox.Show(ex.Message + " " + ex.InnerException.Message);

}

}

After building and running the application, click on the new button to send a
Teacher object with its contained Students to a message queue. By using the Byte
Array Property Editor to display the BodyStream property of the new message,
you can see that the objects have been successfully streamed to human-readable
XML, as shown in Figure 7.5.

www.syngress.com

167_C#_07.qxd 12/4/01 3:30 PM Page 358

Message Queuing Using MSMQ • Chapter 7 359

Figure 7.5 A Complex Object Streamed with the XML Formatter

<?xml version="1.0"?>

<Teacher xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<name>Tom</name>

<students>

<Object xsi:type="Student">

<name>Jason</name>

<minutesInClass>90</minutesInClass>

</Object>

<Object xsi:type="Student">

<name>Marlo</name>

<minutesInClass>5</minutesInClass>

</Object>

<Object xsi:type="Student">

<name>Jacky</name>

<minutesInClass>100</minutesInClass>

</Object>

</students>

<salary>50000</salary>

</Teacher>

Retrieving a complex object message from a queue is done using the familiar
Receive method of the MessageQueue class. Once the message is received, you will
need to use a formatter to obtain the original object from the BodyStream.This is
done by creating a formatter and specifying the type of object that needs to be
obtained.The Body property of the message can then be cast to the correct type.
To try this, append the following code to the end of the code in the
btnTeacher_Click event (this code is in Form4.cs on the CD):

System.Messaging.Message m2;

Teacher t2;

try

{

www.syngress.com

167_C#_07.qxd 12/4/01 3:30 PM Page 359

360 Chapter 7 • Message Queuing Using MSMQ

m2 = MyMQ.Receive(new TimeSpan(0, 0, 3));

m2.Formatter = new XmlMessageFormatter(new

Type[]{typeof(Teacher),typeof(Student)});

t2 = (Teacher)m2.Body;

MessageBox.Show("Message received. " + t2.name + " has " +

t2.students.Count + " students.");

}

catch (Exception ex)

{

MessageBox.Show(ex.Message);

}

After building and running the application, click on the same button used
earlier to send the Teacher object to the message queue.The preceding code will
then immediately receive the message, define an XML formatter, and extract the
Teacher object from the message.A dialog saying “Message received.Tom has 3
students.” will then be displayed.

Storing Files within Messages
The BodyStream property of the Message class contains the serialized form of the
message contents and usually does not need to be directly accessed by the devel-
oper (although it can be handy during debugging). One situation in which we
do need to use the BodyStream property is when we already have information in
a stream and wish to send it directly to a message queue.

Streams are usually created during memory and file I/O operations—we use
an image file to create a stream, pass the stream to a Message object, and then send
it to a queue.This message will then be received and a Bitmap object created
from the stream and displayed inside a PictureBox control.

The code for this example is in Form5.cs on the CD. First, add two new but-
tons to the simple messaging application called btnSendImage and btnReceiveImage.
Add a picture box control named picBox1 and also an OpenFileDialog component
to the form.Then add a reference to the System.IO namespace as follows:

using System.IO;

Now add the following code to the click events of the two new buttons:

www.syngress.com

167_C#_07.qxd 12/4/01 3:30 PM Page 360

Message Queuing Using MSMQ • Chapter 7 361

private void btnSendImage_Click(object sender, System.EventArgs e)

{

Stream imageStream;

System.Messaging.Message mImage = new System.Messaging.Message();

openFileDialog1.Filter = "image files (.bmp,.jpg,.gif)|

.bmp;.jpg;*.gif;*.exe" ;

openFileDialog1.FilterIndex = 1 ;

if(openFileDialog1.ShowDialog() == DialogResult.OK)

{

if((imageStream = openFileDialog1.OpenFile())!= null)

{

mImage.BodyStream = imageStream;

try

{

MyMQ.Send(mImage);

}

catch (Exception ex)

{

MessageBox.Show(ex.Message);

}

finally

{

imageStream.Close();

}

}

}

}

private void btnReceiveImage_Click(object sender, System.EventArgs e)

{

Bitmap bmp;

www.syngress.com

167_C#_07.qxd 12/4/01 3:30 PM Page 361

362 Chapter 7 • Message Queuing Using MSMQ

Stream imageStream;

System.Messaging.Message mImage = new System.Messaging.Message();

try

{

mImage = MyMQ.Receive(new TimeSpan(0, 0, 3));

}

catch

{

MessageBox.Show("No messages were received");

}

try

{

imageStream = mImage.BodyStream;

bmp = new Bitmap(imageStream);

picBox1.Image = bmp;

}

catch(Exception ex)

{

MessageBox.Show(ex.Message);

}

}

In the btnSendImage_Click event, the code obtains a file path from the user
and a stream is opened from the file and passed to the BodyStream property of the
message.The message is then sent in the usual manner using the Send method.

In the btnReceiveImage_Click event, a message is received, and a stream is
obtained from the BodyStream property.A new bitmap is then created from the
stream, and this bitmap is passed to a picture box object for display.The three
lines of code to achieve this can be reduced to the following one line of code:

picBox1.Image = new Bitmap(mImage.BodyStream);

After building and running the application, click on the btnSendImage button
and select a file from the dialog. Now click on the btnReceiveImage button, and
the image will be displayed as shown in Figure 7.6.

www.syngress.com

167_C#_07.qxd 12/4/01 3:30 PM Page 362

Message Queuing Using MSMQ • Chapter 7 363

www.syngress.com

Figure 7.6 Sending and Receiving an Image from a Queue

MSMQ Applications
During the development of MSMQ applications, many objects must act
in unison to achieve the desired results. Problems can occur in the fol-
lowing areas:

■ The DefaultPropertiesToSend property collection of a mes-
sage queue can cause unexpected behavior during the
sending of a primitive data type—make sure to check the set-
tings of the default properties.

■ The wrong formatter is used when sending a complex object.
■ A complex object does not contain the required attributes to

allow the serialization of the object’s contents.

Developing the message queuing application using simple string
messages can often be useful. Once the application has been debugged,
you can use more complex messages and formatters. Remember that
while debugging, you can always pause the execution of the code and
examine the contents of the messages with the Server Explorer window.

Another useful debugging tool is the Performance Viewer located
in the Administrative Tools area of the Control Panel. This tool displays
performance information for a range of services and applications, one of
them being MSMQ. To view the MSMQ performance statistics, click on
the + icon and select MSMQ Queue from the Performance Object list.
Choose one of the counters that displays either bytes or messages and
then click Add. You will now see the activity of MSMQ in real time and
can check that your queue is behaving as expected.

Debugging…

167_C#_07.qxd 12/4/01 3:30 PM Page 363

364 Chapter 7 • Message Queuing Using MSMQ

Setting Queue Options
So far we have mostly accepted the default properties of a queue that the .NET
Framework has provided.To improve the robustness of a message queuing appli-
cation, you need to modify some of these properties.To do so, click on Message
Queue component while your form is in design mode.The Property window
will display the DefaultPropertiesToSend property with a + icon so that you can
expand it. Some important properties to modify are the following:

■ AcknowledgeType Use this property to request acknowledgement on
the success or failure of messages to reach a destination queue.
Acknowledgements are sent as messages to the Administration queue
defined by the developer.

■ AdministrationQueue This queue will receive acknowledgement
messages that are generated on success or failure conditions as defined in
the AcknowledgeType property.

■ Recoverable Setting this property to true will guarantee the delivery
of a message even if a computer or network failure occurs.To achieve
this, the message and its state are written to disk at all times in order to
recover from such failures. Setting this option does degrade the
throughput of the application.

■ TimeToBeReceived Sets the maximum amount of time for a message
to wait on the destination queue. If the UseDeadLetterQueue property is
set to true, the expired message will be sent to the dead-letter queue.

■ TimeToReachQueue Specifies the maximum amount of time for a
message to arrive at the destination queue. If the UseDeadLetterQueue
property is set to true, the expired message will be sent to the dead-
letter queue.

NOTE

You can also specify the properties listed in this section on a per-message
basis by setting the equivalent properties on a Message object.

We now use a couple of these properties to send expired messages to the
dead-letter queue (the code for this is in the Form6.cs file on the CD):

www.syngress.com

167_C#_07.qxd 12/4/01 3:30 PM Page 364

Message Queuing Using MSMQ • Chapter 7 365

1. Open the form of the simple messaging application in design mode.

2. Click on the message queue component under the form and bring up
the Property window.

3. Expand the DefaultProperties property by clicking on the + icon.

4. Set the TimeToBeReceived property to 5 seconds.

5. Set the UseDeadLetterQueue property to true.

6. Build and start the project.

Now click Send (the very first button that was added to the project).You
now have five seconds to click the Receive button to obtain the message before
it expires and is sent to the dead-letter queue.Try this a few times and make sure
to let a few messages expire! You can now view the dead-letter queue by using
the Server Explorer, as shown in Figure 7.7.

Creating a Complex Application
We now create a more complex message queuing application.This application is
composed of a form that allows the user to draw pictures using line segments.A
Drawing object that contains a collection of Line objects will hold the drawing’s
information.The Drawing object will then be streamed to XML and sent to a
queue.Another application will “listen” in on the queue and receive any new
drawings that appear on the queue and then display them.

The application has three separate projects (the full source code is available on
the CD):

www.syngress.com

Figure 7.7 Examining the Dead-Letter Queue

167_C#_07.qxd 12/4/01 3:30 PM Page 365

366 Chapter 7 • Message Queuing Using MSMQ

■ MSMQGraphics A class library application that contains the Drawing
and Line classes.This DLL is used by the other two projects.

■ DrawingSender A Windows application that allows the user to draw
on the form and send the drawing as a message.

■ DrawingReceiver A Windows application that listens for new draw-
ings on the queue.

Creating the MSMQGraphics Drawing Library
Figure 7.8 shows the code listing of the MSMQGraphics class library.This library
contains all the functionality needed to draw a collection of line segments on a
graphics surface.

Figure 7.8 The Drawing Library Project

using System;

using System.Drawing;

using System.Xml.Serialization;

using System.Collections;

namespace MSMQGraphics

{

[XmlInclude(typeof(Line))]

public class Drawing

{

public ArrayList lines;

public Drawing()

{

lines = new ArrayList();

}

public void clear()

{

lines.Clear();

}

www.syngress.com

Continued

167_C#_07.qxd 12/4/01 3:30 PM Page 366

Message Queuing Using MSMQ • Chapter 7 367

public void add(Line l)

{

lines.Add(l);

}

public void draw(Graphics g)

{

foreach (Line l in lines)

{

l.draw(g);

}

}

}

public class Line

{

public int x1;

public int y1;

public int x2;

public int y2;

public int Win32Color;

public Line()

{

}

public Line(int Win32Color,int x1,int y1,int x2,int y2)

{

this.x1 = x1;

this.y1 = y1;

this.x2 = x2;

this.y2 = y2;

this.Win32Color = Win32Color;

www.syngress.com

Figure 7.8 Continued

Continued

167_C#_07.qxd 12/4/01 3:30 PM Page 367

368 Chapter 7 • Message Queuing Using MSMQ

}

public void draw(Graphics g)

{

g.DrawLine(newPen(ColorTranslator.FromWin32(Win32Color)),

x1,y1,x2,y2);

}

}

}

This code should be straightforward for those that have spent some time with
C# class definitions and collections, but some points must be noted. First, the
XmlInclude attribute is necessary so that the XML formatter can recognize the
Line objects within the ArrayList. Also, a default constructor for the Line class has
been added because this is also required by the XML formatter. Finally, you will
notice that we have used an integer value to determine the color instead of a
Color object.This roundabout way is due to the XML formatter being unable to
handle static classes.As you can see, it is important to design classes so that they
may be easily handled by the XML formatter if you expect that they will be used
within a MSMQ application.

www.syngress.com

Figure 7.8 Continued

MSMQ Applications
The development of message queuing applications can be aided by cre-
ating a class that hides many of the message queuing details from other
areas. Such a class would have an event that was called when messages
arrived allowing you to attach your own event handler. All formatting
and streaming would be handled inside this class, too, and you could
use extra methods to make development more efficient. For example,
you could have a Clear method that would clear out all messages from
your queue and a Dump method that could write the contents of all
messages to a file. With some extra effort, this class could be reused in
future message queue applications.

Developing & Deploying…

Continued

167_C#_07.qxd 12/4/01 3:30 PM Page 368

Message Queuing Using MSMQ • Chapter 7 369

Creating the DrawingSender Project
This project will use the MSMQGraphics library to allow the user to draw on a
form.This form contains the following components:

■ pictureBox1 The drawing surface.

■ btnColor This button is used to change the current color.

■ btnSend This button will send the drawing to the drawings message
queue.

■ drawingMQ The message queue component that was created by drag-
ging the drawings message queue from the Server Explorer window.

■ colorDialog1 A color dialog window that allows the selection of a
color.

The code that handles the drawing and sending of the message is shown in
Figure 7.9.

Figure 7.9 The DrawingSender Project

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

www.syngress.com

Message queuing code often has to depend on a queue having been
already created by an administrator. By adding an installer for your
queue, you can make sure that such queues are created during installa-
tion. To add an installer, click on the Message Queue component under
your form while it is in design mode. View the properties for the compo-
nent and click on the Add Installer hyperlink at the bottom of the
Properties window. Visual Studio will create a new file named
ProjectInstaller.cs and place the file in design mode so that the
messageQueueInstaller1 component is visible on the design surface. You
can then click on the messageQueueInstaller1 component and set the
properties of the queue in the Property window. The executable built
from this project will now contain a ProjectInstaller class that is detected
by the installutil.exe tool. Running installutil.exe with the path to the pro-
ject executable as a command-line parameter will then install the queue.

Continued

167_C#_07.qxd 12/4/01 3:30 PM Page 369

370 Chapter 7 • Message Queuing Using MSMQ

using System.Data;

using System.Messaging;

using System.Xml.Serialization;

using MSMQGraphics;

namespace DrawingSender

{

public class Form1 : System.Windows.Forms.Form

{

private System.Windows.Forms.PictureBox pictureBox1;

private System.Windows.Forms.Button btnSend;

private System.Windows.Forms.ColorDialog colorDialog1;

private System.Windows.Forms.Button btnColor;

private System.Drawing.Color currentColor;

private System.Drawing.Pen currentPen;

private int startx;

private int starty;

private int endx;

private int endy;

private bool lineInProgress = false;

private MSMQGraphics.Drawing thisDrawing =

new MSMQGraphics.Drawing();

private System.Messaging.MessageQueue drawingMQ;

private System.ComponentModel.Container components = null;

public Form1()

{

InitializeComponent();

currentColor = Color.Black;

currentPen = new Pen(currentColor);

}

private void btnSend_Click(object sender, System.EventArgs e)

www.syngress.com

Figure 7.9 Continued

Continued

167_C#_07.qxd 12/4/01 3:30 PM Page 370

Message Queuing Using MSMQ • Chapter 7 371

{

System.Messaging.Message m = new System.Messaging.Message();

m.Body = thisDrawing;

try

{

drawingMQ.Send(m);

}

catch (Exception ex)

{

MessageBox.Show(ex.Message + " " +

ex.InnerException.Message);

}

}

private void btnColor_Click(object sender, System.EventArgs e)

{

colorDialog1.ShowDialog();

currentColor = colorDialog1.Color;

btnColor.BackColor = currentColor;

currentPen = new System.Drawing.Pen(currentColor);

}

private void pictureBox1_MouseDown(object sender,

System.Windows.Forms.MouseEventArgs e)

{

startx = e.X;

starty = e.Y;

lineInProgress = true;

}

private void pictureBox1_MouseMove(object sender,

System.Windows.Forms.MouseEventArgs e)

{

www.syngress.com

Figure 7.9 Continued

Continued

167_C#_07.qxd 12/4/01 3:30 PM Page 371

372 Chapter 7 • Message Queuing Using MSMQ

if (lineInProgress)

{

endx = e.X;

endy = e.Y;

pictureBox1.Invalidate();

}

}

private void pictureBox1_MouseUp(object sender,

System.Windows.Forms.MouseEventArgs e)

{

if (lineInProgress)

{

lineInProgress = false;

Graphics g = pictureBox1.CreateGraphics();

g.DrawLine(currentPen,startx,starty,e.X,e.Y);

Line l = new Line(ColorTranslator.ToWin32(

currentColor),startx,starty,e.X,e.Y);

thisDrawing.add(l);

}

}

private void pictureBox1_Paint(object sender,

System.Windows.Forms.PaintEventArgs e)

{

thisDrawing.draw(e.Graphics);

if (lineInProgress)

{

e.Graphics.DrawLine(currentPen,startx,starty,endx,endy);

}

}

}

}

www.syngress.com

Figure 7.9 Continued

167_C#_07.qxd 12/4/01 3:30 PM Page 372

Message Queuing Using MSMQ • Chapter 7 373

The form defined in this code has a private property that holds the current
drawing, thisDrawing. As mouse events are detected, Line objects are created and
then added to the line collection within the Drawing object.When the user is
happy with the drawing, clicking the Send button sends the Drawing object
together with its line objects to the message queue. Note that this project must
have a reference to the MSMQDrawing project to enable the application to be
compiled.

Creating the DrawingReceiver Project
This project also uses the MSMQGraphics library and consists of the following
components:

■ pictureBox1 The drawing surface.

■ timer1 A timer that attempts to receive messages every 5 seconds.

■ drawingMQ The message queue component that was created by drag-
ging the drawings message queue from the Server Explorer window.

The code that handles the receiving of the drawing message and displays it is
shown in Figure 7.10.

Figure 7.10 The DrawingReceiver Project

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.Messaging;

using System.Xml.Serialization;

using MSMQGraphics;

namespace DrawingReceiver

{

public class Form1 : System.Windows.Forms.Form

{

private System.Windows.Forms.PictureBox pictureBox1;

www.syngress.com

Continued

167_C#_07.qxd 12/4/01 3:30 PM Page 373

374 Chapter 7 • Message Queuing Using MSMQ

private MSMQGraphics.Drawing thisDrawing;

private System.Messaging.MessageQueue drawingMQ;

private System.Windows.Forms.Timer timer1;

private System.ComponentModel.IContainer components;

public Form1()

{

InitializeComponent();

thisDrawing = new MSMQGraphics.Drawing();

timer1.Enabled = true;

}

private void checkForDrawing()

{

System.Messaging.Message m;

MSMQGraphics.Drawing d;

try

{

m = drawingMQ.Receive(new TimeSpan(0, 0, 1));

m.Formatter = new XmlMessageFormatter(new

Type[]{typeof(MSMQGraphics.Drawing),

typeof(MSMQGraphics.Line)});

d = (MSMQGraphics.Drawing)m.Body;

thisDrawing = d;

pictureBox1.Invalidate();

}

catch

www.syngress.com

Figure 7.10 Continued

Continued

167_C#_07.qxd 12/4/01 3:30 PM Page 374

Message Queuing Using MSMQ • Chapter 7 375

{

// We don't want to display a message after

every 5 second poll if no messages are available

}

}

private void pictureBox1_Paint(object sender,

System.Windows.Forms.PaintEventArgs e)

{

thisDrawing.draw(e.Graphics);

}

private void timer1_Tick(object sender, System.EventArgs e)

{

checkForDrawing();

}

}

}

This form also has a reference to the MSMQDrawing project to give access to
the Drawing and Line classes.After the queue is initialized, the timer control is
enabled and polling of the queue at five-second intervals is started.When a mes-
sage is received, the XML formatter is applied to the message to build the
Drawing object together with the collection of Line objects.The Invalidate method
is then called on the picture box control, which forces a Paint event and the sub-
sequent display of the drawing.

After building the solution, two executables (DrawingSender.exe,
DrawingReceiver.exe) will be created. By running the DrawingSender application,
a form will be displayed, as shown in Figure 7.11.

By clicking and dragging on the form, you can draw line segments; you can
change the current color selection by clicking the Change Color button. Clicking
Send will send the drawing to the message queue.As you draw, you can send the
latest version of the drawing to the queue at any time. By starting the drawing
receiver application (DrawingReceiver.exe), you will see your drawing progressively
appear as each drawing is received at five second intervals—see Figure 7.12.

www.syngress.com

Figure 7.10 Continued

167_C#_07.qxd 12/4/01 3:30 PM Page 375

376 Chapter 7 • Message Queuing Using MSMQ

Creating an Asynchronous Application
You may have noticed while working with the examples in this chapter that the
application will stop responding while waiting to receive messages (especially if
none are in the queue). In some situations, you may want the user or the applica-
tion to perform some other task while waiting for a message.To make an asyn-
chronous call, you use the BeginReceive method of the MessageQueue object.

The call to BeginReceive returns immediately, and a callback is made to the
ReceiveCompleted method of the MessageQueue component when a message
arrives.We will now modify the Drawing Receiver application to make asyn-
chronous calls for receiving messages (this modified form is saved as Form2 in the
DrawingReceiver source code directory).This modified code is in the file Form2.cs
in the DrawingReceiver directory on the CD:

■ Remove the timer1 control from the form.

■ Remove the timer1_Tick method and the timer1.Enabled = true line of
code from the form.

www.syngress.com

Figure 7.11 The DrawingSender Application

Figure 7.12 The DrawingReceiver Application Receiving Images from a
Message Queue

167_C#_07.qxd 12/4/01 3:30 PM Page 376

Message Queuing Using MSMQ • Chapter 7 377

■ While the form is in design-view, double-click the message queue com-
ponent located under the form.This will create the ReceiveCompleted
method.

■ In the forms constructor, add a call to checkForDrawing().The constructor
will then have the following code:

public Form1()

{

InitializeComponent();

thisDrawing = new MSMQGraphics.Drawing();

checkForDrawing();

}

■ Modify the checkForDrawing method to call the BeginReceive method of
the message queue and add code to the ReceiveCompleted method as
shown here:

private void checkForDrawing()

{

drawingMQ.BeginReceive(new TimeSpan(0, 0, 3));

}

private void drawingMQ_ReceiveCompleted(object sender,

System.Messaging.ReceiveCompletedEventArgs e)

{

System.Messaging.Message m;

MSMQGraphics.Drawing d;

try

{

if (e.Message != null)

{

m = e.Message;

m.Formatter = new XmlMessageFormatter(new Type[]{typeof(

MSMQGraphics.Drawing),typeof(MSMQGraphics.Line)});

d = (MSMQGraphics.Drawing)m.Body;

www.syngress.com

167_C#_07.qxd 12/4/01 3:30 PM Page 377

378 Chapter 7 • Message Queuing Using MSMQ

thisDrawing = d;

pictureBox1.Invalidate();

}

}

catch

{ }

drawingMQ.BeginReceive(new TimeSpan(0, 0, 3));

}

The initial call to checkForDrawing simply initiates the asynchronous call.
When the message is received (or the timeout has been reached), the
ReceiveCompleted method is called, and it is here where the work is done to
extract the message.After the message has been processed, the BeginReceive
method is called again to restart the process.

Using Public Queues While
Disconnected from the Network
A useful feature of MSMQ applications is their ability to keep operating even
when disconnected from the network. Once the client application is recon-
nected, the messages that have been stored on the client are then forwarded to
the designation queue.To use this feature in your own applications, you need to
modify the method of identifying the queue.

All of the examples in the chapter use the Path property to point to a queue.
For example:

this.drawingMQ.Path = "synergy\\drawings";

If you attempt to send a message, and the queue specified in the Path can not
be found, an exception is raised and the send fails.To avoid this problem, you can
specify a path location in a second way, which uses the syntax FormatName:[
format name].

To obtain the FormatName for a queue, you use the Solution Explorer and
click on the queue you want to use.The Property window will then show the
FormatName property, which you can cut and paste into your code.The code to
specify the message queue will then appear similar to this:

drawingMQ.Path="FormatName:Public={81c4c70d-71e7-4ec6-a910-

9fcf16278f8b}";

www.syngress.com

167_C#_07.qxd 12/4/01 3:30 PM Page 378

Message Queuing Using MSMQ • Chapter 7 379

Summary
This chapter gave an introduction to the powerful services that Microsoft
Message Queue (MSMQ) provides. Message queuing helps distributed applica-
tions in the following areas:

■ Less reliance on permanent connections to servers

■ Asynchronous requests capability

■ Robustness in the face of hardware of network instability

■ Communication encryption and authorization

■ Tracing and failure notifications

A message queuing application sends and receives messages from queues.
These queues may be located on the same machine or on a remote server.
Examining the client tier of an application, there are two types of MSMQ
clients—dependent and independent.A dependent client requires a direct con-
nection to a Message Queuing server to send messages, whereas an independent
client can operate with or without such a connection.

MSMQ is a Windows component.Therefore, you can install it from the
Add/Remove Windows Components area of the Control Panel. During installa-
tion, you will be asked whether you require a dependent or independent client
installation.After a successful installation, you can use Visual Studio.NET to
manage your queues from the Server Explorer window.

The message queuing area of the .NET Framework is in the System.Messaging
namespace.The most important class in this namespace, MessageQueue, allows you
to send and receive messages and to manage your queues.The Send method of
the MessageQueue class allows you to send messages; you use the Receive method
to receive them.Although you can send simple strings as messages, you can also
create and send a Message object. Using the Message object allows you to fine-tune
the message settings on a per-message basis.The Receive method will block code
execution while waiting for messages.To prevent this, you can use the asyn-
chronous BeginReceive method—the method call will return immediately and
the ReceiveCompleted method of the MessageQueue object will be called when a
message arrives.

Messages that are sent to a queue must be serialized into a stream.The .NET
Framework provides two serialization methods (formatters) for this purpose:
XMLMessageFormatter and BinaryMessageFormatter, which are selected by using
the Formatter property of the MessageQueue class.A third formatter type,

www.syngress.com

167_C#_07.qxd 12/4/01 3:30 PM Page 379

380 Chapter 7 • Message Queuing Using MSMQ

ActiveXMessageFormatter, is used when connecting to queues created with pre-
vious versions of MSMQ. By using formatters to stream message data, the .NET
Framework allows the sending of complex nested objects as messages, too. It may
be necessary to modify such classes so that they are “formatter friendly” before
using them in a message queuing application. If an application is dealing with
streams of data from files, memory, images, and so on, you can bypass the format-
ting process and send the stream directly into the message by using the
BodyStream property of the Message class.

Message queues have a number of configuration settings that modify the way
messages are handled.These settings are within the DefaultPropertiesToSend prop-
erty collection of the MessageQueue class.The TimeToBeReceived and
TimeToReachQueue properties specify the timeout settings of any messages sent to
the queue—any messages that expire are sent to the dead-letter queue if
UseDeadLetterQueue is set to true.The Recoverable property makes sure that all
messages are written to disk so that you can recover them after an unexpected
system shutdown.The AcknowledgeType property requests acknowledgement mes-
sages reporting on the success or failure of messages in reaching the destination
queue—the AdministrationQueue specifies which queue will receive these
acknowledgement messages.You can also set all of these properties for individual
messages by setting the corresponding properties on a Message object.

When sending messages to a public queue on a remote server, you may need
to handle the situation where a network connection is unavailable. In this case,
you must use the FormatName of the queue.The FormatName is composed of a
GUID string that uniquely identifies the queue on the network.All messages sent
while disconnected from a network are stored temporarily in an outgoing queue,
ready to be forwarded to the destination queue when a network connection is
reestablished.

Solutions Fast Track

Introducing MSMQ

Message queuing applications use queues and messages to communicate.

Queues are storage areas for messages. Queues can be either public or
private.

Public queues can be shared by all computers on a network. Private
queues can be used only by the machine where the queue resides.

www.syngress.com

167_C#_07.qxd 12/4/01 3:30 PM Page 380

Message Queuing Using MSMQ • Chapter 7 381

MSMQ client machines are either dependent or independent.A
dependent client requires a connection to a remote queue to send
messages, whereas an independent client does not.

Creating a Simple Application

Messages can be sent using two methods—by using a Message object or a
simple data type.

When sending a simple data type, the message queue’s default properties
are used.

When using the Message object, you can set its properties to handle your
messaging requirements instead of using the message queue’s default
properties.

Creating a Complex Application

You can send complex objects as messages by using a formatter to
stream the message to XML.

The class definitions of the complex object must contain attributes to
help the formatter.

Creating an Asynchronous Application

An asynchronous message queuing application will immediately return
control back to the user while waiting for messages to arrive.

The asynchronous receive method will also return after a specified period
of time if no messages were received.

An asynchronous receive uses the ReceiveCompleted method of the
MessageQueue object to notify an application when a message has been
received.

www.syngress.com

167_C#_07.qxd 12/4/01 3:30 PM Page 381

382 Chapter 7 • Message Queuing Using MSMQ

Q: In what ways can I improve the performance of my MSMQ applications?

A: With MSMQ, as in other software areas, a tradeoff exists between security/
stability and performance.Acknowledgement messages can lessen perfor-
mance because they can effectively double the number of messages being
handled.The Recoverable property, although useful in persisting messages to
disk, can also cause performance problems with large numbers of messages. It
is important to do performance testing under expected loads before the
deployment of a new application.

Q: How can I programmatically list available queues?

A: The GetPublicQueuesByLabel, GetPublicQueuesByCategory, and
GetPublicQueuesByMachine methods of the MessageQueue class provide access
to queues on a network.To specify more exactly the type of queue you are
looking for, the GetPublicQueues method has a MessageQueueCriteria parameter
in which you can specify combinations of search criteria.

Q: I want to examine the contents of a message before actually removing it from
the queue. How can I do that?

A: The MessageQueue class has Peek and BeginPeek methods that allow both syn-
chronous and asynchronous retrieval of messages without removing them
from the queue.These methods return a Message object that you can then
examine, and you can store the ID of this message.Then, if your program
logic decides to remove this message from the queue, it can use the
ReceiveById method to remove the message. Using the ID for message
removal is important because another application may also remove the mes-
sage between your calls to Peek and Receive.

Q: How can I learn more about message queuing?

A: The microsoft.public.dotnet.general news group has some .NET-specific
MSMQ information; the microsoft.public.msmq groups are the main areas of
activity.

www.syngress.com

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

167_C#_07.qxd 12/4/01 3:30 PM Page 382

ADO.NET

Solutions in this chapter:

■ Introducing ADO.NET

■ Working with System.Data.OleDb

■ Working with SQL.NET

■ Working with Odbc.NET

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 8

383

167_C#_08.qxd 12/4/01 3:32 PM Page 383

384 Chapter 8 • ADO.NET

Introduction
ADO.NET is the latest implementation of Microsoft’s Universal Data Access
strategy. In the past few years, classic ActiveX Data Objects (ADO) has gone
through many changes, bug fixes, and enhancements.These libraries have been
the foundation for many Web sites and applications that are in place today.
ADO.NET will be no different in this respect because Microsoft is positioning
ADO.NET to be the primary data access technology for the .NET Framework.
This will ensure that the Data Access Architecture is mature and robust because
all the Common Language Runtime (CLR) languages will be using ADO.NET
for their primary means of communicating with data providers.

Flexible and efficient data access technologies are at the heart of dynamic
Web sites and Web applications. Classic ADO serialized data in a proprietary pro-
tocol that limited its reach, and it could have been made more efficient.
ADO.NET serializes data using XML.This allows ADO.NET to take advantage
of a standards-based approach to moving data back and forth in your applications.
With rich support for any data source that can create or consume XML,
ADO.NET is truly the data access technology for current and future applications.
Through ADO.NET, you are able to connect to myriad data sources with the
speed and flexibility that today’s businesses require.

The goal for the developers of the ADO.NET architecture was to continue
the tradition of ADO by further removing the complexities of interacting with
different data providers and shielding you from the intricacies that would inter-
fere with your primary mission: packing functionality and usefulness into your
applications.After this chapter, you should feel comfortable with connecting,
viewing, and editing data using ADO.NET in the .NET Framework.

Introducing ADO.NET
To start with, let’s talk about the foundation.ADO.NET is based on XML, so
you have rich support for XML documents. Classic ADO had some support later
on for XML, but the format was difficult to use unless you were exchanging it
with another ADO client.The ADO.NET objects are consistent with the XML
specification and are well-defined. It is possible to take a plain XML document
with just a root node and open it in ADO.NET, add data to it, and save it back
out. Pretty handy for persistence.

The ADO Recordset is dead.ADO.NET has a couple of new ways to serve
data, which made the Recordset obsolete. In classic ADO, the Recordset object was a

www.syngress.com

167_C#_08.qxd 12/4/01 3:32 PM Page 384

www.syngress.com

representation of a database cursor.You could open a Recordset, navigate forwards
and backwards, change data, and leave it open. Leaving the Recordset open, how-
ever, would result in wasting resources on the database server.This was undesir-
able. In classic ADO, you could disconnect a Recordset and even save the Recordset
to disk; however, updating a disconnected Recordset was difficult.ADO.NET has
two options that work together to replace the Recordset: DataSet and the
DataReader.

You can think of the DataSet as an in-memory relational database. It has pro-
visions for multiple tables, relations within the DataSet, primary keys, views,
sorting—the list goes on. Classic ADO has no counterpart to the DataSet.The
DataSet is not connected to the data source and holds a copy of the data that is
put into it from the data source.You can populate a DataSet from any .NET
provider, and you can save the contents back to any .NET provider.

The DataSet requires a DataAdapter.The DataAdapter represents the connec-
tion and commands to “fill” the DataSet.After the user is finished adding or
updating the DataSet, the Update method of the DataAdapter is called and the
changes are committed back to the data source.A couple of notes here; changes
are not required to be committed back to the original source, and you can
transfer data to another data source as long as the schema’s match.The other
thing to keep in mind, especially when developing for ASP.NET, is that this is a
disconnected copy of your data. It is suitable for a small subset of the data from
your data source. For ASP.NET, a possible use would be for a small amount of
data that needs to be retrieved more than once in the same page rendering, or
that will not change in the course of a user’s session. For example, consider a Web
application that has a drop-down list that contains the 50 states in the United
States of America. If more than one of these is used on a page, a DataSet could be
filled and every instance of the drop-down list is bound to this DataSet.This way,
a database connection is created and used once for all 50 states and the results can
be reused.

You can think of the DataReader as a fire hose recordset.A fire hose recordset
was a nickname given to a read-only, forward-only Recordset in classic ADO. So, a
DataReader is a forward-only, non-updateable stream of data from the data
provider. For ASP.NET work, this is the object that is most useful. Because Web
development is stateless, fast access to the data is more important than scrolling
and updating.Another noteworthy item is that the DataAdapter uses a DataReader
to populate a DataSet.

The next item we want to discuss is the idea of Managed Providers.A
Managed Provider is a namespace designed to connect to—and execute commands

ADO.NET • Chapter 8 385

167_C#_08.qxd 12/4/01 3:32 PM Page 385

386 Chapter 8 • ADO.NET

against—a data source.A good example is the SqlClient Managed Provider.This
namespace is written specifically to connect to Microsoft SQL Server.ADO.NET
can be separated into two fundamental architectures, the first being the data “con-
tainers,” and the second being the Managed Providers. Data containers are the
DataSet, DataTable, and DataReader objects.The objects are data-source-agnostic in
that they do not contain any code specific to a data source.They do not really care
where the data comes from—they are generic in nature.

Managed Providers, on the other hand, are specific to a data source.
ADO.NET implements Managed Providers using different namespaces for the
different data providers. In classic ADO, the Provider Property dictated the data
source you were connecting to. For example, Microsoft Access would take a
provider of “Microsoft.Jet.OLEDB.4.0”. For SQL Server, it was “SQLOLEDB.1”.

So, for example, this code:

Dim oConn as ADODB.Connection

SET oConn = New ADODB.Connection

oConn.Provider="SQLOLEDB.1"

becomes

SqlConnection oConn;

oConn = new SqlConnection(strConn);

More commonly, the Provider property was another parameter in the
Connection string.The Provider property is still used in the OleDb, and the Open
Database Connectivity (ODBC) namespaces, however, the SqlClient namespace
does not use a Provider property, and if the Provider property is left in the
Connection string for a SqlConnection object, the object will throw an exception.
Connection strings are discussed in detail later in the chapter.

ADO.NET Architecture
ADO.NET is the latest extension of the Universal Data Access technology. Its
architecture is similar to classic ADO in some respects, but a great departure in
others.ADO.NET is much simpler, less dependent on the data source, more flex-
ible, and the format of data is textual instead of binary.Textual formatted data is
more verbose than binary formatted data, and this makes it comparably larger.
The tradeoff is ease of transportation through disconnected networks, flexibility,
and speed.

www.syngress.com

167_C#_08.qxd 12/4/01 3:32 PM Page 386

ADO.NET • Chapter 8 387

Because data in ADO.NET is based on XML, Managed Providers are required
to serve data in a proper XML format. Once a developer has written data access
code, they only need to change a few parameters to connect to a different data
source.

ADO.NET is based on a connection-less principle that is designed to ease the
connection limitations that developers have traditionally had to deal with when
creating distributed solutions.You no longer need to maintain a connection, or
even worry about many of the connection options that developers had to deal
with in the past.

Because the ADO.NET classes inherit from the same core of data access
classes, switching data sources is much easier and less troublesome.Table 8.1
shows the core ADO.NET namespaces.

Table 8.1 ADO.NET Core Namespaces

Namespace Description

System.Data Makes up the core objects such as DataTable,
DataColumn, DataView, and Constraints. This
namespace forms the basis for the others.

System.Data.Common Defines generic objects shared by the different
data providers such as DataAdapter,
DataColumnMapping, and DataTableMapping.
This namespace is used by data providers and con-
tains collections useful for accessing data sources.
For the most part, you do not use this namespace
unless you are creating your own data provider.

System.Data.OleDb Defines objects that you use to connect to and
modify data in various data sources. It is written as
the generic data provider, and the implementation
provided by the .NET Framework in Beta2 contained
drivers for Microsoft SQL Server, the Microsoft OLE
DB Provider for Oracle, and Microsoft Provider for
Jet 4.0. This class is useful if your project connects to
many different data sources, but you want more
performance than the ODBC provider.

System.Data.SqlClient A data provider namespace created specifically for
Microsoft SQL Server version 7.0 and up. If you are
using Microsoft SQL Server, this namespace is
written to take advantage of the Microsoft SQL
Server API directly and provides better performance
than the more generic System.Data.OleDb name-
space.

www.syngress.com
Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 387

388 Chapter 8 • ADO.NET

System.Data.SqlTypes Provides classes for data types specific to Microsoft
SQL Server. These classes are designed specifically for
SQL Server and provide better performance. If you
do not use these specifically, the SQLClient objects
will do it for you, but may result in loss of precision
or type-conversion errors.

System.Data.Odbc This namespace is intended to work with all com-
pliant ODBC drivers. It is available as a separate
download from Microsoft.

The Command, Connection, DataReader, and DataAdapter are the core objects in
ADO.NET.They form the basis for all operations regarding data in .NET.These
objects are created from the System.Data.OleDb, System.Data.SqlClient, and the
System.Data.Odbc namespaces.

Understanding the Connection Object
Making a database connection in ADO.NET is really very simple.The most diffi-
cult part of creating the connection is the Connection string.This is a semicolon-
delimited string of name-value pairs. If you have worked with ODBC, or even
OLE-DB, they are basically the same with a twist for the SqlConnection object.
Because the only acceptable data source that the SqlConnection object can connect
to is Microsoft SQL Server, you do not need to specify a provider, it is under-
stood that SQL Server is the data provider.

It has become common to create what is referred to as the DAL, or Data
Access Layer.This implies a multitiered approach to application architecture, and
ADO.NET lends itself quite well for this purpose. Because the System.Data
namespace doesn’t really care about the data source or connection, the data con-
tainer objects such as the DataSet can be populated from any provider that can
understand how to connect between them and the data source. So, if a developer
has a page level DataSet, it can be populated from an OleDbDataReader object, or
the SqlDataReader object.The data source can be decided at runtime if the appli-
cation requires it.

Each Managed Provider implements a connection object which is specific to
the data sources it will connect to.The OleDb Managed Provider is specifically
written to connect to a data source that understand the OLE-DB protocols.The
same can be said for the ODBC, and SqlClient Managed Providers.

www.syngress.com

Table 8.1 Continued

Namespace Description

167_C#_08.qxd 12/4/01 3:32 PM Page 388

ADO.NET • Chapter 8 389

All of these Managed Providers are created specifically to interact with a par-
ticular database API. Microsoft released the ODBC Managed Provider well after
the Beta 2 release of the .NET Framework.This demonstrates the extensibility of
the .NET Framework. For instance, you can create a Managed Provider specifi-
cally for Oracle, or Exchange, and add them to the Framework.

Building the Connection String
The first step in creating a connection is the Connection string. Depending on the
namespace used, the Connection string will vary a little. Basically, the connection
string for a SqlConnection does not have the Provider attribute, and a Connection
string for ODBC must have the corresponding Data Source Name (DSN)
Registry entries.

www.syngress.com

Connection Pooling
Connection pooling for SqlConnections is handled in Windows 2000
Component services. Each connection pool is differentiated using a
unique connection string. The uniqueness of the connection string is ver-
ified using an exact matching algorithm.

The SqlConnection is hosted in Windows 2000 Component services
to take advantage of the resource management that Component
Services provides. The .NET Framework SDK contains information on the
parameters that can be included in the connection string to modify the
default behavior of connection pooling for the SqlConnection object.

Connection pooling for the OleDbConnection object is handled
using OLE DB session pooling, which is handled by each individual OLE
DB provider if it supports connection pooling. Similar to SqlConnection
pooling, connection pooling with the OleDbConnection object is modi-
fied with parameters in the connection string. These parameters are not
documented in the Framework SDK, because they are specific to the OLE
DB provider. Suffice to say that they are not the same as the
SqlConnection options. Therefore, the connection strings are not
portable across namespaces if they modify connection pooling.

Developing & Deploying…

167_C#_08.qxd 12/4/01 3:32 PM Page 389

390 Chapter 8 • ADO.NET

Connection to the SQL Server is done using the System.Data.SqlClient
namespace.This namespace contains the classes for the SqlConnection object.As
described above, the connection string is the hardest part of creating a connec-
tion.This is not to say that Connection strings are hard to create, but rather that
connections in ADO.NET are not difficult to create.Table 8.2 lists some
common keys, and the default values with some simple explanations.

Table 8.2 Connection String Properties

Name Default Description

Connect Timeout 15 Seconds to try and make the con
-or- nection. When these are up, an
Connection Timeout exception is thrown.
Data Source <User Defined> The name or IP address of the SQL
-or- Server to make the connection with.
Server For servers with multiple instances
-or- of SQL Server, this would be
Address <servername>\<instancename>.
-or-
Addr
-or-
Network Address
Initial Catalog <User Defined> The name of the database. If you do
-or- not specify this, you will get a con-
Database nection to the default database

defined for the User ID.
Integrated Security ‘false’ Whether SQL Server will use the NT
-or- user credentials or expect a SQL
Trusted_Connection Server Username and password.
Password <User Defined> The password for the SQL Server
-or- account logging on. For integrated
Pwd security this is not specified.
Persist Security Info ‘false’ When set to ‘false’, security-sensitive

information, such as the password,
is not returned as part of the con-
nection if the connection is open or
has ever been in an open state.
Resetting the connection string
resets all connection string values
including the password.

User ID <User Defined> The SQL Server login account.

www.syngress.com

167_C#_08.qxd 12/4/01 3:32 PM Page 390

ADO.NET • Chapter 8 391

For example:

strConn = "Password=mypassword;User ID=admin;Initial

Catalog=northwind;Data Source=dbServer1";

This connection string would work for a SqlConnection because it lacks the
Provider attribute. It would establish a connection to a Database named northwind,
on the server named dbServer1. It would then log in with a user name of admin,
using mypassword as a password.

A trick we have used in the past was to create a text file with .udl as the file
extension. Executing this file would start the Connection Wizard and allow you
to step through creating the connection string.When you are finished, open the
file in Notepad and copy the completed connection string. For a SqlConnection,
remove the Provider attribute.

Understanding the Command Object
The command objects, OleDbCommand, OdbcCommand, and SqlCommand allow
developers to execute statements directly against the database.They provide for a
simple and direct route to data, regardless of where the data resides.They can
have a collection of parameters that are used to pass variables in, and get variables
out. If a developer needs to get the return value of a stored procedure, the
Command object is the object they would use. Command objects are particularly
useful for executing INSERT, UPDATE, and DELETE statements, but they can
also generate DataReader and XMLDataReader objects for returning data:

string strSql = "SELECT * FROM Orders";

string sConn = "Provider=SQLOLEDB.1;" +

"Password=password;" +

"Persist Security Info=True;" +

"User ID=sa;" +

"Initial Catalog=Northwind;" +

"Data Source=localhost";

OleDbConnection myConnection = new OleDbConnection(sConn);

OleDbCommand myCmd = new OleDbCommand(strSql, myOleDbConnection);

Command objects are the only means available in ADO.NET to execute com-
mands against a data source.The Command objects are particularly suited for
calling stored procedures, which are the preferred method for relational data
access. Stored procedures allow some relational database management systems to

www.syngress.com

167_C#_08.qxd 12/4/01 3:32 PM Page 391

392 Chapter 8 • ADO.NET

precompile and take advantage of statistics that it has gathered on the source
tables.Take this stored procedure as a simple example:

CREATE PROCEDURE getShippers AS

Select *

From shippers

Order By CompanyName

This stored procedure just returns an ordered list of records from the shippers
table in the fictional Northwind database that installs with the .NET SDK.To
call this procedure, you can use a couple of different syntaxes.You can just specify
the name of the stored procedure instead of a SQL statement, or you can create a
command object explicitly.Take this as an example of replacing a SELECT state-
ment with the name of a stored procedure:

// strSql = "SELECT * FROM Shippers";

strSql = "getShippers";

objOleDbCommand = New OleDbCommand(strSql, myOleDbConnection);

Here, the line with the select statement in it is commented out, and the
stored procedure name is inserted. For a better example, let’s add an input param-
eter. By adding a parameter to this stored procedure, you can now limit the rows
that the application uses and make it more efficient. For instance, say that you add
a parameter to the stored procedure that is used to find a shipper with a partic-
ular ShipperID.To call it, just add the parameter in the order required by the
stored procedure. In this case, with one parameter, it would look like this:

strSql = "getShippersByID 2";

This method is fine for instances when you are only trying to get some
records back from a stored procedure, but not very useful if you are trying to get
an output value or a return value. Here is where the parameter objects come into
play.To implement the example with a parameter, the code would look like this:

string strSP;

OleDbCommand objOleDbCmd;

OleDbParameter objParam;

OleDbConnection objConnection;

OleDbDataAdapter objAdapter;

DataSet myDataSet;

www.syngress.com

167_C#_08.qxd 12/4/01 3:32 PM Page 392

ADO.NET • Chapter 8 393

try

{

strSP = "getShippersByID";

Get the new connection to the database. If you have a connection that is
available, you could use it instead of creating a new one:

objConnection = new OleDbConnection(sConn);

objConnection.Open();

Instantiate a new command object and specify the new connection you just
created. Set the type of command to stored procedure:

objOleDbCmd = new OleDbCommand(strSP, objConnection);

objOleDbCmd.CommandType = CommandType.StoredProcedure;

The line of code following this paragraph does several things. First, starting
from the inner parenthesis, it creates a new OleDbParameter with a data type of
unsigned integer and a size of 4.Then, it adds this new parameter to the
Parameters collection of the Command object that you just created. Finally, it puts a
reference to this newly created Parameter object in the variable objParam:

objParam = objOleDbCmd.Parameters.Add(New OleDbParameter("@ID", _

OleDbType.UnsignedInt, 4));

Here, you are setting the direction of the parameter and its value.The value is
easy enough to explain, but the direction is a little more complicated. For an
explanation of the different options you have for parameter direction, refer to
Table 8.3.

Table 8.3 Parameter Directions

Member Name Description

Input The parameter is an input parameter. This allows for data to
be passed into the command, but not out. You may have
more than one.

Output The parameter is an output parameter. It is used to return
variables, but you cannot use it to pass data into a com-
mand. You must write the command specifically to populate
this variable as part of its routine. You may have more than
one.

www.syngress.com

Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 393

394 Chapter 8 • ADO.NET

InputOutput The parameter is capable of both input and output. Use it
when you need to pass data into and out of a command in
one object. It is exactly what the name says it is: It performs
both the input and the output operations. You may have
more than one.

ReturnValue The parameter represents a return value. This is similar to the
output parameter, except that you can have only one.

objParam.Direction = ParameterDirection.Input;

objParam.Value = intShipperID;

This line of code sets the SelectCommand of the DataAdapter to the newly cre-
ated CommandObject objOleDbCmd.You have the option of specifying
SelectCommand, InsertCommand, DeleteCommand, and UpdateCommand:

objAdapter.SelectCommand = objOleDbCmd;

Here, you “fill” your DataSet by using the SelectCommand of the Adapter
object:

objAdapter.Fill(myDataSet);

Now, all that is left is to set the data source of our DataGrid and complete the
error handler:

DGorders.DataSource = myDataSet;

}

catch (Exception e)

{

MessageBox.Show(e.ToString);

}

finally

{

objConnection.Close();

}

This example demonstrated the use of an OleDbCommand object to populate
a DataSet.You passed the OleDbCommand object you created into the

www.syngress.com

Table 8.3 Continued

Member Name Description

167_C#_08.qxd 12/4/01 3:32 PM Page 394

ADO.NET • Chapter 8 395

SelectCommand property of the DataAdapter.When you called the Fill method,
ADO.NET used your OleDbCommand object to execute a DataReader and popu-
late your DataSet.

You had to create a Parameter object, and set its Direction to Input, then its
value. Note that in ADO you could make up your own names for the Parameter
objects that you created. In ADO.NET, you must ensure that your parameters are
named the same as they are in the definition of the stored procedure.ADO.NET
uses them to implement named parameters and it will throw an exception if it
doesn’t find a match. Of course, data types and sizes must also match.

To get an output parameter, you can modify your stored procedure to return
the current day of the server just as a demonstration of the output parameter.You
can easily turn this into an example of returning the ID of a newly created record:

objParam = objOleDbCmd.Parameters.Add(New OleDbParameter("@CurrentDay",_

OleDbType.Date, 8));

objParam.Direction = ParameterDirection.Output;

To access this value after the OleDbCommand.ExecuteNon Query method had
been called is simple:

dtServerDate = objSQLCmd.Parameters("@CurrentDay").Value;

Using the stored procedure in the SQL statement is simpler, but not as flex-
ible, as you can see here.You can also access the return value using a similar tech-
nique.The only difference in using the return value is that you must declare a
parameter with the name of RETURN VALUE, and a direction of type return
value.After that, you access it just like any other output value.The return value
from a SQL Server stored procedure can only be a data type of Integer. If the pre-
vious example were something like the number of days since an order date, you
could use the following lines of code to get it.The stored procedure might look
something like this:

CREATE PROCEDRUE GetDaysSinceLastOrder(@CustID nChar(5))

AS

DECLARE @iDays INT

Select @iDays = DATEDIFF(dd, Max(OrderDate), GETDATE())

From Orders

Where CustomerID = @CustID

Return @iDays

www.syngress.com

167_C#_08.qxd 12/4/01 3:32 PM Page 395

396 Chapter 8 • ADO.NET

The code to create the parameter and get the return value should look some-
thing like this:

objParam = objOleDbCmd.Parameters.Add(New OleDbParameter("RETURN VALUE"_

, OleDbType.Char, 5));

objParam.Direction = ParameterDirection.ReturnValue;

Play around with this object. It is probably going to be one of the most used
in your toolbox. Understanding how to use the output values and returning data
from them will be essential to your high performance development.

Understanding DataReaders
The DataReader is a read-only, forward scrolling data object that allows you to
gain access to rows in a streaming fashion.You’ll typically use it where you need
read-only access to data because it is much faster than using a DataSet.A DataSet
is populated behind the scenes using a DataReader, so if you don’t need the fea-
tures of a DataSet, you should not create one.A DataReader is created either from
the OleDb libraries, or from the SqlClient libraries.This is a simple example of
creating an OleDbDataReader from a Command object:

OleDbDataReader myReader = myCmd.ExecuteReader();

You now have a populated DataReader object that you can use like this:

while (myReader.Read())

{

// do some row-level data manipulation here

}

The DataReader object allows for much greater speed, especially if you need
to access a large amount of data. It does not allow you to update information, nor
does it allows you to store information like the DataSet object does, but it does
allow for very fast access to the data.

Understanding DataSets and DataAdapters
A DataSet is an in-memory copy of a portion of one or more databases.This may
be one table, or many tables. Imagine a small relational database residing in a vari-
able.This is a complete copy of the requested data. It is completely disconnected
from the original data source and doesn’t know anything about where the data
came from.You could populate the data from XML from your Microsoft BizTalk
Server, save it to Microsoft SQL Server, and then write it out to an XML file.

www.syngress.com

167_C#_08.qxd 12/4/01 3:32 PM Page 396

ADO.NET • Chapter 8 397

When you are finished with your operations, the entire DataSet is submitted
to the data source for processing. It takes care of standard data processing, such as
updating, deleting, and inserting records.The DataSet object is a key player in the
ADO.NET object model. Examine the object model in Figure 8.1 for the
DataSet object and the collections it can contain. Due to the architecture of
ADO.NET, several combinations of collections are possible.Take the Columns
collection as an example.As you can see, the DataTable object has a Columns col-
lection made up of DataColumn objects.The PrimaryKey property of the
DataTable contains a collection of DataColumns as well.This is the same
DataColumn object in the DataTables.Columns collection, but two different
instances of them.

www.syngress.com

Figure 8.1 DataSet Object Model and the Possible Collections It Can Contain

DataSet

Relations

Table Collection

DataTable

Rows

DataRelation

DefaultView

ChildRelations

ParentRelations

Constraints

Columns

DataColumn

DataRow

PrimaryKey

DefaultView

DataRelation

DataRelation

DataColumn

167_C#_08.qxd 12/4/01 3:32 PM Page 397

398 Chapter 8 • ADO.NET

DataTable
A DataSet contains a collection of DataTables.This collection is the key to the
DataSet’s versatility.They are tabularized representations of your data. Essentially
identical to the tables in your database, or other data source, they are added to
our DataSet just like you add objects to other collections. Once they are in your
DataSet, you can define properties, such as the DataRelations, Primarykeys, and so
on.You can create DataTables programmatically, or retrieve them from a database
through a SqlDataAdapter/OleDbDataAdapter object using the Fill method.

After you populate your DataSet with DataTable objects, you can access these
tables by using an index or the name you gave the table when you add it to the
DataSet.

The collection uses a zero-based index, so the first DataTable is at index 0:

ds.Tables[0];

The above mentioned method is more efficient, but harder to read, while the
one below is easier to read, but a little less efficient. How inefficient has yet to be
determined, but generally speaking your users won’t be able to tell, so unless you
have a compelling reason to use the index, this will be easier to maintain.

ds.Tables["Orders"];

The Tables collection is the basis for DataSet operations. From the collection,
you can pull tables into separate DataTable variables and DataView objects.You
can also bind them to bindable controls on Windows Forms and Web Forms, or
act on them in the collection as in the previous examples.

DataColumn
A DataColumn is exactly what it sounds like: a column of data.The DataColumn
is the foundation of a DataTable and has very similar properties to a column in a
relational database table.A relational database table is often represented in a
spreadsheet-like format with rows and columns.The data in a DataTable is repre-
sented in the same manner. So, a DataTable is made up of DataColumns and
DataRows.A DataTable contains a collection of DataColumns, and this could be
considered the DataTable’s schema, or structure.This representation contains no
data, but forms the basis or foundation to store and retrieve data.

DataColumns are .NET objects with properties and methods just like any other
.NET object. Remember that unlike the column in a classic ADO Recordset
object, a DataColumn is a true object, inheriting from the System.Object namespace.

www.syngress.com

167_C#_08.qxd 12/4/01 3:32 PM Page 398

ADO.NET • Chapter 8 399

This represents a huge shift forward in programming with data. In classic ADO,
data was stored in a proprietary format, which consisted of a string of variant
objects.These objects had all the overhead consistent with variants and resulted in
a flexible container for any type of data. It also meant that that ADO had to do a
lot of work behind the scenes sorting out data types and remembering the schema
of the data.

Because a DataColumn is a true object, it has a complement of properties and
methods that make interacting with it much more object-oriented in nature.
Refer to Table 8.4 for a listing and description of the properties of a DataColumn,
and Table 8.5 for the methods.

Table 8.4 DataColumn Properties

Property Name Description

AllowDBNull True or False, default is True. Determines whether the
column will allow Null values. Null values represent
the absence of a value and generally require special
handling.

AutoIncrement True or False, default is False. This indicates whether
the DataColumn will automatically increment a
counter. When this value is True, a numeric value will
be placed in this column. If the column is not of a
Int16, Int32, or Int64, it will be coerced to Int32. If the
DataTable is to be populated by an array, a Null must
be placed in the array position corresponding to the
AutoIncrement column in the DataTable.If an expres-
sion is already present when this property is set, an
exception of type ArgumentException is thrown.

AutoIncrementSeed Default is 1. This is the starting value of the first row
in the column if the AutoIncrement property is set to
True.

AutoIncrementStep Default is 1. This is the value that the counter is incre-
mented by for each new row in the DataColumn is the
AutoIncrement property is True.

Caption Caption for the column. If a caption is not specified,
the ColumnName is returned.

ColumnMapping Determines the MappingType of the column, which
is used during the WriteXML method of the parent
DataSet.These are the MappingTypes and their
descriptions:
■ Attribute XML attribute

www.syngress.com

Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 399

400 Chapter 8 • ADO.NET

■ Element XML element
■ Hidden Internal structure
■ SimpleContent XmlText node

ColumnName Name of the column in the DataColumnCollection. If a
ColumnName is not specified before the column is
added to the DataColumnCollection, the
DataColumnName is set to the default (Column1,
Column2, and so on).

Container Returns the container of the component (inherited
from MarshalByValueComponent).

DataType Sets, or returns, the type of data in the column. These
types are members of the System.Type class. Throws an
exception of type ArgumentException if data is present
in the DataColumn when the DataType is set.

DefaultValue Determines the default value for a new row.
DesignMode Returns a value indicating whether the component

is in design mode (inherited from
MarshalByValueComponent).

Expression Defines an expression used to filter rows or create an
aggregate column.

ExtendedProperties Returns a collection of custom user information.
MaxLength Defines the maximum length of a text column.
Namespace Defines or returns the namespace of the DataColumn.
Ordinal Returns the index or position of the column in the

DataColumnCollection collection.
Prefix Defines or returns an XML prefix used to alias the

namespace of the DataTable.
ReadOnly True or False, default is False. Indicates whether the

column allows changes once a row has been added to
the table.

Site Returns a reference to the parent. If Null reference or
nothing, the DataColumn does not reside in a con-
tainer (inherited from MarshalByValueComponent).

Table Returns a reference to the DataTable of which the
column belongs.

Unique True or False, default is false. Determines if the values
in each row of the column must be unique.

www.syngress.com

Table 8.4 Continued

Property Name Description

167_C#_08.qxd 12/4/01 3:32 PM Page 400

ADO.NET • Chapter 8 401

Table 8.5 DataColumn Methods

Method Names Description

Dispose Releases resources used by the component (inherited
from MarshalByValueComponent). Overloaded.

Equals Returns True if two instances of the Object are equal
(inherited from Object). Overloaded.

GetHashCode Hash function useful for hashing algorithms and data
structures similar to hash tables (inherited from Object).

GetService Returns the implementer of iServiceProvider interface
(inherited from MarshalByValueComponent).

GetType Returns the type of the current instance (inherited from
Object).

ToString Returns the existing column Expression. Overridden.

Because DataColumns are proper .NET objects, you can create a DataTable at
runtime, add DataColumns to the DataColumnCollection of the DataTable and pop-
ulate this programmatically, or by binding the DataTable to an object that supports
data binding, such as a DataGrid. Refer to Figure 8.2 for a simple example of cre-
ating a DataTable and adding two DataColumns to the DataColumnCollection (you
can find the corresponding files on the CD that accompanies this book, in the
folders DataColumn\AutoIncrementExample).

Figure 8.2 Creating a Simple DataTable with Two DataColumns
(DataColumn\AutoIncrementExample)

private DataTable AddAutoIncrementColumn()

{

DataColumn myColumn = new DataColumn();

DataColumn myData = new DataColumn();

// Create an ID column

myColumn.DataType = System.Type.GetType("System.Int32");

myColumn.ColumnName = "PK_ID";

myColumn.AutoIncrement = true;

myColumn.ReadOnly = true;

// Create a data column

myData.DataType = System.Type.GetType("System.String");

www.syngress.com

Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 401

402 Chapter 8 • ADO.NET

myData.ColumnName = "strData";

// Add the columns to a new DataTable.

DataTable myTable = new DataTable("MyTable");

myTable.Columns.Add(myColumn);

myTable.Columns.Add(myData);

// Return the new DataTable to the caller

return myTable;

}

This example demonstrated the creating of a DataTable and two DataColumns.
It also demonstrated setting some of the properties to make the table a little more
useful.

DataRow
The DataRow object actually represents a single row of data in a DataTable.The
DataRow is a fundamental part of a DataTable. DataRows are the objects that are
used to interrogate, insert, or delete data in a DataTable.A DataRow is not a part
of the DataTable definition or schema, but it represents the state of a DataTable.
DataRows contain not only data, but also error information for the row, versions
of the row, and of course, data.

As far as the DataTable is concerned, when you work with data you are
manipulating the DataRowCollection of a DataTable.You need to realize that a
DataTable contains a collection of DataRows.This becomes apparent when you
review the methods for a DataRow. In a database, for example, you execute an
INSERT statement to add rows to a table. Expecting an INSERT method of a
DataTable to add new rows would not be unrealistic; after all, the DataTable looks
and feels like a database table. Because the DataRow belongs in a collection, the
Add method is used to insert data.When data is retrieved, the Item property is
used to retrieve a specific column in the DataRow.You can place an entire row
into an array with a single method call.

For a listing of properties and methods, refer to Tables 8.6 and 8.7, respec-
tively.The DataSet object is a big reason the Recordset no longer exists in ADO.

www.syngress.com

Figure 8.2 Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 402

ADO.NET • Chapter 8 403

Table 8.6 DataRow Properties

Property Name Description

HasErrors True or False, default is False. Indicates whether any
column in the row contains an error. Use GetColumnError
to return a single column in error, or GetColumnsInError
to return an array of columns in error.

Item An indexer for the DataRow class; sets or gets data in a
particular column. Overloaded.

ItemArray Allows all columns to be set or returned using an array.
RowError Sets or returns a custom error description for a DataRow.
RowState Used with the GetChanges and HasChanges method of

the dataset, the RowState depends on two things: the
changes that were made, and whether or not
AcceptChanges has been called.
■ Added The DataRow has been added to a

DataRowCollection, and AcceptChanges has not
been called.

■ Deleted The Delete method of the DataRow has
been called.

■ Detached The DataRow is not part of a
DataRowCollection. A DataRow in this state may
have been removed from a DataRowCollection or
just created.

■ Modified Data has been modified and AcceptChanges
has not been called.

■ Unchanged Data has not changed since the last call
to AcceptChanges.

Table Returns a reference to the parent DataTable.

Table 8.7 DataRow Methods

Method Name Description

AcceptChanges Commits changes made to the DataRow since the last
time that AcceptChanges was called. When this method
is called, the EndEdit method is implicitly called. The
Current version of the data is discarded and the
Proposed version of the data becomes the new Current
version. If the RowState was deleted, the DataRow is
removed from the DataRowCollection. Calling the
AcceptChanges method does not update the data

www.syngress.com

Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 403

404 Chapter 8 • ADO.NET

source; however, if the Update method of a
DataAdapter is called to update the data source, and
the AcceptChanges method of the DataRow or parent
DataTable has not been called, the changes are not
committed to the data source. The AcceptChanges
method of the DataTable calls the AcceptChanges
method for each DataRow in the DataRowCollection.

BeginEdit Puts the DataRow into edit mode and suspends data
validation events until the EndEdit method is called or
the AcceptChanges method is called. Begins the storing
of DataRow versions.

CancelEdit Cancels the edit mode of the current row and discards
the DataRow versions.

ClearErrors Clears the errors for the row, including the RowError
and errors set with SetColumnError.

Delete Sets the RowState to Deleted. The row is not removed
until the AcceptChanges method is called. Until the
AcceptChanges method is called, the row can be
“undeleted” by calling the RejectChanges method of
the DataRow.

EndEdit Ends the edit mode of the row, fires the
ValidationEvents, commits the Proposed data to the
Current data, and discards the versioned data.

Equals Returns True or False, determines whether two Object
instances are equal (inherited from Object). Overloaded.

GetChildRows Returns the DataRows that are related to the current
row using a DataRelation. Overloaded.

GetColumnError Returns the error description for a column. Overloaded.
GetColumnsInError Returns an array of columns that have errors.
GetHashCode Hash function useful for hashing algorithms and data

structures similar to hash tables (inherited from Object).
GetParentRow Returns the parent DataRow of the current DataRow

using the specified DataRelation. Overloaded.
GetParentRows Returns the parent DataRows of the current DataRow

using the specified DataRelation. Overloaded.
GetType Returns the Type of the current instance (inherited

from Object).

www.syngress.com

Table 8.7 Continued

Method Name Description

Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 404

ADO.NET • Chapter 8 405

HasVersion Returns True if the specific version exists. Possible ver-
sions are:
■ Current DataRow contains current values.
■ Default DataRow contains its default values.
■ Original DataRow contains its original values.
■ Proposed DataRow contains a proposed value.

IsNull Returns True if the specified column contains a Null value.
RejectChanges Rejects all changes made to the row since

AcceptChanges was last called.
SetColumnError Sets the error description for the current DataRow.

Overloaded.
SetParentRow Used in conjunction with a DataRelation to set the

parent DataRow for the current DataRow. Overloaded.
SetUnspecified Sets the value of a specified DataColumn to Unspecified.
ToString Returns a string that represents the current Object

(inherited from Object).

Looking at the Table 8.6 and Table 8.7, you can see how powerful the
DataRow object is and the possibilities it creates. For applications that need to
work with disconnected data, the DataRow makes these applications easy to
create, with some very powerful state management built in. Of course, when you
populate a DataTable from a DataSource,ADO.NET creates the DataColumns, and
then adds the DataRows to the DataRowCollection for you in one method call.

Differences between DataReader
Model and DataSet Model
Data in ADO.NET is disconnected for all practical purposes. Data access can be
broken down into two methods, or models.The DataSet model involves reading
the data into a local cache, interacting with it, and discarding, or synchronizing,
the data back to the source.The DataReader model does not allow for updating
data or reusing it.With a DataReader, data is read once and discarded when the
next row is read.

When you populate a DataSet from the database, a connection is opened, the
data is selected and returned into a DataTable, and then the connection is closed.
The data is present in the DataTable, and an application is free to interact with it

www.syngress.com

Table 8.7 Continued

Method Name Description

167_C#_08.qxd 12/4/01 3:32 PM Page 405

406 Chapter 8 • ADO.NET

in any manner, however, the database is free to do whatever it needs to do.
Resources are not being held on the database server while the application is
being used.

When a DataReader is used for data access, a connection is opened, and the
data is navigated using the Read method. It is not possible to “go back” and read
data that has previously been read, or rather it is not possible to scroll backward
in the data. Because a DataReader is forward-only and read-only, it is useful only
for retrieving the data and is very efficient.You need to realize that during the
scrolling process, resources are being held up on the server.This means that if an
application allows a user to manually navigate in a forward-only manner, the
database is serving the request and waiting.This may result in a resource problem
at the database. It is best to use the DataReader when fast access to the data is
needed, and the entire resultset is being consumed in a relatively short period of
time.This, of course, depends on several variables, such as number of users,
amount of data, hardware availability, and so on.

In both instances, the data is retrieved; however, with the DataSet it is per-
sisted in a DataTable.As stated earlier, a DataReader is used to populate a
DataTable, so in this regard if a developer needs to access the data once in a for-
ward-only mode, the DataReader provides a faster mechanism. On the other
hand, if this data is somewhat expensive to create, and it will be used repeatedly,
using a DataSet makes more sense.These are the types of decisions that you will
need to make during the course of designing the application.

The two models are similar in that they both provide data, but that is where
the similarities end.The DataReader provides a stream of data, whereas the
DataSet provides a rich object model with many methods and properties to
interact with the data in any scrolling direction an application would need.

Understanding the DataView Object
The DataView class is part of the System.Data namespace.The DataView’s main
purpose is to provide data binding to forms and controls.Additionally you can
use it to search, filter, sort, navigate, and edit the data. DataViews are based on
DataTables, therefore they do not stand on their own; however, they compliment
the DataTable and provide a means to bind a DataTable to a Web Form or
Windows Form.

You can use DataViews to present two views of the same data. For example, you
may create a DataView to show only the current DataRows in a DataTable, and you
could create another DataView to show only DataRows that have been deleted.This

www.syngress.com

167_C#_08.qxd 12/4/01 3:32 PM Page 406

ADO.NET • Chapter 8 407

is made possible by a property of the DataView called RowFilter. Figure 8.3 contains
an example of creating a DataView and setting some properties.

Figure 8.3 Creating and Using a DataView

using System;

using System.Data;

namespace OrdersDataSet

{

public class cDataView

{

public DataView filterCustomerByID(DataSet ds, string sCustID)

{

DataView dv = new DataView();

dv.Table = ds.Tables("Orders");

dv.AllowDelete = True;

dv.AllowEdit = True;

dv.AllowNew = True;

dv.RowFilter = "CustomerID = '" + sCustID + "'";

dv.RowStateFilter = DataViewRowState.ModifiedCurrent;

dv.Sort = "OrderDate DESC";

return dv;

}

}

}

The example creates a new DataView object, and then sets the Table property
to the Orders DataTable in the DataSet that is passed in.This example also sorts
the records by the OrderDate in descending order.This is an example that demon-
strates the functionality; however, filtering the data in the DataTable when it was
populated is more efficient, instead of loading all the records in the DataTable into
memory and then choosing the records that needed viewing. Putting as little
information into the DataTable and DataSet objects as possible is preferable.You
don’t need to transport this data if it is not needed.

www.syngress.com

167_C#_08.qxd 12/4/01 3:32 PM Page 407

408 Chapter 8 • ADO.NET

Working with System.Data.OleDb
The System.Data.OleDb namespace is the most flexible Managed Provider that
ships with the .NET Framework. It provides a bridge from .NET to any data
source that has implemented an OleDb provider.According to the Microsoft lit-
erature, the .NET Framework has been tested with MS SQL Server,Access, and
Oracle—however, any existing OleDb provider should work.The examples that
follow will use Access to demonstrate the functionality possible with ADO.NET,
and specifically the System.Data.OleDb data provider.A simple application will be
used with a comboBox and a DataGrid.This will allow you to focus on data access
and manipulation, without having to worry about interface restrictions. Figure
8.4 is the final product; the source code for this is on the CD (OrdersDataSet\
OrdersDataSet.csproj).

Using DataReaders
As discussed earlier in the chapter, a DataReader is a read-only, forward-only
stream of data.The project for the examples to follow is built around a DAL, or
Data Access Layer.This is implemented in classes named CDalOleDb, CDalSql,
and CDalOdbc.These will be used to demonstrate the similarities between the
three namespaces.

The code in Figure 8.5 (the corresponding file on the CD is OrdersDataSet\
CDalOleDb.cs) is the declaration of the CDalOleDb class, a constructor, and the
strConnection property.

www.syngress.com

Figure 8.4 Completed System.Data.OleDb Example (OrdersDataSet\
OrdersDataSet.csproj)

167_C#_08.qxd 12/4/01 3:32 PM Page 408

ADO.NET • Chapter 8 409

Figure 8.5 CDalOleDb class declaration (OrdersDataSet\CDalOleDb.cs)

using System;

using System.Data;

using System.Data.OleDb;

namespace OrdersDataSet

{

/// <summary>

/// Summary description for CDalOleDb.

/// </summary>

public class CDalOleDb

{

string strConStr;

private OleDbConnection cn;

private OleDbDataAdapter adptr = new OleDbDataAdapter();

public CDalOleDb(string sConn)

{

this.strConnection = sConn;

}

public string strConnection

{

get

{

return strConStr;

}

set

{

strConStr = value;

try

{

this.cn = new OleDbConnection(value);

}

www.syngress.com

Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 409

410 Chapter 8 • ADO.NET

catch (Exception e)

{

throw e;

}

}

}

These three lines declare some class-level variables that will be used to main-
tain some state in the Data Access Layer:

string strConStr;

private OleDbConnection cn;

private OleDbDataAdapter adptr = new OleDbDataAdapter();

If the constructor is fired, it simply calls the public property strConnection and
forwards the connection string to the Set portion of the property procedure:

public CDalOleDb(string sConn)

{

this.strConnection = sConn;

}

The strConnection property sets the class-level variable strConnStr, and then
proceeds to create a class-level connection.What this means is that when you
instantiate an object based on this class, it will create a connection when it is ini-
tialized.This behavior may not be desirable depending on the application:

public string strConnection

{

get

{

return strConStr;

}

set

{

strConStr = value;

try

{

www.syngress.com

Figure 8.5 Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 410

ADO.NET • Chapter 8 411

this.cn = new OleDbConnection(value);

}

catch (Exception e)

{

throw e;

}

}

}

The DAL now has a connection open and available during the life of the
object.The code in Figure 8.6 (the corresponding file on the CD is
OrdersDataSet\CDalOleDb.cs) demonstrates several of the ADO.NET objects
discussed earlier in the chapter, namely the Command object, Connection object,
and the DataReader.

Figure 8.6 The GetCustomers() Method (OrdersDataSet\CDalOleDb.cs)

public OleDbDataReader GetCustomers()

{

string sSQL = "SELECT CustomerID FROM Customers";

OleDbCommand cmd = new OleDbCommand(sSQL, cn);

try

{

if (cn.State != ConnectionState.Open)

{

cn.Open();

}

return cmd.ExecuteReader();

}

catch (Exception e)

{

throw e;

}

}

www.syngress.com

167_C#_08.qxd 12/4/01 3:32 PM Page 411

412 Chapter 8 • ADO.NET

Take a closer look at what the code is doing in Figure 8.6.
Create a variable to hold the simple SELECT statement, then create an

instance of the OleDbCommand object, passing the newly created SQL statement
and the class-level connection object.

string sSQL = "SELECT CustomerID FROM Customers";

OleDbCommand cmd = new OleDbCommand(sSQL, cn);

In a try-catch block, the connection is interrogated for its state; if the state is
not open, open it. If a connection is already open and the Open method on the
cn object is called, an exception is thrown halting execution. Next, the
ExecuteReader() method is called to execute the command, and return a reference
to a DataReader object. If an exception is thrown, the catch block bubbles the
event back to the caller:

try

{

if (cn.State != ConnectionState.Open)

{

cn.Open();

}

return cmd.ExecuteReader();

}

catch (Exception e)

{

throw e;

}

}

This very simple DAL class now has one property, and a single method. It is
capable of opening a connection to a database, and then returning the results in
the form of a DataReader. Figure 8.7 demonstrates how you can use the object to
populate a ComboBox on a Windows Form (the corresponding file on the CD is
OrdersDataSet\Form1.cs).

www.syngress.com

167_C#_08.qxd 12/4/01 3:32 PM Page 412

ADO.NET • Chapter 8 413

Figure 8.7 Populate a ComboBox with an OleDbDataReader (OrdersDataSet\
Form1.cs)

public class Form1 : System.Windows.Forms.Form

{

private System.Windows.Forms.ComboBox comboBox1;

private string sConn = "<connection string>";

private CDalOleDb db;

public Form1()

{

// Required for Windows Form Designer support

InitializeComponent();

// TODO: Add any constructor code after InitializeComponent call

db = new CDalOleDb(sConn);

popCboCustomers();

}

private void popCboCustomers()

{

OleDbDataReader dr;

dr = db.GetCustomers();

comboBox1.Items.Clear();

comboBox1.BeginUpdate();

while (dr.Read())

{

comboBox1.Items.Add(dr.GetString(0));

}

comboBox1.EndUpdate();

// always call Close when done reading, this frees up the

// connection to service other requests.

www.syngress.com

Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 413

414 Chapter 8 • ADO.NET

dr.Close();

}

The code in Figure 8.7 begins with declaring a variable named db that is
derived from the CDalOleDb class. In the Form1 method, the db object is set to
a new instance of the CDalOleDb class, and the connection string is passed to the
constructor.This fires the strConnection method, and a connection is created (note
that the connection is not open, and therefore is not taking up resources on the
database server).

The next step is a call to the private method to populate comboBox1.This
method declares a variable of type OleDbDataReader and sets the instance of the
DataReader to the output of the GetCustomers method of the DAL.The next step
in the method is to loop through the data and populate the ComboBox with the
CustomerID’s using the Read() method of the DataReader.

The Read() method of a DataReader object returns True if a row was success-
fully retrieved, False if a row was not found signaling the end of the data.This
allows you to set up a simple looping construct with a while statement.The
GetString method of the OleDbDataReader allows a programmer to retrieve a
result from the DataReader of type string. Because .NET is a strongly typed envi-
ronment, this saves you the hassle of having to cast the data to a type string.
Calling the BeginUpdate and EndUpdate methods of the ComboBox object will
keep the screen from flickering while the data is added to the ComboBox.

Using DataSets
As we discussed earlier in the chapter, a DataSet is basically an in-memory rela-
tional database.The sample application uses a DataGrid populated with some
order information from the Northwind database that comes with Access and
SQL 2000.To continue creating the DAL, the next method is the GetOrders
method.The code in Figure 8.8 contains the implementation of the GetOrders
method (which you can find on the accompanying CD as OrdersDataSet\
CDalOleDb.cs).This method returns a DataSet that is used to populate the
DataGrid on the form.

www.syngress.com

Figure 8.7 Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 414

ADO.NET • Chapter 8 415

Figure 8.8 GetOrder Method of the DAL (OrdersDataSet\CDalOleDb.cs)

// Class-level DataAdapter, and CommandBuilder. These lines are

// included in the class declaration

private OleDbDataAdapter adptr = new OleDbDataAdapter();

private OleDbCommandBuilder cmdBldr;

public DataSet GetOrders(string sCustID)

{

DataSet ds = new DataSet();

string sSQL = "SELECT OrderID, EmployeeID, " +

" OrderDate, RequiredDate, " +

" ShippedDate, ShipVia " +

" FROM Orders " +

" WHERE CustomerID = '" + sCustID + "'";

try

{

if (cn.State == ConnectionState.Closed)

{

cn.Open();

}

cmdBldr = new OleDbCommandBuilder(adptr);

adptr.SelectCommand = new OleDbCommand(sSQL, cn);

adptr.Fill(ds, "Orders");

}

catch (Exception e)

{

throw e;

}

return ds;

}

www.syngress.com

Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 415

416 Chapter 8 • ADO.NET

public void SaveRecords(string sTable)

{

try

{

adptr.Update(ds, sTable);

}

catch (Exception e)

{

throw e;

}

}

Notice the input parameter, and how it is used to build the SELECT state-
ment for the variable named sSQL.You could have just as easily used a stored
procedure if the data source supported it.

Again, the code is using the class-level Connection object. It also uses the class-
level DataAdapter, which we discussed as representing the Connection and
Command objects for connecting a DataSet to a data source.The DataAdapter is
specific to the Managed Provider; such as the OleDbDataAdapter, or the
SqlDataAdapter.The code in Figure 8.8 ensures that the connection is open, cre-
ates a Command object, and sets it as the SelectCommand for the DataAdapter.The
code then populates the DataSet using the DataAdapters Fill() method.Again, the
code bubbles any Exceptions back to the caller or returns the DataSet.

In addition to setting the SelectCommand of the DataAdapter, the code in
Figure 8.8 instantiates the class-level OleDbCommandBuilder.The CommandBuilder
will take the syntax from the SelectCommand and synthesize the corresponding
UpdateCommand, InsertCommand, and DeleteCommand objects for the DataAdapter.
These commands are used during the DataAdapter.Update method.Again, the
CommandBuilder must be created before the DataAdapter.SelectCommand is speci-
fied.The CommandBuilder “listens” for the SelectCommand property to be set, and
then builds the corresponding commands for the developer.

The SaveRecords method in Figure 8.8 demonstrates the Update method of the
DataAdapter class.This method fails if the correct UpdateCommand, InsertCommand,

www.syngress.com

Figure 8.8 Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 416

ADO.NET • Chapter 8 417

and DeleteCommands are not specified explicitly, or by using the CommandBuilder.
The implementation of the GetOrders method is shown in Figure 8.9
(OrdersDataSet\Form1.cs on the accompanying CD).

Figure 8.9 GetOrders Implementation. (OrdersDataSet\Form1.cs)

private void comboBox1_SelectedIndexChanged(object sender,

System.EventArgs e)

{

string sCustID = comboBox1.SelectedItem.ToString();

Cursor.Current = Cursors.WaitCursor;

label1.Text = GetCustomerName(sCustID);

popGrdOrders(sCustID);

Cursor.Current = Cursors.Default;

}

private void popGrdOrders(string sCustID)

{

if (ds != null)

{

ds.Clear();

}

ds = db.GetOrders(sCustID);

dataGrid1.DataSource = ds;

}

The code in Figure 8.9 consists of two functions: the first function
comboBox_SelectedIndexChanged is an event that is triggered when the value of a
ComboBox is changed.The example uses the SelectItem.ToString method to retrieve
the value that the user selected and calls the popGrdOrders function.The second
function, popGrdOrders takes the CustomerID as an input parameter, and passes it
to the DAL class.The DAL class will return a reference to the DataSet.This refer-
ence is then specified as the DataSource for the DataGrid on the form. Notice that
the code tests for a null reference to the DataSet. If the reference is Null, a Null
reference is thrown.The Clear method of the DataSet removes all DataRows in all
DataTables in the DataSet.

www.syngress.com

167_C#_08.qxd 12/4/01 3:32 PM Page 417

418 Chapter 8 • ADO.NET

Working with SQL.NET
Working with the System.Data.SqlClient namespace is very similar to working
with the System.Data.OleDb namespace.As a matter of fact, switching back and
forth between the two namespaces is quite easy.You can do so by using a simple
find and replace operation—and, of course, removing the provider attribute from
the connection string. Replace the OleDb prefix with Sql and compile.

In the examples for Figures 8.5 through 8.9, the data source was MS Access.
Let’s now switch to SQL Server to demonstrate the GetOrders method using a
stored procedure.A stored procedure is a group of one or more SQL statements that
is pseudo-compiled into an execution plan. SQL Server will execute the plan and
return the results in one of three ways.Table 8.8 gives a list of these, along with a
brief description.All of these are demonstrated later in this section.

Table 8.8 Stored Procedure Output Options

Option Description

Output parameters Output parameters can return numeric data, dates, and
textual data. A stored procedure can return a maximum
of 2100 parameters, including text, ntext, and image
data.

Return codes A stored procedure may return a single integer value.
These are generally useful for returning the error state
or status of the procedure.

Result sets A result set for each SELECT statement contained in the
stored procedure or any other nested stored procedures.

www.syngress.com

Embedded SQL Statements
Embedded SQL or Dynamic SQL is a term given to generating SQL state-
ments at runtime and executing it against the database. For Access, it is
the only method. For SQL Server, Oracle, DB2, and so on, it is optional.
For SQL Server, the stored procedure is preferred for several reasons. SQL
Server can optimize the query plan and cache it for reuse, thus saving
the cost of parsing and compiling the statement every time it runs. Also,

Developing & Deploying…

Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 418

ADO.NET • Chapter 8 419

Using Stored Procedures
With ADO.NET, you have a couple of options for calling stored procedures.
The obvious method is to create a command object with a CommandType
of CommandType.StoredProcedure similar to the example in Figure 8.10
(OrdersDataSet\CDalSql.cs on the accompanying CD).The merits of this
method are that you can declare parameters and return the values in output
parameters.The use of parameters for returning a single row of data is preferred
over returning a result set of one row. Output parameters require less overhead
both for the server and the client.You can also retrieve return codes by using
this method.

Figure 8.10 ComandType.StoredProcedure (OrdersDataSet\CDalSql.cs)

public DataSet GetOrders1(string sCustID)

{

DataSet ds = new DataSet();

SqlCommand cmd = new SqlCommand();

SqlParameter param;

cmd.CommandText = "uspGetOrdersByCustID";

cmd.CommandType = CommandType.StoredProcedure;

Param = cmd.Parameters.Add(new SqlParameter("@sCustID", _

SqlDbType.NChar, 5));

Param.Direction = ParameterDirection.Input;

www.syngress.com

you can use a stored procedure to prevent direct access to a table. A
table owner can create a stored procedure to select records from the
table. You can grant Execute permissions for the stored procedure to a
user, however, select permissions are not granted to the user against the
owner’s table. The user is able to select records using the stored proce-
dure, but they are not able to execute SELECT statements directly. This
behavior is known as the ownership chain in SQL Server, and it is used
by many DBAs to control ad-hoc access to sensitive data. This approach
obviously limits the use of Embedded SQL, however, the benefits of
speed, reuse, and security gained by the use of stored procedures far
outweighs the flexibility gained by Embedded SQL.

Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 419

420 Chapter 8 • ADO.NET

Param.value = sCustID;

try

{

if (cn.State == ConnectionState.Closed)

{

cn.Open();

}

adptr.SelectCommand = cmd;

adptr.Fill(ds, "Orders");

}

catch (Exception e)

{

throw e;

}

return ds;

}

Another method is to set the CommandType to CommandType.Text and
include the EXEC(UTE) keyword in the SelectCommand property, similar to the
example in Figure 8.11 (OrdersDataSet\CDalSql.cs on the accompanying CD).
In this example, you can see that the CustID is appended to the SQL statement,
which will result in the successful execute and passing of the parameters. Figure
8.12 (OrdersDataSet\Data\uspGetOrdersByCustID.sql on the CD) contains the
definition of the stored procedure.The benefit with this approach is that param-
eter objects do not have to be created, thus saving some overhead.The downside
is that output parameters and return codes are not available.

www.syngress.com

Figure 8.10 Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 420

ADO.NET • Chapter 8 421

Figure 8.11 CommandType.Text (OrdersDataSet\CDalSql.cs)

public DataSet GetOrders(string sCustID)

{

DataSet ds = new DataSet();

string sSQL = "EXEC uspGetOrdersByCustID '" + sCustID + "'";

try

{

if (cn.State == ConnectionState.Closed)

{

cn.Open();

}

adptr.SelectCommand = new SqlCommand(sSQL, cn);

adptr.Fill(ds, "Orders");

}

catch (Exception e)

{

throw e;

}

return ds;

}

Figure 8.12 uspGetOrdersByCustID Stored Procedure (OrdersDataSet\Data\
uspGetOrdersByCustID.sql)

CREATE PROCEDURE uspGetOrdersByCustID(

@sCustID NCHAR(5)

)

AS

SELECT OrderID

, EmployeeID

www.syngress.com

Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 421

422 Chapter 8 • ADO.NET

, OrderDate

, RequiredDate

, ShippedDate

, ShipVia

FROM Orders

WHERE CustomerID = @sCustID

As you can see, the code in Figure 8.10 takes fewer lines of code than Figure
8.9, however, it is also important to point out that the stored procedure in Figure
8.11 does not have output parameters defined, nor is a return value defined.

If the data source you are using supports stored procedures, you should take
advantage of them.The modularity gained by separating the data access layer and
the business layer is enhanced when stored procedures are leveraged in the final
solution.The examples in Figures 8.7 through 8.11 demonstrate a possible migra-
tion path that might take place in a project that was prototyped using Access and
then upgraded to SQL Server—all in all not a lot of changes for a major upgrade
in database functionality.

Working with Odbc.NET
ODBC is an acronym that stands for Open Database Connectivity. Modern rela-
tional databases have proprietary APIs that you can use to create data driven
applications.These APIs may be cryptic, difficult to use, and may or may not be
based on standards. ODBC was envisioned to provide a common programming
model that developers could use to create data-driven applications by program-
ming to the ODBC API. Each data provider would then create an ODBC driver
that could bridge the gap between the prospective data source and the ODBC
API. ODBC is generally thought of as being slower than OLEDB; however, there
are many more ODBC drivers available than there are OLEDB drivers.

Microsoft has created an ODBC Managed Provider for .NET.This names-
pace is designed to work with native ODBC drivers in the same manner that the
OLEDB namespace allows developers to work with native OLEDB drivers.
Microsoft has made the ODBC namespace available as an add-on to the .NET
Framework that needs to be downloaded from the Microsoft Web site. Microsoft
has stated that the ODBC drivers for Access, SQL Server, and Oracle will work
with the new namespace.

www.syngress.com

Figure 8.12 Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 422

ADO.NET • Chapter 8 423

During the setup of the System.Data.Odbc namespace, the System.Data
.Odbc.dll is added to the Global Assembly Cache.This will allow a developer to
add a reference to this DLL in the project. In Visual Studio.NET, select Project
| Add Reference and select the System.Data.Odbc.dll file.After you have estab-
lished a reference, the System.Data.Odbc namespace is ready for use.

The System.Data.Odbc namespace is very similar to the System.Data.OleDb
and the System.Data.SqlClient namespaces.The ease of switching between the
namespaces was demonstrated earlier in the chapter, and much of what was
demonstrated there also applies to the System.Data.Odbc namespace.As before, the
obvious difference is that the Connection, Command, and DataAdapter objects are
prefixed with Odbc.The Connection string is also different.Table 8.9 lists some
examples of connection strings that you can use with the System.Data.Odbc
namespace.

Table 8.9 Sample Connection Strings for the System.Data.Odbc Namespace

Connection Strings

Driver={Microsoft ODBC for

Oracle};Server=<server>;UID=<user>;PWD=<password>

Driver={Microsoft Access Driver (*.mdb)};DBQ=<path to

file>

Driver={Microsoft Excel Driver (*.xls)};DBQ=<path to

file>

Driver={Microsoft Text Driver (*.txt;

*.csv)};DBQ=<path to file>

DSN=<dsn name>

For a DSN connection, the appropriate entries must be made in the Registry
for a successful connection.The ODBC Data Source Administrator in Windows
2000 is used for this purpose.

Using DSN Connection
Before you can use a DSN connection, you must create it using the ODBC Data
Source Administrator.The application steps the user through the process of cre-
ating a the Registry entries used to establish a connection to a particular data
source.The code in Figure 8.13 (OrdersDataSet\CDalOdbc.cs on the CD) is for

www.syngress.com

167_C#_08.qxd 12/4/01 3:32 PM Page 423

424 Chapter 8 • ADO.NET

the CDalOdbc class, and the strConnection method implemented in ODBC.This
method is not aware at compile time, whether it will be using a DSN or not.The
implementation in Figure 8.14 demonstrates using the method with a DSN.

Figure 8.13 Data Access Layer for ODBC (OrdersDataSet\CDalOdbc.cs)

using System;

using System.Data.Odbc;

namespace OrdersDataSet

{

public class CDalOdbc

{

string strConStr;

private OdbcConnection cn;

private OdbcDataAdapter adptr = new OdbcDataAdapter();

public CDalOdbc(string sConn)

{

this.strConnection = sConn;

}

public string strConnection

{

get

{

return strConStr;

}

set

{

strConStr = value;

try

{

this.cn = new OdbcConnection(value);

}

catch (Exception e)

www.syngress.com
Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 424

ADO.NET • Chapter 8 425

{

throw e;

}

}

}

}

}

Figure 8.14 Using the CDalOdbc Class with a DSN

string sConn = "DSN=dsn_DotNetSQL";

db = new CDalOleDb(sConn);

The DSN used in Figure 8.14 contained the provider definition, path to the
file, and any security information necessary to connect to the resource.The rest
of the process for using the System.Data.Odbc namespace is exactly the same as
using the System.Data.OleDb, and the System.Data.SqlClient namespaces.

www.syngress.com

Figure 8.13 Continued

167_C#_08.qxd 12/4/01 3:32 PM Page 425

426 Chapter 8 • ADO.NET

Summary
ADO.NET represents a fundamental change in the way Windows developers will
work with data for the foreseeable future.With its rich support for XML, and its
demonstrated extensibility,ADO.NET will lead the way for data access.

With the creation of ADO.NET, the architecture of data access has leapt for-
ward with rich support for XML, and is particularly suited to disconnected data
manipulation.The recordset object in ADO 2.x has been replaced with the
DataReader and the DataSet.The DataReader is a read-only, forward-only stream
of data.The DataReader allows for very fast sequential access to data.The DataSet
is an in-memory copy of one or more tables from a data source.The DataSet has
rich support for synchronizing the copy of data in its DataTable collection, as well
as providing for much of the same functionality that a relational database has to
offer, such as relationships, primary keys, and constraints. Because working with
data in ADO.NET is connection-less for the most part, the DataSet will play an
important role in applications that require scrolling access to data.The state man-
agement built into the DataSet is superb, and it is obvious to see that Microsoft
has put a great deal of effort into this object and the related collections.

A DataSet contains a collection of DataTables. DataTables contain a collection
of DataRows, which contain a collection of DataColumns.You can create a
DataSet manually by adding DataTables and DataRows at runtime, or you can use
the Fill method of a DataAdapter to dynamically create DataTables and DataRows
by retrieving data from a data source.The DataSet does not connect to a data
source, as a matter of fact, it is completely disconnected from a data source.A
DataAdapter represents the connection and command objects that are used to
connect to and retrieve data. Implementations of the DataAdapter are specific to a
Managed Provider.A Managed Provider is a set of classes that are created specifi-
cally to connect to a data source, and issue commands against the connection.

The .NET Framework Beta2 ships with the System.Data.OleDb, and the
System.Data.SqlClient Managed Providers.A third was made available as a separate
download that creates the System.Data.Odbc Managed Provider.The
System.Data.OleDb provider was created to use the many existing OLE-DB
providers that are already available, such as the OLE-DB provider for Oracle, MS
Access, and SQL Server, to name a few.The System.Data.SqlClient provider was
created specifically to take advantage of a lower protocol that is proprietary to
SQL Server.This provider is very fast and efficient, but only for connecting to
MS SQL Server.The System.Data.Odbc provider is similar to the System.Data
.OleDb provider except that it makes use of existing ODBC drivers.

www.syngress.com

167_C#_08.qxd 12/4/01 3:32 PM Page 426

ADO.NET • Chapter 8 427

The Managed Providers inherit interfaces and common objects from the .NET
Framework and provide remarkably similar object models.You can use a find and
replace operation to switch from one Managed Provider to another.This is made
possible by the adherence to a naming convention that involves the use of a prefix
that is added to Managed Provider specific objects such as the connection. For
example, the SqlConnection object has the same interface as the OleDbConnection
object, which has the same interface as the OdbcConnection object.

The command objects are specific to the Managed Providers as well as
the connection objects.They are the OleDbCommand, SqlCommand, and
OdbcCommand.These commands are used to execute statements that the data
source will respond to, such as SQL queries, stored procedures, or functions.
These command objects contain a collection of parameters that you can use
with either stored procedures or parameterized queries.

Solutions Fast Track

Introducing ADO.NET

Recordset is gone. It was replaced with the DataSet and the DataReader.

Managed Providers are used to create data source–specific objects for
connecting to and manipulating data in data sources.

ADO.NET contains rich support for XML, and XML is used to
transport data between the different layers.

The core namespaces are the following:

■ System.Data

■ System.Data.Common

■ System.Data.OleDb

■ System.Data.SqlClient

■ System.Data.SqlTypes

■ System.Data.Odbc

DataSets are made up of DataTables, which are made up of DataColumns
and DataRows.

www.syngress.com

167_C#_08.qxd 12/4/01 3:32 PM Page 427

428 Chapter 8 • ADO.NET

DataViews provide for data binding, as well as search, sort, filter, and
navigation of data in DataTables.

Working with System.Data.OleDb

The System.Data.OleDb ships with the .NET Framework.

A connection string must specify the correct provider attribute.

The OleDbCommand object is used to execute a SQL statement.

Use the ExecuteReader() method of the OleDbCommand object to return
an OleDbDataReader object to the calling function.

Working with SQL.NET

The System.Data.SqlClient ships with the .NET Framework.

Remove the Provider attribute from the connection string.

The SqlClient Managed Provider can only be used to connect to SQL
Server 7.0 and higher.

The preferred method of data access is with stored procedures.

Create SqlConnection and SqlCommand objects for interacting with the
SQL Server.

Working with Odbc.NET

The System.Data.Odbc is a separate download from Microsoft.

You can use the ObdcConnection in conjunction with a Data Source
Name (DSN) or a connection string.

Use OdbcConnection and OdbcCommand objects to connect to and
interact with a data source.

Odbc.NET uses a Provider attribute similar to the OleDbConnection
object, but with a slightly different syntax.

www.syngress.com

167_C#_08.qxd 12/4/01 3:32 PM Page 428

ADO.NET • Chapter 8 429

Q: Which object allows for faster reading of data: the DataReader or the DataSet?

A: As always, testing is the final determination, but generally the DataReader is
faster than the DataSet.The DataReader is intended to provide a forward-
scrolling source of read-only data that provides access to data one row at a
time. If you are returning a great number of rows, the DataReader may be a
better idea than the DataSet.Your testing will determine if the DataSet is
better for smaller amounts of data.

Q: Should I use the OleDb Managed Provider or the SQL Managed Provider?

A: If your project is using SQL Server in production, by all means use the SQL
Managed provider.The SQL Managed Provider is more efficient and faster
than the OleDb libraries—which is about its only advantage. Both objects
have the same options and methods—the difference is in the implementation.
The OleDb Managed Provider will allow you change the DataSource easily
without having to change much code.

Q: Should I use SQL statements or stored procedures for data access?

A: Stored procedures are the preferred method of data access because they allow
for another layer of granularity to your application. Most relational databases
also precompile and take the opportunity to optimize the query plan of the
stored procedure based on index statistics.They do, however, require other
specialized skills that may not be available on your team. In general, resort to
SQL statements as a last resort or in special instances.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

167_C#_08.qxd 12/4/01 3:32 PM Page 429

430 Chapter 8 • ADO.NET

Q: When should I use output parameters?

A: Output parameters have less overhead than returning data from a stored pro-
cedure does. If you are returning a couple of pieces of data, or even an entire
row of data, using the output parameters is more efficient. It is, however, a lot
more work for both the DBA and the developers. It may come down to your
project deadlines, but in general, they are variables in memory that are more
efficient than an XML Data Stream.

www.syngress.com

167_C#_08.qxd 12/4/01 3:32 PM Page 430

Working with XML

Solutions in this chapter:

■ Introduction to XML

■ Working with XML DOM

■ Working with XML and Relational Data

■ Working with XPath and XSL
Transformations

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 9

431

167_C#_09.qxd 12/4/01 3:33 PM Page 431

432 Chapter 9 • Working with XML

Introduction
The popularity of the Internet took off with the advent of the World Wide Web.
Suddenly, a world of information was available using a Web browser and dial-up
access to the Internet.Without diverse content, however, the World Wide Web
would be of little interest.

The wide availability of Hypertext Markup Language (HTML) editors
allowed people with little technical knowledge to publish their content on the
Web for the world to see.The proliferation of personal Web sites that display
family pictures and lists of hobbies is testament to this. HTML is an excellent
language for defining the presentation of data, but it is not very useful in
describing the data itself.As the Web matured, it became apparent that separation
of presentation from content was highly desirable.This separation allowed people
such as graphic artists to concentrate on presentation and allowed people such as
programmers to concentrate on creating and manipulating data.

Extensible Markup Language (XML) has emerged as the Web standard for
representing and transmitting data over the Internet. XML is a generic, platform-
independent data description language and as such has gained great popularity in
the computer industry, adopted by many of the largest companies in the com-
puter industry.The World Wide Web Consortium (W3C) has produced standards
for several XML-related technologies.

Microsoft has realized the importance of XML and has been providing XML
support within their products for the past several years. Internet Explorer has
continually added new support for XML with each release. XML support is
taken to a new level within the .NET Framework. In fact, use of XML is preva-
lent throughout the .NET Framework including use in configuration files, C#
source code comments, and Web services.This chapter teaches you to work with
XML and related technologies provided within .NET using C#.

Before we delve into XML support within .NET, we take a brief look at
XML and related technologies.You will then be ready to see how .NET provides
first-class support for working with XML.

Introduction to XML
There has been a lot of confusion regarding what XML really is.When XML was
first covered in the trade press, there was a tremendous amount of hype sur-
rounding it. XML was touted as the “next big thing” in the computer industry. It
was the savior of all things computer-related. It followed in a long line of saviors,

www.syngress.com

167_C#_09.qxd 12/4/01 3:33 PM Page 432

www.syngress.com

such as structured programming, artificial intelligence, case tools, object-oriented
programming, design patterns, and so on. Given this coverage in the press, XML
had little chance to live up to the expectations placed upon it. XML is, however, an
important and viable technology when considered with appropriate expectations.

So what is XML? A very simplified explanation is that it is structured text. If
you don’t currently know much about XML, you may be thinking,“That’s it?
What is the big deal?”The simplicity of XML is what makes it a big deal.Text is
supported on every computing platform. So, if you can represent your data in
text, people on every other computer platform can read your data without need
for specialized conversions from one format to another.This makes it easy for a
manufacturer to share data with his suppliers, for example.

Let’s take a look at a simple example of an XML document:

<?xml version="1.0" standalone="yes"?>

<Employees>

<Employee EmployeeID="1">

<FirstName>John</FirstName>

<MiddleInit>M</MiddleInit>

<LastName>Smith</LastName>

<Salaried>true</Salaried>

<Wage>40000</Wage>

<Active>false</Active>

</Employee>

</Employees>

The data in an XML document is described by elements and attributes.
Elements have a start tag and an end tag, like HTML, enclosed in angle brackets.
For instance <Employees> is the start tag and </Employees> is the end tag for
the <Employees> element.The “/” character indicates an end tag.The
<Employees> element is the first element in the XML document and is known
as the root element.An element can also have attributes. In this example,
EmployeeID is an attribute with a value of 1.

Elements can also contain sub-elements. In the example, the <Employee>
element is a sub-element of the <Employees> element.This is an important item
to note. XML documents are structured in a hierarchical format.An XML docu-
ment can be known as well-formed.A simplified explanation of a well-formed
XML document is that it has one root node, each element must have both start

Working with XML • Chapter 9 433

167_C#_09.qxd 12/4/01 3:33 PM Page 433

434 Chapter 9 • Working with XML

and end tags, and element tags must be nested properly.The following example
shows improper nesting:

<?xml version="1.0" standalone="yes"?>

<Employees>

<Employee EmployeeID="1">

<FirstName>John</FirstName>

<MiddleInit>M</MiddleInit>

<LastName>Smith</LastName>

<Salaried>true</Salaried>

<Wage>40000</Wage>

<Active>false

</Employee>

</Active>

</Employees>

In this example, the <Active> elements end tag comes after the <Employee>
elements end tag. Because the <Employee> element is the parent element of the
<Active> element, the <Active> element’s end tag should precede it.

You could write your own program to read a well-formed XML document.
But, because a well-formed document is a hierarchical representation of data,
generic programs have been written to read XML documents.A program that
can read an XML document is known as an XML parser. Several different types of
parsers are available in .NET. Programmer’s access XML data read in by a parser
using an application programming interface (API) the parser exposes. One pop-
ular API is the Document Object Model (DOM), which we describe next.

Explaining XML DOM
The W3C has standardized an API for accessing XML documents known as
XML DOM.The DOM API represents an XML document as a tree of nodes.
Because an XML document is hierarchical in structure, you can build a tree of
nodes and subnodes to represent an entire XML document.You can get to any
arbitrary node by starting at the root node and traversing the child nodes of the
root node. If you don’t find the node you are looking for, you can traverse the
grandchild nodes of the root node.You can continue this process until you find
the node you are looking for.

www.syngress.com

167_C#_09.qxd 12/4/01 3:33 PM Page 434

Working with XML • Chapter 9 435

The DOM API provides other services in additional to document traversal.
You can find the full W3C XML DOM specification at www.w3.org/DOM.
The following list shows some of the capabilities provided by the DOM API:

■ Find the root node in an XML document.

■ Find a list of elements with a given tag name.

■ Get a list of children of a given node.

■ Get the parent of a given node.

■ Get the tag name of an element.

■ Get the data associated with an element.

■ Get a list of attributes of an element.

■ Get the tag name of an attribute.

■ Get the value of an attribute.

■ Add, modify, or delete an element in the document.

■ Add, modify, or delete an attribute in the document.

■ Copy a node in a document (including subnodes).

The DOM API provides a rich set of functionality to programmers as is
shown in the previous list.The .NET Framework provides excellent support for
the XML DOM API, which you will see later in this chapter.The DOM API is
well suited for traversing and modifying an XML document. But, it provides little
support for finding an arbitrary element or attribute in a document. Fortunately
another XML technology is available to provide this support: XML Path
Language (XPath).

Explaining XPath
XPath is another XML-related technology that has been standardized by the
W3C. XPath is a language used to query an XML document for a list of nodes
matching a given criteria.An XPath expression can specify both location and a
pattern to match.You can also apply Boolean operators, string functions and
arithmetic operators to XPath expressions to build extremely complex queries
against an XML document. XPath also provides functions to do numeric evalua-
tions, such as summations and rounding.You can find the full W3C XPath speci-
fication at www.w3.org/TR/xpath.The following list shows some of the
capabilities of the XPath language:

www.syngress.com

167_C#_09.qxd 12/4/01 3:33 PM Page 435

436 Chapter 9 • Working with XML

■ Find all children of the current node.

■ Find all ancestor elements of the current context node with a specific tag.

■ Find the last child element of the current node with a specific tag.

■ Find the nth child element of the current context node with a given
attribute.

■ Find the first child element with a tag of <tag1> or <tag2>.

■ Get all child nodes that do not have an element with a given attribute.

■ Get the sum of all child nodes with a numeric element.

■ Get the count of all child nodes.

The preceding list just scratches the surface of the capabilities available using
XPath. Once again, the .NET Framework provides support for XPath queries
against XML DOM documents and read-only XPath documents.You will see
examples of this later in this chapter.

Explaining XSL
According to the W3C, XSL is a catchall phrase that encompasses three different
W3C-based specifications. It includes XPath, XSL Transformations (XSLT), and
XSL Formatting Objects (XSL-FO). XSL-FO is an XML-based grammar applied
to an XML document using stylesheets that affect the presentation of the docu-
ment. XSL-FO is still a work-in-progress, so in this chapter we focus on XPath
and XSLT.

XSLT is an XML-based language for transforming XML documents. XSLT
stylesheets applied to an XML document transform the XML to another form.
You can use XSLT stylesheets to convert XML documents to other file formats
such as HTML, RTF, PDF, etc. XSLT can also be used transform XML to XML.
For instance, if a manufacturer creates XML in one format, but his suppliers
assume they will receive XML in another format, an XSLT stylesheet can be
applied to the XML document to convert it to the format expected by the sup-
pliers. XPath expressions can be used by XSLT stylesheets during the transforma-
tion process.You can find more information about XSL at
www.w3.org/TR/xslt.

XSLT support is built into the .NET Framework. Later in the chapter, we
show examples that apply XSLT stylesheets to XML documents.

www.syngress.com

167_C#_09.qxd 12/4/01 3:33 PM Page 436

Working with XML • Chapter 9 437

Explaining XML Schemas
As previously mentioned, XML is a good format for exchanging data between
diverse groups. However, if groups cannot agree on a specific format for XML
that they share, it will be of no help.The data in an XML document itself does
not provide the information that defines the structure of an XML document.

Document Type Definitions (DTDs) are one way to describe the structure of
an XML document.A DTD specifies the elements and attributes in an XML
document. It also indicates the position of elements and the number of times
they occur. DTDs are the traditional way the structure of an XML document has
been expressed.

If an XML document has a DTD associated with it, an XML parser can read
the DTD and determine if the XML document conforms to the DTD. If the
XML conforms to the DTD, it is known as a valid XML document. If a docu-
ment is valid, the receiver of a document knows that the data in it conforms to
the structure expected. Not every XML parser performs validation however.
Parsers that do perform validation are known as validating parsers.

One limitation of DTDs is that they do not give any indication of the data
type associated with the elements and attributes in an XML document. For
instance, if an XML document has an element with a tag <OrderID>, it is
unclear if order ID is a string, numeric, or something else.

XML schemas pick up where DTDs leave off. XML schemas provide all of
the same support in defining the structure of an XML document as DTDs. In
addition, XML schemas also let you define data types for elements and attributes,
specify minimum and maximum values for numerics, specify maximum lengths
for strings, and define enumerations.

Very few validating parsers validate against XML schemas at this time.
However, the .NET Framework does provide parsers that can validate XML doc-
uments against XML Schema Definition (XSD) schemas as well as DTDs.You
can find more information about XML schemas at www.w3.org/XML/Schema.

That completes our brief look at XML and related technologies.We are now
ready to delve into the XML support provided by the .NET Framework.

XML Classes in the .NET Framework
Table 9.1 contains a list of the most important classes used to manipulate XML
documents in the .NET Framework.You will see many of them used in the
examples in the following sections of this chapter.

www.syngress.com

167_C#_09.qxd 12/4/01 3:33 PM Page 437

438 Chapter 9 • Working with XML

Table 9.1 Frequently Used XML Classes in the .NET Framework

Class Name Namespace Description

XmlReader System.Xml Abstract class for reading an
XML document.

XmlTextReader System.Xml A nonvalidating XmlReader-
derived parser that provides
forward and read-only access to
an XML document. This is the
fastest way to read an XML
document.

XmlValidatingReader System.Xml A validating XmlReader-derived
parser that validates using both
DTDs and XML schemas.

XmlNodeReader System.Xml An XmlReader for a DOM XML
document node set.

XmlWriter System.Xml Abstract class for writing an
XML document.

XmlTextWriter System.Xml An XmlWriter implementation
that provides forward-only gen-
eration of an XML document.
This is the fastest way to write
an XML document.

XmlDocument System.Xml A W3C XML DOM document.
XmlDataDocument System.Xml An XmlDocument implementa-

tion that allows data to be
accessed via relational represen-
tation or via XML DOM.

XPathDocument System.Xml.XPath An XML document class opti-
mized for use with XPath
navigation.

XPathNavigator System.Xml.XPath Provides XPath navigation over
an XML document.

XmlSchema System.Xml.Schema W3C XSD schema
implementation.

XslTransform System.Xml.Xsl W3C XSLT implementation.

www.syngress.com

167_C#_09.qxd 12/4/01 3:33 PM Page 438

Working with XML • Chapter 9 439

Working with XML DOM
In the Introduction, you learned that the XML DOM API is used to create,
modify, and traverse XML documents. In the .NET Framework, the classes most
often used to work with XML DOM documents are contained in the
System.Xml namespace.Table 9.2 lists the classes in System.Xml that you will most
likely work with the most when writing C# programs that manipulate XML
DOM documents.

Table 9.2 Frequently Used XML DOM Classes

Class Name Description

XmlDocument A W3C DOM document (note that XmlDocument is derived
from XmlNode).

XmlNode A single node in an XML document. Typically an element,
text node, CDATA section, processing instruction, or
comment.

XmlNodeList A list of XmlNode objects. Each node in the list may contain
child nodes, which in turn may contain their own child
nodes. Traversing an XmlDocument object walks a tree of
XmlNodeList objects.

XmlElement An element in the document.
XmlAttribute An attribute of an element in the document.

The best way to learn something is by example. So, let’s get right into a
sample program that exercises the XML DOM support built into the .NET
Framework. Imagine a small company whose size may not require the full power
of a commercial database to maintain information about employees. Spreadsheets
or even flat files are viable alternatives for maintaining company records in this
scenario.

Another solution is to use XML documents as a database.The XML DOM
sample shows you how you can use the .NET Framework to construct an XML
document, save to and load the document from disk, and make updates to the
document.This, in effect, uses XML as a database.

The XML DOM sample is a Windows Forms–based program. Figure 9.1
shows the output from the XML DOM sample program.The sample program
uses XML files as an employee database. Using the program, you can add, edit,
and delete employees from the database. Figure 9.1 shows the one form the pro-
gram displays for editing employee data.Although the sample program shows a

www.syngress.com

167_C#_09.qxd 12/4/01 3:33 PM Page 439

440 Chapter 9 • Working with XML

limited amount of employee data, you can easily expand it to include additional
information.

We supply you with a short explanation of program operation and then take
a look at the source code.The full source code is on the CD that accompanies
this book, in a file named DOMForm.cs in the DOM directory.

When the program starts, it looks for an XML file named employees.xml in
the current directory that contains employee information. If the file doesn’t exist,
you are starting with an empty employee database. If the file exists, it loads the
XML file into an XML DOM document.The program traverses the XML docu-
ment in memory.As it encounters employees, the program adds an entry for each
employee in the Employee combo box.

Once the program has finished loading you can begin editing your employee
database. Clicking New clears the form and allows you to enter a new employee.
Clicking Save saves the currently displayed employee to the XML document. If
the employee displayed on the form is a new employee, it adds the employee to
the document. If it is an existing employee, it updates that employee’s informa-
tion. Clicking Delete deletes the currently displayed employee from the XML
document. Selecting a new employee from the Employee combo box populates
the form with that employee’s information.The program does not ask you to save
any edits made to the current employee displayed on the form prior to displaying
the selected employee. Finally, clicking Empty Employee List deletes all
employees out of the XML document, in effect initializing the database.

One thing to note is that the document on disk is updated every time you
click Save or Delete.This works fine for a small number of employees, but
could cause performance problems with a larger number.

www.syngress.com

Figure 9.1 The XML DOM Sample Program

167_C#_09.qxd 12/4/01 3:33 PM Page 440

Working with XML • Chapter 9 441

Let’s take a look at what the employees.xml file looks like after two
employees.This will you give an idea of how the fields on-screen relate to the
XML file. It is shown in Figure 9.2.

Figure 9.2 Employees.xml after Adding Two Employees

<?xml version="1.0" standalone="yes"?>

<Employees>

<Employee EmployeeID="1">

<FirstName>Joe</FirstName>

<MiddleName>Arthur</MiddleName>

<LastName>Smith</LastName>

<Salaried>true</Salaried>

<Wage>45000</Wage>

<Active>true</Active>

<SSN>555-55-5555</SSN>

<StartDate>2001-09-12</StartDate>

</Employee>

<Employee EmployeeID="2">

<FirstName>Betty</FirstName>

<MiddleName>Ann</MiddleName>

<LastName>Butler</LastName>

<Salaried>false</Salaried>

<Wage>22.00</Wage>

<Active>false</Active>

<SSN>666-66-6666</SSN>

<StartDate>2001-09-15</StartDate>

</Employee>

</Employees>

At the top of the file, you see the XML declaration. Immediately after that
you see the root element, <Employees>. Each time you add a new employee
using the New button, a new <Employee> element is added as the last child ele-
ment of the <Employees> element.An <Employee> element has one attribute,
EmployeeID.The EmployeeID attribute is generated by the program and has no
form field associated with it.The rest of the child elements of the <Employee>

www.syngress.com

167_C#_09.qxd 12/4/01 3:33 PM Page 441

442 Chapter 9 • Working with XML

element have a one-to-one correspondence with fields on the form. Let’s take a
look at how we create the XML document.

Creating an Empty XML DOM Document
When you run the program the first time, it creates an empty XML document. It
also creates an empty XML document when you click Empty Employee List.
Here is the C# code to do this:

private void createEmptyXMLDocument()

{

// Create a new DOM-based XML document

m_xmlDocument = new XmlDocument();

// Add the XML declaration

XmlDeclaration dec =

m_xmlDocument.CreateXmlDeclaration("1.0", "", "yes");

m_xmlDocument.PrependChild (dec);

// Add the root element

XmlElement nodeElem =

m_xmlDocument.CreateElement(TagEmployees);

m_xmlDocument.AppendChild(nodeElem);

}

Here, you can see a new System.Xml.XmlDocument object.The XmlDocument
object is the representation of a W3C XML DOM document.The XmlDocument
class is derived from the System.Xml.XmlNode and is therefore considered a node
in the document.

After creating the document, the XML declaration node is created with the
CreateXmlDeclaration method of the XmlDocument class and inserted before the
root node of the document using the PrependChild method of XmlNode.The
PrependChild method adds a node to the document before the root node of the
document.The CreateXmlDeclaration method takes three parameters: the version,
which must be 1.0; the encoding, which is left blank resulting in the default
encoding (UTF-8); and whether the document is a standalone document, which
in this case is set to “yes”.

Next, the root element of the document object is created using the
CreateElement method passing the tag of the root element, in our case

www.syngress.com

167_C#_09.qxd 12/4/01 3:33 PM Page 442

Working with XML • Chapter 9 443

“Employees”. Finally, the root node is appended to the document using the
AppendChild method of XmlDocument.

Adding the XML declaration and the root element are typical examples of
adding to an XML DOM document.Typically you create the type of node you
want to add from the XmlDocument object.Then you add it to the document by
inserting it before or after an existing node.This will normally be done by using
one of the following methods of the XmlNode class: AppendChild, InsertAfter,
InsertBefore, PrependChild, or ReplaceChild. Here is what the XML document looks
like after executing the previous code:

<?xml version="1.0" standalone="yes"?>

<Employees />

Adding an Element to the XML Document
You now have an empty XML document. Once you have entered all of the
information for an employee on the form and clicked Save, a new <Employee>
element is added to the XML document. Here is the source code to accomplish
this:

private void addEmployee(XmlDocument doc, int nEmployeeID,

string strFirstName, string strMiddleName, string strLastName,

string strSalaried, string strWage, string strActive,

string strSSN, string strStartDate)

{

// Create a new employee element. Append it as a child of the

// root element.

XmlElement nodeParent = doc.DocumentElement;

XmlElement elemEmployee = doc.CreateElement(TagEmployee);

elemEmployee.SetAttribute(TagEmployeeID,

nEmployeeID.ToString());

nodeParent.AppendChild(elemEmployee);

// Add the child elements that make up the employee element

addTextElement(doc, elemEmployee, TagFirstName,

strFirstName);

addTextElement(doc, elemEmployee, TagMiddleName,

www.syngress.com

167_C#_09.qxd 12/4/01 3:33 PM Page 443

444 Chapter 9 • Working with XML

strMiddleName);

addTextElement(doc, elemEmployee, TagLastName, strLastName);

addTextElement(doc, elemEmployee, TagSalaried, strSalaried);

addTextElement(doc, elemEmployee, TagWage, strWage);

addTextElement(doc, elemEmployee, TagActive, strActive);

addTextElement(doc, elemEmployee, TagSSN, strSSN);

addTextElement(doc, elemEmployee, TagStartDate,

strStartDate);

}

private XmlElement addTextElement(XmlDocument doc,

XmlElement nodeParent, string strTag, string strValue)

{

// Create a new element with tag passed in

XmlElement nodeElem = doc.CreateElement(strTag);

// Create a text node using value passed in

XmlText nodeText = doc.CreateTextNode(strValue);

// Add the element as a child of parent passed in

nodeParent.AppendChild(nodeElem);

// Add the text node as a child of the new element

nodeElem.AppendChild(nodeText);

return nodeElem;

}

The addEmployee method takes the XML document, an employee ID gener-
ated by the program, and all of the data on the form as arguments. First, it
retrieves the root node of the document, the <Employees> element using the
DocumentElement property of XmlDocument. Remember that all <Employee> ele-
ments are added as child elements of the root <Employees> element.An empty
<Employee> element is created using the CreateElement method.The employee
ID attribute is added to the new element by calling the SetAttribute method.

www.syngress.com

167_C#_09.qxd 12/4/01 3:33 PM Page 444

Working with XML • Chapter 9 445

Finally, the empty <Employee> element is appended as the last child element of
the <Employees> element via the AppendChild method.

The addTextElement helper method is called to add elements to the
<Employee> element that correspond to each field on the form.The method
takes the element tag and the string value associated with the element as argu-
ments.The addTextElement method performs a familiar set of operations. First, it
creates an empty element that uses the tag passed in by calling CreateElement. It
then creates a new text node that will contain the information associated with
one field on the form via the CreateTextNode method.The CreateTextNode
method takes the string data retrieved from the screen as an argument.Then, the
new <Employee> element is appended to the <Employees> element, which was
passed in as a parameter. Finally, the new text node containing the data from the
form is appended to the new <Employee> element by calling AppendChild.

Here is what the XML document looks like after adding one new employee:

<?xml version="1.0" standalone="yes"?>

<Employees>

www.syngress.com

DOM Extensions in .NET: The InnerText Property
Microsoft has provided some extensions to the W3C DOM API in the
XmlDocument class. One of these extensions is the InnerText property.
You saw code similar to the following when an element with a text node
was created:

XmlElement elem = doc.CreateElement("LastName");

XmlText nodeText = doc.CreateTextNode("Jones");

elem.AppendChild(nodeText);

The InnerText property of the XmlElement class is used to create
and add text to the text node of an element. This code could have been
rewritten as follows:

XmlElement elem = doc.CreateElement("LastName");

elem.InnerText = "Jones"

Developing & Deploying…

167_C#_09.qxd 12/4/01 3:33 PM Page 445

446 Chapter 9 • Working with XML

<Employee EmployeeID="1">

<FirstName>Joe</FirstName>

<MiddleName>Arthur</MiddleName>

<LastName>Smith</LastName>

<Salaried>true</Salaried>

<Wage>45000</Wage>

<Active>true</Active>

<SSN>555-55-5555</SSN>

<StartDate>2001-09-12</StartDate>

</Employee>

</Employees>

Updating an Element in the XML Document
Once you create an employee and save it to the document by clicking Save, you
can update the employee by changing the employee information on-screen and
clicking Save again.When you click Save, the XML document will be updated
with the employee information retrieved from the form. Here is the relevant
source code to update an employee:

private void updateEmployee(XmlDocument doc, int nEmployeeID,

string strFirstName, string strMiddleName, string strLastName,

string strSalaried, string strWage, string strActive,

string strSSN, string strStartDate)

{

// Find the employee

XmlElement empElement = findEmployee(m_xmlDocument,

nEmployeeID.ToString());

if (empElement == null)

return;

// Get a list of all the child nodes of the employee

XmlNodeList nodeList = empElement.ChildNodes;

// For each element, get the element tag. Based on the tag,

// set the text data that will be added.

www.syngress.com

167_C#_09.qxd 12/4/01 3:33 PM Page 446

Working with XML • Chapter 9 447

for (int i = 0; i < nodeList.Count; i++)

{

XmlNode node = nodeList.Item(i);

if (node is System.Xml.XmlElement) // sanity check

{

XmlElement element = (XmlElement) node;

string strTag = element.Name;

string strData = "";

if (strTag == TagFirstName)

strData = strFirstName;

else if (strTag == TagMiddleName)

strData = strMiddleName;

else if (strTag == TagLastName)

strData = strLastName;

else if (strTag == TagWage)

strData = strWage;

else if (strTag == TagSSN)

strData = strSSN;

else if (strTag == TagSalaried)

strData = strSalaried;

else if (strTag == TagActive)

strData = strActive;

else if (strTag == TagStartDate)

strData = strStartDate;

else

continue;

// Create a new text node with the appropriate data and

// replace the current text node, effectively updating.

XmlText nodeText = doc.CreateTextNode(strData);

element.ReplaceChild(nodeText, element.FirstChild);

}

www.syngress.com

167_C#_09.qxd 12/4/01 3:33 PM Page 447

448 Chapter 9 • Working with XML

}

}

private XmlElement findEmployee(XmlDocument doc,

string strEmployeeID)

{

XmlElement nodeFound = null;

XmlElement root = doc.DocumentElement;

// Get all employee elements in a document

XmlNodeList nodeList =

root.GetElementsByTagName(TagEmployee);

foreach (XmlNode nodeEmployee in nodeList)

{

if (nodeEmployee is System.Xml.XmlElement)

{

// Get the EmployeeID attribute. If it matches the one

// we are looking for, save the node for later removal.

XmlElement elemEmployee = (XmlElement) nodeEmployee;

String strIDFound =

elemEmployee.GetAttribute("EmployeeID");

if (strIDFound != null && strIDFound == strEmployeeID)

{

nodeFound = elemEmployee;

break;

}

}

}

return nodeFound;

}

www.syngress.com

167_C#_09.qxd 12/4/01 3:33 PM Page 448

Working with XML • Chapter 9 449

The updateEmployee method takes the XML document, the employee ID of
the employee to update, and the data retrieved from the form as arguments.The
first thing it does is call the helper method findEmployee, passing the XML docu-
ment and the employee ID as parameters.

The findEmployee method gets a list of all of the <Employee> elements by
calling GetElementsByTagName on the <Employees> element, passing the tag
Employee. GetElementsByTagName returns an object of type
System.Xml.XmlNodeList.The list contains all of the elements in the document
that have the tag passed in and all of their child nodes. In this case, this means
you will get a node list containing all of the <Employee> elements including the
child elements such as last name, first name, and so on.

You now have list of all the Employee elements.You need to traverse the list
until you find the employee with the employee ID that was passed in to
findEmployee.The foreach syntax of C# is used to iterate through the node list.
This is not part of the DOM API, but provides a nice clean shortcut for us.You
will see the standard DOM syntax used to iterate through a node list shortly.

The code does a quick sanity check on the nodes in the node list you
retrieved by checking the type of the nodes using the code:

if (nodeEmployee is System.Xml.XmlElement)

If the node is an element, you get the employee ID by calling GetAttribute,
passing the tag EmployeeID.The ID returned is compared with the ID of the
employee you are looking for. If it matches, you found the employee and return
it. Otherwise, keep looping through the nodes.

Back in updateEmployee, you check to see if you found the <Employee> ele-
ment. If it was found, you loop through each of the child elements and update
the data associated with each element using the data retrieved from the form.

First, you get all of the child nodes of the <Employee> element using the
ChildNodes property:

XmlNodeList nodeList = empElement.ChildNodes;

Next, you loop through each node in the node list, doing a quick check to
make sure each child is an element. If so, retrieve the tag of the element.This is
the more traditional DOM processing that was mentioned before when dis-
cussing the foreach keyword:

for (int i = 0; i < nodeList.Count; i++)

{

XmlNode node = nodeList.Item(i);

www.syngress.com

167_C#_09.qxd 12/4/01 3:33 PM Page 449

450 Chapter 9 • Working with XML

if (node is System.Xml.XmlElement) // sanity check

{

XmlElement element = (XmlElement) node;

string strTag = element.Name;

Finally, based on the tag of the element encountered, a string variable named
strData is set with the data retrieved from the form corresponding to the tag.A
new text node is created containing the data and the current data associated with
the element is replaced with the new data using the ReplaceChild method of
System.Xml.XmlNode:

string strData = "";

if (strTag == TagFirstName)

strData = strFirstName;

// Other cases snipped here

// Create a new text node with the appropriate data and

// replace the current text node, effectively updating.

XmlText nodeText = doc.CreateTextNode(strData);

element.ReplaceChild(nodeText, element.FirstChild);

}

Deleting an Element in the XML Document
An employee is deleted from the XML document by clicking Delete on the
form while viewing information for an employee. Deleting an element is rela-
tively straightforward. Here is the relevant code from the sample:

private void deleteEmployee(XmlDocument doc,

string strEmployeeID)

{

// Find the employee in the XML file

XmlElement element = findEmployee(m_xmlDocument,

strEmployeeID);

// Not found, do nothing

www.syngress.com

167_C#_09.qxd 12/4/01 3:33 PM Page 450

Working with XML • Chapter 9 451

if (element == null)

return;

// Remove from the XML document

XmlElement root = m_xmlDocument.DocumentElement;

root.RemoveChild(element);

}

First, you call findEmployee to find the <Employee> element. If the element is
found, the root element of the document is retrieved because the <Employee>
element is a child of the root element.The RemoveChild method of
System.Xml.XmlNode is called to remove the employee from the document.

Loading and Saving the XML Document
In the sample, you load and save the XML document to a disk file using the Load
and Save methods of the XmlDocument class. Here are examples of this.

m_xmlDocument.Load(XMLFileName);

m_xmlDocument.Save(XMLFileName);

www.syngress.com

XML APIs: What About SAX?
Possibly the most frequently asked question regarding XML support in
the .NET Framework is if there is support for the Simple API for XML
(SAX). SAX is an API that is used to access XML documents like DOM. The
advantage of SAX programs over DOM is that DOM parsers typically read
the whole XML tree into memory. This can be very slow and just not pos-
sible with extremely large XML files. SAX provides a streaming forward-
only event-based push model. To write a SAX program, you register a
series of callbacks that are called by the parser when events occur, such
as the beginning of an element, the end of an element, and so on. SAX
itself is not supported in the .NET Framework. The XmlReader class
implements a forward/read-only pull model that allows you to write SAX-
like programs. Instead of registering callbacks, you continually issue Read
calls to the parser and examine the type of node that is returned, then

Developing & Deploying…

Continued

167_C#_09.qxd 12/4/01 3:33 PM Page 451

452 Chapter 9 • Working with XML

Both the Load and Save methods have four different overloads to allow max-
imum flexibility in the underlying data source of the XML document.The Load
method takes a Stream, a String (filename), a TextReader or an XmlReader as an
argument.The Save method takes a Stream, a String (filename), a TextWriter, or an
XmlWriter as an argument.This flexibility allows an XML document to be cre-
ated from several different data sources, including disk files, memory buffers, and
Uniform Resource Locators (URLs).

Working with XML and Relational Data
As you learned in Chapter 8 regarding ADO.NET, the System.Data.DataSet class of
the .NET Framework is used to manipulate relational data in memory using tables,
rows, and columns.The DataSet class is disconnected, meaning it does not maintain
an active connection to a database.The information in a DataSet is held in memory,
which can later be written back to a database by getting a connection to the
database. Because a DataSet does not maintain a connection to a database, other
data sources can be used to load a DataSet. XML is one such data source.You will
see the relationship between XML documents and the DataSet class in this section.

The sample program used in the section requires the files employee1.xml,
wagehistory.xml, employee.xsd, and wagehistory.xsd to be in the same directory
the sample is run from.You can find the files on the CD that accompanies this
book in the Relational directory.You may need to copy the files to the directory
you run the sample from.The full source code for the sample is in the Relational
directory as well.The two files that contain the source code are named
RelationalForm.cs and TraversalForm.cs.

Figure 9.3 shows a portion of the employee1.xml file, and Figure 9.4 shows
a portion of the wagehistory.xml file.You can see in these figures that an
<Employee> element has an attribute named EmployeeID, and the <WageChange>
element also has an attribute named EmployeeID. The EmployeeID attribute estab-
lishes a parent-child relationship between the two XML documents. Each

www.syngress.com

take some action based on the type of node. In the .NET Framework,
XmlReader-derived classes offer a very fast streaming model to parse an
XML document. So, although it doesn’t support SAX per se, the .NET
Framework allows you to write programs that use a streaming model like
SAX. In fact, if you really wanted to, you could write a SAX parser on top
of the XmlReader class. It is probably only a matter of time before
someone does.

167_C#_09.qxd 12/4/01 3:33 PM Page 452

Working with XML • Chapter 9 453

<Employee> element in employee1.xml has one or more <WageChange>
elements in wagehistory.xml.This relationship is used in the sample program to
display all pay raise information for an arbitrary employee.

Figure 9.3 The <Employee Element> (employee1.xml)

<?xml version="1.0" standalone="yes"?>

<Employees>

<Employee EmployeeID="1">

<FirstName>John</FirstName>

<MiddleName>M</MiddleName>

<LastName>Smith</LastName>

<Salaried>true</Salaried>

<Wage>40000</Wage>

<Active>false</Active>

<SSN>555-55-55555</SSN>

<StartDate>1999-04-01</StartDate>

</Employee>

Figure 9.4 The <Employee Element> (wagehistory.xml)

<?xml version="1.0" standalone="yes"?>

<WageHistory>

<WageChange EmployeeID="1">

<Date>1999-04-01</Date>

<Wage>33000</Wage>

</WageChange>

<WageChange EmployeeID="2">

<Date>2001-04-01</Date>

<Wage>22.75</Wage>

</WageChange>

The sample program performs three separate operations. First, it loads two
XML documents without using XML schema files and establishes a relation
between the two files.This is shown in Figure 9.3. Second, it loads two XML
documents using XML schema files and establishes a relation between the two

www.syngress.com

167_C#_09.qxd 12/4/01 3:33 PM Page 453

454 Chapter 9 • Working with XML

files.This is shown in Figure 9.4. Finally, it loads the two XML documents using
XML schema files and programmatically traverses the documents using the estab-
lished relation.This is shown in Figure 9.5.

Figure 9.5 shows the sample after you click Load XML Without Schema.
The program reads the employee1.xml file and the wagehistory.xml files into a
DataSet class object.This results in an Employee table and a WageChange table
being added to the DataSet.A relation between the two tables is established.

The Employee table is bound to the top grid and the WageChange table is
bound to the middle grid. Each grid is of type System.Windows.Forms.DataGrid
and therefore is a databound control.This means that the grid automatically
knows how to display the data in the Dataset and understands the relation
without having to do any additional programming.You can click on any row in
the top grid and the middle grid will be populated with information from the
WageChange table using the employee in the selected Employee table row. No
additional work is done to accomplish this.

The bottom grid shows the data type of each column in both the Employee
table and the WageChange table.You can see in Figure 9.5 that the data type for
every column is System.String. In Figure 9.6, generated after clicking Load XML
With Schema, some columns have different data types.This shows the effect of
using an XSD schema when reading in the XML from disk into the DataSet
object.The schema file establishes the data type for each element and attribute in
the XML document.These data types are carried over to the DataSet tables. Note

www.syngress.com

Figure 9.5 The Relational Sample—Load XML without Schema

167_C#_09.qxd 12/4/01 3:33 PM Page 454

Working with XML • Chapter 9 455

that the grid control recognizes the data types as well. Notice that the Salaried
and Active columns have become check boxes instead of text fields as shown in
Figure 9.5.

Figure 9.7 shows the results of traversing the DataSet manually when you
click Traverse XML.You can see that the DataSet is traversed twice, once using
relational calls and once using DOM calls.This is possible when the DataSet is
contained within an object of the System.Xml.XmlDataDocument class.The
XmlDataDocument class lets you treat the data in the document as a relational
DataSet or as an XML DOM XmlDocument.

www.syngress.com

Figure 9.6 The Relational Sample—Load XML with Schema

Figure 9.7 The Relational Sample—Traversing XML

167_C#_09.qxd 12/4/01 3:33 PM Page 455

456 Chapter 9 • Working with XML

XML and the DataSet Class
Let’s take a look at the code that loads the XML documents and sets up the rela-
tion when you click Load XML Without Schema. Figure 9.5 shows the results
of clicking the button.The code that is executed when you click the button is
shown in Figure 9.8.

Figure 9.8 Loading a Dataset without Using a Schema (RelationalForm.cs)

/// <summary>

/// Called when Load XML Without Schema button is clicked

/// </summary>

private void button1_Click(object sender, System.EventArgs e)

{

Cursor currentCursor = Cursor.Current;

try

{

Cursor.Current = Cursors.WaitCursor;

// Create two new datasets and load them from XML files

// on disk

DataSet dsEmployees = new DataSet("Employees");

DataSet dsWageHistory = new DataSet("WageHistory");

loadAndDisplayDatasets(dsEmployees, dsWageHistory);

}

catch (Exception exception)

{

MessageBox.Show(exception.Message);

}

finally

{

Cursor.Current = currentCursor;

}

}

www.syngress.com

Continued

167_C#_09.qxd 12/4/01 3:33 PM Page 456

Working with XML • Chapter 9 457

/// <summary>

/// Loads XML files from disk into a dataset and displays the

/// data contained in them on-screen

/// </summary>

/// <param name="dsEmployees">The employees dataset</param>

/// <param name="dsWageHistory">The wage history dataset</param>

private void loadAndDisplayDatasets(DataSet dsEmployees,

DataSet dsWageHistory)

{

// Load the dataset from XML files on disk

dsEmployees.ReadXml("employee1.xml");

dsWageHistory.ReadXml("wagehistory.xml");

// Copy the WageChange table into the Employees dataset

dsEmployees.Tables.Add(

dsWageHistory.Tables["WageChange"].Copy());

DataTable tblEmp = dsEmployees.Tables["Employee"];

DataTable tblWageHistory = dsEmployees.Tables["WageChange"];

// Create a relation between the two tables based on employee

// ID

DataRelation relation = new DataRelation(

"EmpWageHistory",

new DataColumn[] {tblEmp.Columns["EmployeeID"]},

new DataColumn[] {tblWageHistory.Columns["EmployeeID"]},

false);

dsEmployees.Relations.Add(relation);

// Bind the dataset to the grid, so we can see it

m_gridEmployees.SetDataBinding(dsEmployees, "Employee");

m_gridRaises.SetDataBinding(dsEmployees,

www.syngress.com

Figure 9.8 Continued

Continued

167_C#_09.qxd 12/4/01 3:33 PM Page 457

458 Chapter 9 • Working with XML

"Employee.EmpWageHistory");

// Save the schema to disk

dsEmployees.WriteXmlSchema("employees2.xsd");

// Create a third dataset to hold the names of the columns

// and their datatypes so we can display this information in

// the third grid to see the effect of using a schema when

// reading in the XML files.

DataSet dsDataTypes = new DataSet("DataTypes");

DataTable tblDataTypes = new DataTable("DataTypes");

DataColumn colName = new DataColumn("Column Name");

DataColumn colType = new DataColumn("Data Type");

tblDataTypes.Columns.Add(colName);

tblDataTypes.Columns.Add(colType);

dsDataTypes.Tables.Add(tblDataTypes);

foreach (DataTable table in dsEmployees.Tables)

{

string strTableName = table.TableName;

foreach (DataColumn column in table.Columns)

{

string strName = strTableName + "." + column.ColumnName;

string strDataType = column.DataType.ToString();

DataRow row = tblDataTypes.NewRow();

row["Column Name"] = strName;

row["Data Type"] = strDataType;

tblDataTypes.Rows.Add(row);

}

}

www.syngress.com

Figure 9.8 Continued

Continued

167_C#_09.qxd 12/4/01 3:33 PM Page 458

Working with XML • Chapter 9 459

// Bind the column and data type information to the grid

m_gridDataTypes.PreferredColumnWidth = 200;

m_gridDataTypes.SetDataBinding(dsDataTypes, "DataTypes");

}

The button1_Click method is called when you click Load XML Without
Schema. It creates two empty DataSet objects, one for employee information
and one for wage history information. It then calls the loadAndDisplayDatasets
method, passing in the newly created DataSet objects.

The loadAndDisplayDatasets method is where the real work gets done. First
the DataSet objects are loaded from XML files on disk by calling the ReadXml
method of the DataSet object.Then the wage history information is copied from
the wage history DataSet to the employee DataSet by the following code:

// Copy the WageChange table into the Employees dataset

dsEmployees.Tables.Add(dsWageHistory.Tables["WageChange"].Copy());

This step is necessary because the ReadXml method of the DataSet class can
be called only once to load XML from a disk file. So, you load each file into a
separate DataSet object and then copy the wage information to the employee
DataSet object. Now both XML files have been loaded into the dsEmployees
DataSet object. Next, you need to establish a relationship between the employee
and wage data information. Here is the code to accomplish this:

DataTable tblEmp = dsEmployees.Tables["Employee"];

DataTable tblWageHistory = dsEmployees.Tables["WageChange"];

// Create a relation between the two tables based on employee

// ID

DataRelation relation = new DataRelation(

"EmpWageHistory",

new DataColumn[] {tblEmp.Columns["EmployeeID"]},

new DataColumn[] {tblWageHistory.Columns["EmployeeID"]},

false);

dsEmployees.Relations.Add(relation);

www.syngress.com

Figure 9.8 Continued

167_C#_09.qxd 12/4/01 3:33 PM Page 459

460 Chapter 9 • Working with XML

First, create two variables that hold references to the Employee table and
WageChange table in the dsEmployees DataSet object.This is done for convenience
in passing them to the constructor of the DataRelation object.

Next, create the new relation by instantiating a new System.Data.DataRelation
object.The first parameter of the constructor is the name of the new relation,
EmpWageHistory in this case.The second parameter indicates the table and
column that constitute the parent of the relation. In this case, it is the EmployeeID
column of the Employee table.The third parameter indicates the table and column
that constitute the child of the relation. In this case, it is the EmployeeID column
of the WageChange table.The last parameter indicates whether the relation
enforces any constraints, such as uniqueness or foreign keys. In this case, the data
is read-only, so you will not enforce any constraints.

After the new DataRelation is created, you need to add it to the DataSet
object.You accomplish this by the call to Relations.Add method of the dsEmployees
object.

Finally, you bind the top grid the Employee table of the dsEmployees DataSet.
This results in the employee information shown in the top grid.You bind the
middle grid to the new relation that was just created.Wage information is now
shown in the middle grid.As an aid in demonstrating the capabilities of the
XmlDataDocument class, the XML schema currently in use by the DataSet is
written to a disk file.A DataSet always has a schema in use. It is either explicitly
specified or is inferred by the DataSet class.

The remaining code builds a new DataSet, which contains each column name
and data type in the two tables in the dsEmployees DataSet. It then binds this
DataSet to the bottom grid, which displays the column name and data type of all
tables in the dsEmployees Dataset in the bottom grid.

Notice that every column has a data type of System.String, as depicted in
Figure 9.5.The DataSet object will infer a schema for the XML document if one
is not provided.The schema that it creates assigns every element and attribute in
the XML document a type of System.String. For it to do otherwise would be dif-
ficult. It had no way of knowing what the data type should be because all data in
an XML document is text.This is generally not what you would like.You want
the columns in the DataSet to represent the actual data type of the information.
Fortunately, you can tell the DataSet what XSD schema to use when loading an
XML document.

www.syngress.com

167_C#_09.qxd 12/4/01 3:33 PM Page 460

Working with XML • Chapter 9 461

XML Schemas and the DataSet Class
You can specify an XML XSD schema file that establishes the data types of ele-
ments and attributes loaded into a DataSet object. If you use a schema file, the
columns in the tables will match the data types supplied by the schema. Here is
the code from our sample application that uses a schema.This code is called
when you click Load XML With Schema (you can see the results of clicking
the button in Figure 9.6):

/// <summary>

/// Called when Load XML With Schema button is clicked

/// </summary>

private void button2_Click(object sender, System.EventArgs e)

{

Cursor currentCursor = Cursor.Current;

try

{

Cursor.Current = Cursors.WaitCursor;

// Create two new datasets and load them from XML files

// on disk using XML schemas

DataSet dsEmployees = new DataSet("Employees");

DataSet dsWageHistory = new DataSet("WageHistory");

dsEmployees.ReadXmlSchema("employee.xsd");

dsWageHistory.ReadXmlSchema("wagehistory.xsd");

loadAndDisplayDatasets(dsEmployees, dsWageHistory);

}

catch (Exception exception)

{

MessageBox.Show(exception.Message);

}

finally

{

Cursor.Current = currentCursor;

www.syngress.com

167_C#_09.qxd 12/4/01 3:33 PM Page 461

462 Chapter 9 • Working with XML

}

}

The only difference from the code that loads the files without a schema are
the two calls to the ReadXmlSchema method of the DataSet class.This is all that is
necessary to establish the data types of the table columns in a DataSet. Figure 9.9
shows the schema file defined for the Employees DataSet, employee.xsd. Figure
9.10 shows the schema file defined for the WageHistory DataSet, wagehistory.xsd.

Figure 9.9 The XML Schema File (employee.xsd)

<?xml version="1.0" standalone="yes"?>

<xsd:schema id="Employees" targetNamespace=""

xmlns="" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

<xsd:element name="Employees" msdata:IsDataSet="true">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="Employee">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string"

minOccurs="0" />

<xsd:element name="MiddleName" type="xsd:string"

minOccurs="0" />

<xsd:element name="LastName" type="xsd:string"

minOccurs="0" />

<xsd:element name="Salaried" type="xsd:boolean"

minOccurs="0" />

<xsd:element name="Wage" type="xsd:double"

minOccurs="0" />

<xsd:element name="Active" type="xsd:boolean"

minOccurs="0" />

<xsd:element name="SSN" type="xsd:string" minOccurs="0"

/>

<xsd:element name="StartDate" type="xsd:date"

minOccurs="0" />

www.syngress.com
Continued

167_C#_09.qxd 12/4/01 3:33 PM Page 462

Working with XML • Chapter 9 463

</xsd:sequence>

<xsd:attribute name="EmployeeID" type="xsd:int" />

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Figure 9.10 The XML Schema File (wagehistory.xsd)

<?xml version="1.0" standalone="yes"?>

<xsd:schema id="Employees" targetNamespace=""

xmlns="" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

<xsd:element name="Employees" msdata:IsDataSet="true">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="WageChange">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Date" type="xsd:date"

minOccurs="0" />

<xsd:element name="Wage" type="xsd:double"

minOccurs="0" />

</xsd:sequence>

<xsd:attribute name="EmployeeID" type="xsd:int" />

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:schema>

www.syngress.com

Figure 9.9 Continued

167_C#_09.qxd 12/4/01 3:34 PM Page 463

464 Chapter 9 • Working with XML

If you compare the information in the schema files with the output shown in
Figure 9.6, you can see that the data types specified in the schema files match the
data types displayed in bottom grid control. One example of this is the <Wage>
element. In the employees.xsd file, it has a data type of xsd:double. In Figure 9.6,
the table column Employee.Wage is of type System.Double.

Traversing Relations in the DataSet Class
Because the grid control is a data bound control, it understands relations defined
by a DataSet object and can display data based on those relations. So, in the pre-
vious examples, you didn’t get to see code that actually traverses the parent-child
relationship.You will see that in this section.The code that we look at in this sec-
tion is called when you click Traverse XML.You can see the results of clicking
the button in Figure 9.7.

The .NET Framework supplies a class System.Xml.XmlDataDocument.The
XmlDataDocument class is interesting because it allows you to access the data in an
XML document by using relational methods or by using XML DOM methods.
The XmlDataDocument class has a DataSet object as one of its member variables,
which allows you to make relational calls against the DataSet member.The
DataDocument class is derived from the XmlDocument class, so you can make XML
DOM method calls against it as well.The sample program shows both methods
of accessing the document. First, let’s take a look at the source code that loads an
XmlDataDocument instance:

/// <summary>

/// Loads two XML documents from disk into a XMLDataDocument and

/// establishes a relation between the two.

/// </summary>

/// <returns>The XMLDataDocument</returns>

private XmlDataDocument loadXML()

{

// Load the employees XML file

DataSet dsEmployees = new DataSet("Employees");

dsEmployees.ReadXmlSchema("employee.xsd");

dsEmployees.ReadXml("employee1.xml");

dsEmployees.Tables[0].TableName = "Employee";

// Load the wage history XML file

www.syngress.com

167_C#_09.qxd 12/4/01 3:34 PM Page 464

Working with XML • Chapter 9 465

DataSet dsWageHistory = new DataSet("WageHistory");

dsWageHistory.ReadXmlSchema("wagehistory.xsd");

dsWageHistory.ReadXml("wagehistory.xml");

dsWageHistory.Tables[0].TableName = "WageChange";

// Copy the WageChange table into the Employees dataset

dsEmployees.Tables.Add(

dsWageHistory.Tables["WageChange"].Copy());

DataTable tblEmp = dsEmployees.Tables["Employee"];

DataTable tblWageHistory = dsEmployees.Tables["WageChange"];

// Create a relation between the two tables based on employee

// ID

DataRelation relation = new DataRelation(

"EmpWageHistory",

new DataColumn[] {tblEmp.Columns["EmployeeID"]},

new DataColumn[] {tblWageHistory.Columns["EmployeeID"]},

false);

// Set as nested. If an XML document is written to disk it

// will now contain <WageChange> elements as children of

// <Employee> elements.

relation.Nested = true;

// Add the relation

dsEmployees.Relations.Add(relation);

// Instantiate the document

XmlDataDocument doc = new XmlDataDocument(dsEmployees);

return doc;

}

Most of this code is similar to the code you saw earlier in Figure 9.8.The
two XML files are loaded into separate DataSet objects, and then wage informa-
tion is copied to the employee DataSet.The relation is then created and added to

www.syngress.com

167_C#_09.qxd 12/4/01 3:34 PM Page 465

466 Chapter 9 • Working with XML

the DataSet. Finally, a new XmlDataDocument object is created whose constructor
takes the DataSet object we created.

One interesting piece of code is the line that sets the Nested property of the
relation to true. By doing this, you enforce the parent-child relationship. If the
XmlDataDocument is written to disk, the <WageChange> elements will be chil-
dren of the associated <Employee> element. If the Nested property was set to
false (the default), all of the <WageChange> elements would come after the last
<Employee> element in the document.

Now let’s take a look at the code that traverses the document using relational
method calls:

/// <summary>

/// Uses relational calls to traverse the XML document and

/// display one employee on-screen.

/// </summary>

/// <param name="doc">The XML document</param>

private void retrieveAsData(XmlDataDocument doc)

{

string strFirstName;

string strMiddleName;

string strLastName;

string strDate;

string strWage;

// Use the Select method to retrieve data relationally

DataTable tblEmp = doc.DataSet.Tables["Employee"];

DataRelation relation =

doc.DataSet.Relations["EmpWageHistory"];

DataRow[] rows = tblEmp.Select("EmployeeID = 1");

for(int i = 0; i < rows.Length; i ++)

{

// Get the Employee information retrieved

DataRow rowEmp = rows[i];

strFirstName = rowEmp[1].ToString();

www.syngress.com

167_C#_09.qxd 12/4/01 3:34 PM Page 466

Working with XML • Chapter 9 467

strMiddleName = rowEmp[2].ToString();

strLastName = rowEmp[3].ToString();

m_strOutput += "Name: " + strFirstName;

m_strOutput += " " + strMiddleName;

m_strOutput += " " + strLastName + "\r\n";

// Now get the Wage history information, it is a child

// of the Employee row.

DataRow[] rowsWage = rowEmp.GetChildRows(relation);

for(int j = 0; j < rowsWage.Length; j++)

{

DataRow rowWage = rowsWage[j];

strDate = rowWage[1].ToString();

strWage = rowWage[2].ToString();

m_strOutput += "Wage Chage Date: " +

strDate.Substring(0, 10);

m_strOutput += " Amount: " + strWage + "\r\n";

}

}

}

First, call the Select method against the Employee DataTable with the fol-
lowing code:

DataTable tblEmp = doc.DataSet.Tables["Employee"];

DataRow[] rows = tblEmp.Select("EmployeeID = 1");

In this case, you will get back one DataRow that contains the column informa-
tion of the employee with EmployeeID = 1.We retrieve the first, middle, and last
names and get the wage history information by executing the following code:

DataRow[] rowsWage = rowEmp.GetChildRows(relation);

The relation object was set earlier in the source code as follows:

DataRelation relation = doc.DataSet.Relations["EmpWageHistory"];

www.syngress.com

167_C#_09.qxd 12/4/01 3:34 PM Page 467

468 Chapter 9 • Working with XML

In effect, this code says “find all children of this employee that are defined by
the EmpWageHistory relation of the DataSet.”The EmpWageHistory relation estab-
lishes a relation between an employee and that employee’s wage history using
EmployeeID. Issuing the call to GetChildRows will return all employee wage his-
tory rows in WageChange DataTable of the employee XmlDataDocument.DataSet
object. Loop through all of the rows and save the result for later display on-
screen.

You’ve now seen relational calls used to traverse the data in an
XmlDataDocument object.As mentioned, you can also use DOM calls to traverse
the document. Most of the code to traverse the document using DOM calls is
very similar to code you saw in the “Working with XML DOM” section of this
chapter, so we don’t present it here.As previously mentioned, the full source code
for the sample is on the CD.The key thing to note is that the output when
traversing the document using relational calls is exactly the same when traversing
the document using DOM calls.This is shown in Figure 9.7.

The relationship between XML and relational data is very powerful. It allows
you to treat data as XML when it is best suited, and as relational database data
when that is more appropriate. For instance, let’s say that your employee informa-
tion is contained in a SQL Server database. Suppose you need to transfer some of
that employee data to a remote location that does not have access to the SQL
Server database. Because the XmlDataDocument class contains a DataSet member,
you can use ADO.NET to retrieve the data into an XmlDataDocument.Then, you
can write the data contained in the XmlDataDocument to an XML file on disk
using the WriteXml method of the DataSet class and transfer that file to the
remote location.The remote location can read it back into an XmlDataDocument
using the ReadXml method of the DataSet class and then manipulate it using
XML DOM calls to generate reports using XSL, for instance. Or it could be
written back to a local relational database, possibly Access, and generate reports
via Access. Using the information you learned in this chapter and in Chapter 8
about ADO.NET, accomplishing this task becomes quite easy, whereas in the past
it may have been quite difficult. By providing the DataSet class the ability to read
and write XML and providing the XmlDataDocument class the ability to use
DOM calls as well as relational calls against the DataSet member of
XmlDataDocument, Microsoft has given you the tools to accomplish this.

www.syngress.com

167_C#_09.qxd 12/4/01 3:34 PM Page 468

Working with XML • Chapter 9 469

Working with XPath and
XSL Transformations
In the introduction of this chapter, we introduced XPath. XPath is used to find a
set of nodes in an XML document based on a location qualifier and a pattern to
match. In the XML DOM, sample you saw that it was tedious to find a specific
element.You had to walk the DOM tree in memory until the node was encoun-
tered.You couldn’t get directly to an element with a given set of characteristics.
The XPath language provides this capability.

XSLT also makes use of XPath expression. XSLT is used to transform XML
documents from one format to another.The resulting format can be another
XML document, HTML, or some other file format. XSLT stylesheets often use
XPath statements to locate nodes in an XML document during transformation.
In the following sections, you will see examples of XPath used as a generalized
query language against XML documents.You will also see XPath used in XSL
stylesheets as part of an XSL transformation.

Working with XPath
The first example you will see of XPath in action uses XPath statements to query
against an XML document.The sample requires the file personnel.xml to be in
the same directory the sample is run from.You can find the file on the CD in the
XPath directory.You may need to copy it to the directory you run the sample
from.The full source code for the sample is in the XPath directory as well.The
file that contains the source code is named XPathForm.cs. Figure 9.11 shows the
XPath Sample program.

www.syngress.com

Figure 9.11 The XPath Sample Program

167_C#_09.qxd 12/4/01 3:34 PM Page 469

470 Chapter 9 • Working with XML

Figure 9.11 shows the program after you click Run XPath Queries.When
you click the button, the program does a number of queries against the per-
sonnel.xml file and writes the results into the listbox on the form. Figure 9.12
shows a portion of the XML contained in the personnel.xml file used to gen-
erate the queries.

Figure 9.12 Generating Queries (personnel.xml)

<?xml version="1.0" standalone="yes"?>

<Employees>

<Employee EmployeeID="1">

<FirstName>John</FirstName>

<MiddleInit>M</MiddleInit>

<LastName>Smith</LastName>

<Salaried>true</Salaried>

<Wage>40000</Wage>

<Active>true</Active>

<Title>Jr. Programmer</Title>

<Location>

<Address>103 N.72nd</Address>

<City>Seattle</City>

<State>WA</State>

<Zip>98103</Zip>

</Location>

</Employee>

<Employee EmployeeID="2">

<FirstName>Joe</FirstName>

<MiddleInit>R</MiddleInit>

<LastName>Jones</LastName>

<Salaried>false</Salaried>

<Wage>22.75</Wage>

<Active>true</Active>

<Title>Graphic Artist</Title>

<Location>

<Address>13222 S. 1st Avenue</Address>

<City>Portland</City>

www.syngress.com

Continued

167_C#_09.qxd 12/4/01 3:34 PM Page 470

Working with XML • Chapter 9 471

<State>OR</State>

<Zip>97206</Zip>

</Location>

</Employee>

Figure 9.13 contains the relevant portions of the source code for the XPath
sample. Source code inserted by the Visual Studio.NET designer has been omitted.

Figure 9.13 Relevant Portions of Source Code (XPathForm.cs)

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.Xml;

using System.Xml.XPath;

using System.IO;

namespace XPath

{

/// <summary>

/// Summary description for Form1.

/// </summary>

public class Form1 : System.Windows.Forms.Form

{

/// <summary>

/// Required designer variable.

/// </summary>

private System.ComponentModel.Container components = null;

private System.Windows.Forms.TextBox textBox1;

private System.Windows.Forms.Button button1;

www.syngress.com

Figure 9.12 Continued

Continued

167_C#_09.qxd 12/4/01 3:34 PM Page 471

472 Chapter 9 • Working with XML

private string m_strOutput;

public Form1()

{

InitializeComponent();

}

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main()

{

Application.Run(new Form1());

}

/// <summary>

/// Called when Run XPath Queries is pressed

/// </summary>

private void button1_Click(object sender, System.EventArgs e)

{

Cursor currentCursor = Cursor.Current;

try

{

Cursor.Current = Cursors.WaitCursor;

// Do XPath queries on both XPath Documents and

// DOM-based XML documents

doXPathDocumentQueries();

doXmlDocumentQueries();

// Show results on-screen

www.syngress.com

Figure 9.13 Continued

Continued

167_C#_09.qxd 12/4/01 3:34 PM Page 472

Working with XML • Chapter 9 473

textBox1.Text = m_strOutput;

}

catch (Exception exception)

{

MessageBox.Show(exception.Message);

}

finally

{

Cursor.Current = currentCursor;

}

}

/// <summary>

/// Do XPath queries against a read-only XPathDocument

/// </summary>

private void doXPathDocumentQueries()

{

m_strOutput =

"*** Beginning XPathDocument Queries ***\r\n\r\n";

// Load the XML document into a read-only XPathDocument

// and instantiate a navigator for queries.

XPathDocument doc = new XPathDocument("personnel.xml");

XPathNavigator navigator = doc.CreateNavigator();

m_strOutput += "*** Show All Wages ***\r\n\r\n";

// Find all Employee/Wage elements in the document and

// display the wage information on-screen

XPathNodeIterator iterator =

navigator.Select("descendant::Employee/Wage");

www.syngress.com

Figure 9.13 Continued

Continued

167_C#_09.qxd 12/4/01 3:34 PM Page 473

474 Chapter 9 • Working with XML

while (iterator.MoveNext())

{

m_strOutput += iterator.Current.Name + ": ";

m_strOutput += iterator.Current.Value + "\r\n";

}

m_strOutput +=

"\r\n\r\n*** Show All Employees in Seattle ***\r\n\r\n";

// Find all employees in the Seattle office and display

// their names on-screen

iterator =

navigator.Select("//Employee[Location/Zip='98103']");

while (iterator.MoveNext())

{

XPathNavigator nav2 = iterator.Current;

nav2.MoveToFirstChild();

m_strOutput += nav2.Value; // First name

nav2.MoveToNext();

m_strOutput += ". " + nav2.Value; // Middle init

nav2.MoveToNext();

m_strOutput += " " + nav2.Value + "\r\n"; // Last name

}

m_strOutput +=

"\r\n\r\n*** Salaried Employee Average Wage ***\r\n\r\n";

// Calculate the average salary for all salaried employees

// in the company and display on-screen

Int32 nAverage =

(Int32)(Double)navigator.Evaluate(

"sum(//Employee[Salaried='true']/Wage) div

www.syngress.com

Figure 9.13 Continued

Continued

167_C#_09.qxd 12/4/01 3:34 PM Page 474

Working with XML • Chapter 9 475

count(//Employee[Salaried='true'])");

m_strOutput += "Average Salary: $" + nAverage.ToString();

}

/// <summary>

/// Do an XPath queries against a DOM-based XML document and

then

/// modify the document.

/// </summary>

private void doXmlDocumentQueries()

{

m_strOutput +=

"\r\n\r\n*** Beginning XML Document Query ***\r\n\r\n";

// Load the XML document into a DOM-based XML document

XmlDocument doc = new XmlDocument();

doc.Load("personnel.xml");

// Get a list of the Active element nodes for each employee

// in Portland

XmlNodeList nodeList =

doc.SelectNodes(

"//Employee[Location/Zip='97206']/Active");

foreach (XmlNode node in nodeList)

{

// Mark each Portland employee as inactive

node.InnerText = "false";

}

// Display the modified document on-screen

StringWriter writerString = new StringWriter();

XmlTextWriter writer = new XmlTextWriter(writerString);

www.syngress.com

Figure 9.13 Continued

Continued

167_C#_09.qxd 12/4/01 3:34 PM Page 475

476 Chapter 9 • Working with XML

writer.Formatting = Formatting.Indented;

doc.WriteTo(writer);

writer.Flush();

m_strOutput += writerString.ToString();

}

}

}

The program runs through two sets of XPath queries against the personnel
.xml file.The first set of queries is against XML loaded into an object of type
System.Xml.XPath.XPathDocument.The XPathDocument class has been optimized
to work with XPath queries. It supports read-only access to the document.An
XPathNavigator class object is used to perform queries against an XPathDocument
document. Here is the code that instantiates and loads an XPathDocument with
XML from a disk file.An XPathNavigtor class object is instantiated to perform
XPath queries against the document:

XPathDocument doc = new XPathDocument("personnel.xml");

XPathNavigator navigator = doc.CreateNavigator();

The Select method of the XPathNavigator class is used to perform a query
against the XML document. It takes an XPath statement as an argument.The fol-
lowing query returns all of the <Wage> elements in the XML document:

XPathNodeIterator iterator =

navigator.Select("descendant::Employee/Wage");

while (iterator.MoveNext())

{

m_strOutput += iterator.Current.Name + ": ";

m_strOutput += iterator.Current.Value + "\r\n";

}

The select statement takes an XPath expression as an argument and returns an
XPathNodeIterator object, which is used to traverse the node list returned.The
Current property of XPathNodeIterator points to the current position in the node
list returned form the Select method call.The position is undefined until the first

www.syngress.com

Figure 9.13 Continued

167_C#_09.qxd 12/4/01 3:34 PM Page 476

Working with XML • Chapter 9 477

call to the MoveNext method.As each <Wage> element is encountered in the
returned node list, the element tag and value are saved for later display in the
listbox on-screen.The Name property of Current returns the element tag and the
Value property of Current returns the text contained within the <Wage> element.

The second query against the XPathDocument returns all the employees in the
Seattle office and displays their names. Here is the code to accomplish this:

www.syngress.com

XPath Expressions
A brief explanation of XPath statements is in order. XPath expressions
use what is termed a location path, which is made up of one or more
location steps that are separated by a “/” or by a “//”. The “/” character
indicates an absolute path, and the “//” characters indicate a relative
path from the current node. A location step contains an axis and a node
test, and it may contain predicates. The axis indicates the direction of
the query from the current node. Examples are child, ancestor, and
descendent. The node test is either the name of a node in the document,
the wildcard character(*), or one of several node tests such as node()
and text(). The predicate is used to filter the node test to pinpoint a spe-
cific set of nodes. A predicate is contained within brackets. Here are two
examples of XPath expressions:

■ In the XPath expression descendent::Employee/Wage,
descendent indicates the axis and Employee/Wage indicates
the node test. There is no predicate in this case. The expres-
sion returns the Employee/Wage descendents of the current
node.

■ In the XPath expression “//Employee[Location/Zip=’98103’],
the “//” indicates the axis, Employee indicates the node test
and [Location/Zip=’98103’] indicates the predicate. The
expression returns the Employee elements with a Location/Zip
element whose value is “98103”.

These are relatively simple examples. You can combine extremely
complex combinations of axes, node tests, and predicates to create
extremely powerful queries against XML documents using XPath.

Developing & Deploying…

167_C#_09.qxd 12/4/01 3:34 PM Page 477

478 Chapter 9 • Working with XML

iterator =

navigator.Select("//Employee[Location/Zip='98103']");

while (iterator.MoveNext())

{

XPathNavigator nav2 = iterator.Current;

nav2.MoveToFirstChild();

m_strOutput += nav2.Value; // First name

nav2.MoveToNext();

m_strOutput += ". " + nav2.Value; // Middle init

nav2.MoveToNext();

m_strOutput += " " + nav2.Value + "\r\n"; // Last name

}

The only real difference with this query is that you need to use a second
instance of XPathNavigator. Each node in the node list is an <Employee> ele-
ment.The second XPathNavigator object is needed so that you can maintain your
position in the node list of <Employee> elements.

The last query against the XPathDocument object does a summary query. It
returns a result, not a node list. Here is the code, which calculates the average
salary of all salaried employees:

Int32 nAverage =

(Int32)(Double)navigator.Evaluate(

"sum(//Employee[Salaried='true']/Wage) div

count(//Employee[Salaried='true'])");

When performing summary queries, the Evaluate method is used instead of
the Select method. It also takes an XPath expression as an argument.You can see
from this example that the XPath expressions can get quite complex.

The second set of queries is done against an XmlDocument object.As we men-
tioned earlier, an XPathDocument is read-only. So, if you want to use XPath
directly against an XML document and update the document, you will need to
use an XmlDocument object. Here is the relevant code from the sample:

XmlDocument doc = new XmlDocument();

doc.Load("personnel.xml");

// Get a list of the Active element nodes for each employee

www.syngress.com

167_C#_09.qxd 12/4/01 3:34 PM Page 478

Working with XML • Chapter 9 479

// in Portland

XmlNodeList nodeList =

doc.SelectNodes("//Employee[Location/Zip='97206']/Active");

foreach (XmlNode node in nodeList)

{

// Mark each Portland employee as inactive

node.InnerText = "false";

}

This example simulates shutting down the Portland office.The <Active>
element is set to false for all employees in the Portland office. First, a new
XmlDocument object is instantiated and then loaded using the Load method. Next,
the XPath query against the document is executed using the SelectNodes method
of the System.Xml.Node class. It takes an XPath expression as an argument and
returns an XmlNodeList object. In this case, it is a node list containing each
<Active> element for each employee in the Portland office.The node list is tra-
versed using the foreach statement, and the text value associated with the
<Active> element is set to false.Assigning the string “false” to the InnerText prop-
erty accomplishes this.

Working with XSL
The previous section shows how XPath is used as a general query tool. In this sec-
tion, you will see XSLT used to transform XML documents to a different format.
XSL stylesheets will use XPath expressions to select node lists for transformation.

Our sample simulates a real-world scenario.The scenario is that the human
resources division of a company named EntegraTech maintains personnel data in
an XML file named personnel.xml.Another division of the company maintains a
Web site that includes some reports based on personnel information.The Web
site uses XSL stylesheets to build HTML Web pages from personnel information
contained in XML files. Unfortunately, the Web site stylesheets expect the XML
to be in a different format than the format in the personnel.xml file supplied by
the HR department.The sample code transforms the XML into the format that
the Web site stylesheets expect and then builds one of the HTML reports. XSL
stylesheets are used both to transform the XML and to create the HTML.

The sample requires the files personnel.xml, salariedpersonnel.xsl, and
salariedreport.xsl to be in the same directory the sample is run from.You can find

www.syngress.com

167_C#_09.qxd 12/4/01 3:34 PM Page 479

480 Chapter 9 • Working with XML

the files on the CD that accompanies this book, in the XSL directory.You may
need to copy the files to the directory you run the sample from.The full source
code for the sample is in the XSL directory as well.The file that contains the
source code is named XSLForm.cs. Figure 9.14 shows the running program.

Figure 9.14 shows the program after you click Run XSL Sample.When
you click the button, it transforms the personnel.xml file by using an XSL
stylesheet, displays the original XML file and the transformed XML file in the
listbox, and writes the transformed XML to another file on disk.The Show
HTML Report button then becomes active. Clicking the button runs a second
XSLT stylesheet, which creates a HTML document from the newly transformed
XML. Internet Explorer is then launched and displays the HTML report. Figure
9.15 shows the report displayed in Internet Explorer.

www.syngress.com

Figure 9.14 The XSL Sample Program

Figure 9.15 The EntegraTech HTML Report

167_C#_09.qxd 12/4/01 3:34 PM Page 480

Working with XML • Chapter 9 481

You have seen the structure of the personnel.xml file already. Figure 9.16
shows it again for comparison with the format expected by the Web site. Figure
9.17 shows the format of the XML expected by the Web site. Comparing these
two will help in understanding what the XSL stylesheet must do.

Figure 9.16 Partial Contents of the personnel.xml File

<Employees>

<Employee EmployeeID="1">

<FirstName>John</FirstName>

<MiddleInit>M</MiddleInit>

<LastName>Smith</LastName>

<Salaried>true</Salaried>

<Wage>40000</Wage>

<Active>true</Active>

<Title>Jr. Programmer</Title>

<Location>

<Address>103 N.72nd</Address>

<City>Seattle</City>

<State>WA</State>

<Zip>98103</Zip>

</Location>

</Employee>

Figure 9.17 XML Format Expected by the Web Site

<Salaried>

<Employee>

<Name>John M. Smith</Name>

<Wage>40000</Wage>

<Location>98103</Location>

</Employee>

As you can see, the XSL stylesheet needs to combine the <FirstName>,
<MiddleInit>, and <LastName> elements into a single <Name> element. It also
needs to copy the <Wage> element verbatim. Finally, it needs to copy the con-
tents of the <Zip> element into a <Location> element.

www.syngress.com

167_C#_09.qxd 12/4/01 3:34 PM Page 481

482 Chapter 9 • Working with XML

The file salariedpersonnel.xsl is the stylesheet that is used to convert from the
first XML representation to the second. It is shown in Figure 9.18.

Figure 9.18 The Stylesheet (salariedpersonnel.xsl)

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<Salaried>

<xsl:apply-templates/>

</Salaried>

</xsl:template>

<xsl:template match="Employees">

<xsl:apply-templates select="Employee[Salaried='true']"/>

</xsl:template>

<xsl:template match="Employee[Salaried='true']">

<Employee>

<Name>

<xsl:value-of select="FirstName"/><xsl:text> </xsl:text>

<xsl:value-of select="MiddleInit"/><xsl:text>. </xsl:text>

<xsl:value-of select="LastName"/>

</Name>

<Wage>

<xsl:value-of select="Wage"/>

</Wage>

<Location>

<xsl:value-of select="Location/Zip"/>

</Location>

</Employee>

</xsl:template>

</xsl:stylesheet>

www.syngress.com

167_C#_09.qxd 12/4/01 3:34 PM Page 482

Working with XML • Chapter 9 483

An XSL stylesheet uses pattern matching to process an XML document.The
XSLT processor begins processing the XML document and looks for statements
in the XSL script, called rules, which match nodes encountered in the XML doc-
ument. Near the top is the rule for the root element of the document:

<xsl:template match="/">

<Salaried>

<xsl:apply-templates/>

</Salaried>

</xsl:template>

When the root element of the original XML document is encountered, the
previous statements are executed. In this case, a <Salaried> element is created and
the child nodes of the root element are processed by the <xsl:apply-templates/>
statement.When the <Employees> element is encountered, execute the fol-
lowing statements:

<xsl:template match="Employees">

<xsl:apply-templates select="Employee[Salaried='true']"/>

</xsl:template>

The select attribute of an <xsl:apply-templates> statement contains the pattern
to match in an XML document.The pattern matching string can be an XPath
expression.This is where XPath comes into play in XSL stylesheet processing.

The preceding XSL script statements ignore any <Employee> elements that do
not contain a child element <Salaried> with a text node whose value is “true”. In
effect, you execute a rule that returns all <Employee> elements that represent
salaried employees and ignore all other nodes encountered in the XML document.
The following statements process the matching salaried employee elements:

<xsl:template match="Employee[Salaried='true']">

<Employee>

<Name>

<xsl:value-of select="FirstName"/><xsl:text> </xsl:text>

<xsl:value-of select="MiddleInit"/><xsl:text>. </xsl:text>

<xsl:value-of select="LastName"/>

</Name>

<Wage>

<xsl:value-of select="Wage"/>

www.syngress.com

167_C#_09.qxd 12/4/01 3:34 PM Page 483

484 Chapter 9 • Working with XML

</Wage>

<Location>

<xsl:value-of select="Location/Zip"/>

</Location>

</Employee>

</xsl:template>

These statements convert all salaried <Employee> elements in the original
XML document to the format required in the new XML document.This is
where the meat of the transformation takes place. Let’s take a look in Figure 9.19
at the relevant portions of the source code that perform the XSLT transformation.

Figure 9.19 XML-to-XML Transformation in the Source Code (XSLForm.cs)

private void doXMLToXMLTransform()

{

// Show the original document on-screen

m_strOutput = "*** personnel.xml - Original XML ***\r\n\r\n";

showXMLDocument("personnel.xml");

// Load the new document, apply an XSL tranformation to

// it and save the new document to disk

XPathDocument docXPath =

new XPathDocument("personnel.xml");

XslTransform xslTransform = new XslTransform();

XmlTextWriter writer =

new XmlTextWriter("salaried.xml", null);

xslTransform.Load("salariedpersonnel.xsl");

xslTransform.Transform(docXPath, null, writer);

writer.Close();

m_strOutput +=

"*** salaried.xml - Transformed XML ***\r\n\r\n";

// Show the transformed document

www.syngress.com
Continued

167_C#_09.qxd 12/4/01 3:34 PM Page 484

Working with XML • Chapter 9 485

showXMLDocument("salaried.xml");

}

private void showXMLDocument(string strXMLFileName)

{

XmlDocument docDOM = new XmlDocument();

docDOM.Load(strXMLFileName);

StringWriter writerString = new StringWriter();

XmlTextWriter writer2 = new XmlTextWriter(writerString);

writer2.Formatting = Formatting.Indented;

docDOM.WriteTo(writer2);

writer2.Flush();

m_strOutput += writerString.ToString() + "\r\n\r\n";

}

In the doXMLToXMLTransform method, an XPathDocument object is instanti-
ated and loaded with XML contained in the personnel.xml file.Then, an
XslTransform object is instantiated.The XslTransform object is the engine used to
perform XSLT transformations on XML documents in the .NET Framework.

After the transformation is complete, the results are written to a new XML
file on disk.An XmlTextWriter object is created that writes the transformed file to
disk.The file that is created is named salaried.xml, which is the first parameter
passed to the XmlTextWriter constructor.

The Load method of the XslTransform class loads the XSL stylesheet from
disk. Finally, the transform is executed by calling the Transform method of the
XslTransform class object. The Transform method takes the XML document object
and the text writer objects as parameters.The second parameter of the Transform
method is used to pass additional runtime arguments that are used in the
stylesheet. Because you have no runtime arguments, it is left null.After the trans-
form is complete, the XmlTextWriter object is closed to complete the writing of
the new XML document file to disk.

The showXMLDocument method is a helper function that reads an XML
document from disk and formats it with indenting for display purposes.The
showXMLDocument method illustrates how the XmlDocument, XmlTextWriter, and

www.syngress.com

Figure 9.19 Continued

167_C#_09.qxd 12/4/01 3:34 PM Page 485

486 Chapter 9 • Working with XML

StringWriter classes work together to convert an XML document on disk to an
in-memory string.

As you can see, very little source code is necessary to perform the complex
task of transforming an XML document to another format.You have now con-
verted the original document to the new format that is needed to generate the
HTML reports. Let’s take a look in Figure 9.20 at the XSL stylesheet used to
transform the converted XML to HTML.

Figure 9.20 The Stylesheet (salariedreport.xsl)

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html>

<head>

<title>EntegraTech Salaried Employees</title>

</head>

<body bgcolor="#C0C0C0">

<h1 align="left">EntegraTech Salaried Employees</h1>

<p></p>

<xsl:apply-templates />

</body>

</html>

</xsl:template>

<xsl:template match="Salaried">

<h2 align="left">Seattle Office Salaried Employees</h2>

<table border="0" width="100%">

<xsl:apply-templates select="Employee[Location='98103']" />

</table>

<p></p>

<h2 align="left">Portland Office Salaried Employees</h2>

<table border="0" width="100%">

<xsl:apply-templates select="Employee[Location='97206']" />

</table>

</xsl:template>

www.syngress.com

Continued

167_C#_09.qxd 12/4/01 3:34 PM Page 486

Working with XML • Chapter 9 487

<xsl:template match="Employee[Location='98103']">

<tr>

<td width="28%">

<xsl:value-of select="Name" />

</td>

<td width="72%">

$<xsl:value-of select="Wage" />

</td>

</tr>

</xsl:template>

<xsl:template match="Employee[Location='97206']">

<tr>

<td width="28%">

<xsl:value-of select="Name" />

</td>

<td width="72%">

$<xsl:value-of select="Wage" />

</td>

</tr>

</xsl:template>

</xsl:stylesheet>

Briefly, this stylesheet creates an HTML document for display in a Web
browser.You can see the familiar pattern matching statements that we saw in the
previous stylesheet.This stylesheet creates two HTML tables that display the
names of employees and their wages.The first table shows the employees in the
Seattle office, and the second shows the employees in Portland. Figure 9.21 shows
the C# source code used to perform the transformation from XML to HTML.

www.syngress.com

Figure 9.20 Continued

167_C#_09.qxd 12/4/01 3:34 PM Page 487

488 Chapter 9 • Working with XML

Figure 9.21 XML to HTML Transformation in the Source Code (XSLForm.cs)

private void doXMLToHTMLTranformation()

{

// Load the XML document, apply an XSL transformation to it,

// resulting in HTML which is written to disk.

XPathDocument docXPath = new XPathDocument("salaried.xml");

XslTransform xslTransform = new XslTransform();

XmlTextWriter writer =

new XmlTextWriter("salariedreport.html", null);

xslTransform.Load("salariedreport.xsl");

xslTransform.Transform(docXPath, null, writer);

writer.Close();

btnShowHTML.Enabled = true;

}

The code looks very similar to the code you saw that performed the XML-
to-XML transformation earlier in Figure 9.19 earlier in this section.The only
noticeable difference is that the XmlTextWriter object now takes the name of the
HTML file as a parameter.When the doXMLToHTMLTransformation method is
complete, a new HTML file exists named salariedreport.html, which contains the
report. Here is the source code that launches Internet Explorer and displays the
report in the Web browser:

private void btnShowHTML_Click_1(object sender,

System.EventArgs e)

{

System.Diagnostics.Process.Start("salariedreport.html");

}

The Start method of the System.Diagnostics.Process class executes a program.
This overloaded version of the Start method takes a document name. If the docu-
ment type has a file association established with a program on the computer, it
will invoke that program. In our case, HTML files are associated with Internet
Explorer. So, when the Start method is called with an HTML filename as the
parameter, Internet Explorer is launched and the HTML file passed in is dis-
played.

www.syngress.com

167_C#_09.qxd 12/4/01 3:34 PM Page 488

Working with XML • Chapter 9 489

www.syngress.com

XSLT: Debugging Stylesheets
XSLT is a powerful technology for transforming XML documents. The
XPath expressions used in XSL stylesheets to match nodes in an XML
document can be very complex. It can become difficult to debug what
is happening in stylesheet when the output is not what you expect. To
aid in debugging problems in XSL stylesheets, it is often helpful to
develop the stylesheet in small increments rather than creating the com-
plete stylesheet at one time. Write one rule at a time and run your trans-
formation, verifying that the node list returned is what you expect.
When you do encounter output that is not what you expect, you can be
relatively sure the problem lies in the last rule you added. This can save
you valuable time.

Debugging…

167_C#_09.qxd 12/4/01 3:34 PM Page 489

490 Chapter 9 • Working with XML

Summary
XML has emerged as the Web standard for representing and transmitting data
over the Internet.The W3C has worked to establish standards for XML and
related technologies including XML DOM, XPath, XSL, and XML schemas.
XML DOM is an API that is used to create, modify, and traverse XML docu-
ments. XPath is a language that is used to query XML documents. XSL translates
XML documents from one format to another format. XML schemas define the
structure and data types of the nodes in an XML document.All of these tech-
nologies are industry standards backed by the W3C.

Microsoft has embraced XML and provides implementations in the .NET
Framework for many of the technologies standardized by the W3C.The XML
DOM API is fully supported in the .NET Framework by the XmlDocument class.
The XmlDocument class allows you to create XML documents from scratch, per-
sist them to a number of different data stores and read them back into memory
from those data stores. Once in memory, an XML document can be traversed and
modified including adding, updating, and deleting nodes in the document.

In conjunction with ADO.NET and the XML support in the .NET
Framework, the ability to work with data as XML or as relational data is available
using C#.The XmlDataDocument class is used to read data into a DataSet class
object from an XML disk file or from a database. Once the XmlDataDocument is
created, the data is available for access relationally as table and columns or as
XML through the DOM API. XML schema support is provided by the .NET
Framework to specify the structure and data types of the data in XML docu-
ments including the XmlDataDocument class.The relationship between the
ADO.NET DataSet class and the XML API provides a powerful foundation to
develop end-to-end applications storing data in databases on both ends of a busi-
ness process and using XML to transmit the data between.

The .NET Framework supports XPath queries against XML DOM docu-
ments or the highly optimized XPathDocument class.The XPathNavigator class
works in conjunction with the XPathDocument to issue XPath queries against
XML documents in read-only mode. XPath queries can also be issued against the
XmlDocument class providing a convenient method to locate a specific node in a
document and then modify it. XPath queries are also instrumental in XSL trans-
formations.The .NET Framework fully supports XSL transformations as imple-
mented in the XslTransform class. XML-to-XML transformations as well as XML
to other formats are implemented with a minimum of source code.

www.syngress.com

167_C#_09.qxd 12/4/01 3:34 PM Page 490

Working with XML • Chapter 9 491

Use of XML is found throughout the .NET Framework and is instrumental
in the implementation of Web Services, as you will find out in Chapter 11.
Because XML is critical to .NET, developers benefit by first class, standards-based
support for XML in the .NET Framework.This chapter provided you with the
information you need to start taking advantages of that support in your own
XML-based applications.

Solutions Fast Track

Introduction to XML

XML has emerged as the Web standard for representing and transmitting
data over the Internet.

The W3C has standardized XML and related technologies including
XML DOM, XPath, XSL, and XML Schemas.

The .NET Framework provides first class support for W3C-backed
XML standards.

XML is prevalent throughout the .NET Framework including use in
configuration files, C# source code comments, and Web Services.

Working with XML DOM

An XML document can be represented as a tree of nodes in memory,
which can be traversed and modified using an implementation of the
XML DOM API.

The XmlDocument class is the .NET implementation of XML DOM.

The XmlDocument class provides the ability to create an XML document,
add elements and attributes to a document, update nodes in the
document, delete nodes from the document, save the document to
persistent storage, and load the document into memory from persistent
storage.

www.syngress.com

167_C#_09.qxd 12/4/01 3:34 PM Page 491

492 Chapter 9 • Working with XML

Working with XML and Relational Data

The DataSet class is an in-memory representation of relational data using
tables, columns, and rows.

The XmlDataDocument class has a DataSet object as a member variable.
XML documents can be read into an XmlDataDocument object instance
and can then be manipulated using XML DOM method calls or by
relational method calls against the DataSet member variable.

In conjunction with ADO.NET, the XML support in the .NET
Framework can be used to build powerful applications that access data as
XML or relational database data when appropriate.The conversion
between the two types of data is trivial to implement.

Working with XPath and XSL Transformations

XPath support is built into the .NET Framework for use as a general-
purpose query tool or as part of XSL stylesheets.

XPath queries can be performed against the read-only XPathDocument
class using the XPathNavigator class.The XmlDocument class can also be
queried using XPath to locate a node in a document, which can then be
modified if desired.

XSL Transformations are implemented using the XslTransform class of the
.NET Framework allowing transformation of XML documents to other
formats including XML and HTML.

www.syngress.com

167_C#_09.qxd 12/4/01 3:34 PM Page 492

Working with XML • Chapter 9 493

Q: What W3C level of support is provided in the XML classes supplied with the
.NET Framework?

A: The XmlDataDocument class supports W3C DOM Core Level 1 and Core
Level 2 specifications.The XmlSchema class supports W3C XML Schemas for
Structures and the XML Schemas for Data Types specifications.The
XslTransform class supports the XSLT 1.0 specification. See the W3C Web site
for details on the specifications at: www.w3c.org.

Q: Which set of XML classes should I use to implement my project?

A: That depends on your needs and can be difficult to say. Here though are
some rules of thumb. If you need fast-forward, read-only access to the data,
use one of the XmlReader-derived classes, such as XmlTextReader. If you need
to do extensive updates to the document, use the XmlDocument class. If you
want fast query capabilities, use the XPathDocument class. If you want to read
and write from a database and then manipulate the results as XML, use the
XmlDataDocument class.

Q: I have two tables in a DataSet and have added a DataRelation, which estab-
lishes a parent-child relationship.When I write the XML file to disk, the
parent-child relationship isn’t represented.What is wrong?

A: Most likely you did not set the Nested property of the DataRelation to true. If
it is false, the elements associated with the child in the relationship will all
appear after the parent elements in the XML file.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

167_C#_09.qxd 12/4/01 3:34 PM Page 493

494 Chapter 9 • Working with XML

Q: How do I create an XmlDocument instance from a string?

A: Here are two methods. One method is to use this:

doc.Load(new XmlTextReader(new StringReader(myString)))

Another is to write this:

doc.InnerXml = myString

www.syngress.com

167_C#_09.qxd 12/4/01 3:34 PM Page 494

ASP.NET

Solutions in this chapter:

■ Introducing the ASP.NET Architecture

■ Working with Web Forms

■ Working with ADO.NET

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 10

495

167_C#_10.qxd 12/5/01 10:31 AM Page 495

496 Chapter 10 • ASP.NET

Introduction
ASP.NET is Microsoft’s upgrade to Active Server Pages (ASP).ASP.NET archi-
tecture is very well woven into the .NET Framework to provide a powerful
event-driven programming model.The new feature of code-behind allows true sep-
aration of code and design.Also, you can write ASP.NET pages in any of the
managed languages, and the code is compiled to give high performance.

This chapter acquaints you with writing Web Forms and database-driven Web
applications.You will see how you can leverage the use of XML data in the
.NET Framework within ASP.NET applications, through “real world” examples
(a shopping cart and a message board).We also explain how to e-mail from
ASP.NET, which includes an example of a simple e-mail ASP.NET page.

In all the examples, we cover a broad range of new features in ASP.NET. One
of these is the capability to have custom validation embedded into the pages from
JavaScript (.js) files, which originate from the root on the server;ASP.NET has a
whole host of validation controls to use.Also the backbone of the .NET archi-
tecture is built on XML.The use of XSL/Transforms on XML data from
DataSets provide the developer with the ability to create custom content for var-
ious clients with minimal program logic overhead.We demonstrate this in the
message board example included in this chapter.

ASP.NET is a more robust way to bring applications to the Web. Gone are
the endless lines of “spaghetti code” and with it the ambiguous debugging.With
ASP.NET, you will be able to create cross-browser, cross-platform applications
that you can port across the Web.

Introducing the ASP.NET Architecture
In the ASP.NET architecture, the .NET Framework works with the OS.A Web
client requests a Web Form (ASPX) resource, which is delivered through the
Internet Information Server (IIS) combining all additional resources, which may
include a database,Web Service, COM component, or a component class.All of
these are delivered through a compiled assembly (DLL) from the Web application,
which sits in the bin directory within IIS’s Web root. See Figure 10.1 for a con-
ceptual overview of the ASP.NET architecture.ASP.NET includes some new file
extensions for the different types of pages you can create in your solutions.The
new extensions allow ASP.NET to sit alongside ASP 3.0 on the same server with
no filename conflicts. Here is a list of the four most commonly used extensions:

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 496

www.syngress.com

■ .aspx Used for Web Forms and is the replacement for the standard .asp
extension used in ASP 3.0.

■ .ascx Used to denote a reusable page components or control.

■ .asmx Used to denote a Web Service.

■ .asax Used for the Global file and is the replacement for the .asa
extension.

Each of these page types can have a code-behind page where you can store
program logic. Note that using code-behind pages makes your code more mod-
ular and helps to hide the program logic from prying eyes, because the code-
behind pages are not stored individually on the server but are part of the
compiled assembly (DLL).

The corresponding code-behind pages would be .aspx.vb, .ascx.vb, .asmx.vb,
and .asax.vb respectively if the project was a VB.NET project, or .aspx.cs, .ascx.cs,
.asmx.cs, and .asax.cs respectively if the project was a C# project.

ASP.NET Server Controls
You can add three main sets of controls to your Web Form (ASPX page): HTML
server controls,Web server controls, and validation controls.

■ HTML server controls Allow you to work with all the properties of
the standard HTML elements within your server-side code (in your
code-behind page or in inline server scripting on the ASPX page itself).
This will expose them for all server-side processing and for content
delivery, which you can provide a specific style sheet to comply with NS

ASP.NET • Chapter 10 497

Figure 10.1 Overview of ASP.NET Architecture

Web Client Web Client Web Client

IIS NT/2000

ASP.NET Appllication
.NET Framework

Additional
Resources Data

167_C#_10.qxd 12/5/01 10:31 AM Page 497

498 Chapter 10 • ASP.NET

4 or Opera.To provide HTML form elements with the programming
power of server-side processing, you must add at least two attributes to
the tag in question.The HTML control needs to have the runat attribute
set to “server” (runat=“server”) and an ID. By doing this, the control is
made available to the server for processing instead of being passed as text
to the browser. See Table 10.1 for a list of HTML elements that can be
easily converted into HTML server controls.The following is an
example of a HTML button server control:

<INPUT type="button" id="button1"

value="clickme" runat="server">

Table 10.1 HTML Server Controls

Server Control Description

HtmlAnchorControl Access the <a> tag in server processing
HtmlButtonControl Access the <button> tag in server processing
HtmlFormControl Access the <form> tag in server processing
HtmlGenericControl Access the ,<div>, <body>,

tag in server processing
HtmlImageControl Access the tag in server processing
HtmlInputButtonControl Access the <input type=”submit”>, <input

type=”reset”>, <input type=”button”>,
tag in server processing

HtmlCheckBoxControl Access the <input type=”checkbox”> tag in
server processing

HtmlInputFileControl Access the <input type=”file”> tag in server
processing

HtmlInputRadioButtonControl Access the <input type=”radio”> tag in
server processing

HtmlSelectControl Access the <select> tag in server processing
HtmlTableControl Access the <table> tag in server processing
HtmlTableCellControl Access the <td>, and <th> tag in server

processing
HtmlTableRowControl Access the <tr> tag in server processing
HtmlTextAreaControl Access the <textarea> tag in server

processing

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 498

ASP.NET • Chapter 10 499

■ Web server controls A completely new set of controls designed to
interact with the .NET environment by the additional properties and
events included, most notably the ability to do a postback.The tags are
XML-based, so they all appear in the same manor as XML elements for
ease of use.Web server controls are defaulted to render HTML 3.2 for
cross browser compliance.Web server controls inherit the System.Web.UI
.Control namespace, which predefines their attributes.Table 10.2 shows a
list of Web server controls.We discuss a number of these in the examples
ahead.The following shows a Button Web server control and a Textbox
Web server control as they would appear on a Web Form (ASPX page):

<asp:button id="button1" runat="server"></asp:button>

<asp:text id="text1" runat="server"></asp:text>

Table 10.2 ASP.NET Web Server Controls

Web Server Controls

AdRotator Button Calendar CheckBox CheckBoxList
DataGrid DataList DropDownList HyperLink Image
ImageButton Label LinkButton ListBox Literal
Panel PlaceHolder RadioButton RadioButtonList Repeater
Table TableCell TableRow TextBox XML

■ Validation controls You can have customized validation run on the
client generated by the server through a JS (external JavaScript) file.
Table 10.3 shows a list of validation controls.When working with valida-
tion server controls, you must set a couple of attributes.To specify the
control to validate, set the controltovalidate attribute to the ID of the Web
server control you want to validate. If you set the display attribute to
static, the validation control will occupy that space permanently. (The
position of the control will be held even when the error message is not
visible.This works just like setting the Cascading Style Sheet [CSS]
attribute visibility to hidden), but if you set the display attribute to dynamic,
you can have multiple error messages listed in the same space (the posi-
tion of the control is not held when the error message is not visible.This
works like setting the CSS attribute display to none).Also, the errormessage
attribute is the error message that will be shown when the validation
fails.We use these in the following examples.

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 499

500 Chapter 10 • ASP.NET

Table 10.3 ASP.NET Validator Controls

Validator Control Description

CompareValidator Compares a value entered into a Web server
control against another set value.

CustomValidator Can create your own custom validation for
specific data.

RangeValidator Finds the range between two values on a Web
server control.

RegularExpressionValidator Uses regular expressions to validate a value
entered into a Web server control.

RequiredFieldValidator Ensures that all items are supplied data in a Web
server control.

ValidationSummary Groups the result set of validation control error
messages into a summary for viewing.

www.syngress.com

ASP.NET Server Controls Do Not
Display Correctly in Netscape 4.x
A lot has happened over the last few years with Netscape and the open
source Mozilla project. Although the newer versions of Mozilla version
.094 and above should handle this fine, Netscape still has a significant
4.x user base. When we develop Web front-ends for our clients, we
strive to ensure at least Netscape 4.72 will display and function correctly.

What’s the issue? It seems that most of the examples showing you
how to use server controls in Visual Studio.NET have you drag and drop
the control to where you want it on the screen. In HTML, this creates
span tags with inline style attributes containing “absolute positioning.”
Those of us that have dealt with cross-browser Dynamic HTML (DHTML)
issues know that this can cause problems in Netscape. The solution: Use
“FlowLayout” and good old fashioned HTML elements and tricks for
positioning. To do this, simply right-click on a page in either Design or
HTML view and switch the pageLayout property to FlowLayout.

Debugging…

167_C#_10.qxd 12/5/01 10:31 AM Page 500

ASP.NET • Chapter 10 501

Working with User Controls
If you have some very useful code written in a current Web Form, and you want
to reuse that code in another Web Form, you can do that with a user control.
This is the same as using a server-side include but with all the programming
power of an embedded server control.You can access all the properties of the
User control within your new Web Form page.This allows you to reuse your
code and maintain total control of all the properties in the page.

Making your own custom user control is very easy. Simply take out the code
that is between the body tags of your current ASPX page, open a new file in
VS.NET, and select Web User Control (this will have an .ascx extension), and
paste in the code between the form tags of the control page. If you have any
code-behind in your ASPX page, you must add that also.This will be placed in
the code-behind page for the user control. Look at this example:

<DIV style="Z-INDEX: 100; LEFT: 10px; WIDTH: 300px; POSITION: relative;

TOP: 10px; HEIGHT: 400px">

<TABLE cellSpacing="1" cellPadding="1" width="300" border="0">

<TR>

<TD>From:</TD>

<TD colspan="2">

<asp:TextBox id="txtFrom" runat="server" AutoPostBack="False">

</asp:TextBox>

</TD>

</TR>

<TR>

<TD>To:</TD>

<TD colspan="2">

<asp:TextBox id="txtTo" runat="server" AutoPostBack="False">

</asp:TextBox>

</TD>

</TR>

<TR>

<TD>CC:</TD>

<TD colspan="2">

<asp:TextBox id="txtCC" runat="server" AutoPostBack="False">

</asp:TextBox>

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 501

502 Chapter 10 • ASP.NET

</TD>

</TR>

<TR>

<TD colspan="3"> </TD>

</TR>

<TR>

<TD colspan="3">Subject:</TD>

</TR>

<TR>

<TD colspan="3">

<asp:TextBox AutoPostBack="False" id="txtSubject" runat="server"

Width="288px" Height="24px"></asp:TextBox>

</TD>

</TR>

<TR>

<TD colspan="3">Message:</TD>

</TR>

<TR>

<TD colspan="3">

<asp:TextBox id="txtMessage" AutoPostBack="False" Rows="10"

runat="server" Width="313px" Height="160px"></asp:TextBox>

</TD>

</TR>

<TR>

<TD colspan="3">

<asp:Button id="btnEmail" runat="server" Text="Send Email">

</asp:Button>

</TD>

</TR>

</TABLE>

</DIV>

<DIV style="Z-INDEX: 101; LEFT: 352px; WIDTH: 264px;

POSITION: absolute; TOP: 24px; HEIGHT: 400px">

<TABLE cellSpacing="1" cellPadding="1" width="300" border="0"

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 502

ASP.NET • Chapter 10 503

style="WIDTH: 300px; HEIGHT: 80px">

<TR>

<TD>

<asp:RequiredFieldValidator id="rfvTxtfrom" runat="server"

ControlToValidate="txtFrom"

Display="Dynamic"

Font-Name="Verdana"

Font-Size="10pt">* please provide an e-mail address

</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator id="revTxtfrom" runat="server"

ControlToValidate="txtFrom"

ValidationExpression="^.*\@.*\..*$"

Display="static"

Font-Name="verdana"

Font-Size="10pt">

Please enter a valid e-mail address

</asp:RegularExpressionValidator>

</TD>

</TR>

<TR>

<TD>

<asp:RequiredFieldValidator id="rfvTxtto" runat="server"

ControlToValidate="txtTo"

Display="Dynamic"

Font-Name="Verdana"

Font-Size="10pt">

* please provide an e-mail address

</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator id="revTxtto" runat="server"

ControlToValidate="txtTo"

ValidationExpression="^.*\@.*\..*$"

Display="static"

Font-Name="verdana"

Font-Size="10pt">

Please enter a valid e-mail address

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 503

504 Chapter 10 • ASP.NET

</asp:RegularExpressionValidator>

</TD>

</TR>

<TR>

<TD>

<asp:RegularExpressionValidator id="revTxtcc" runat="server"

ControlToValidate="txtCC"

ValidationExpression="^.*\@.*\..*$"

Display="static"

Font-Name="verdana"

Font-Size="10pt">

Please enter a valid e-mail address

</asp:RegularExpressionValidator>

</TD>

</TR>

</TABLE>

</DIV>

Here you have cut out the HTML code from your ASPX page. Now, you
need to paste this into your user control page. Here is what it will look like
when you have done this (there is a new directive declared called @Control):

<%@ Control Language="c#" AutoEventWireup="false"

Codebehind="WebUserControl1.ascx.cs"

Inherits="simpleMail.WebUserControl1"%>

<TABLE cellSpacing="1" cellPadding="1" width="300" border="0">

<TR>

<TD>From:</TD>

<TD colspan="2">

<asp:TextBox id="txtFrom" runat="server" AutoPostBack="False">

</asp:TextBox>

</TD>

</TR>

<TR>

<TD>To:</TD>

<TD colspan="2">

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 504

ASP.NET • Chapter 10 505

<asp:TextBox id="txtTo" runat="server" AutoPostBack="False">

</asp:TextBox>

</TD>

</TR>

<TR>

<TD>CC:</TD>

<TD colspan="2">

<asp:TextBox id="txtCC" runat="server" AutoPostBack="False">

</asp:TextBox>

</TD>

</TR>

<TR>

<TD colspan="3"> </TD>

</TR>

<TR>

<TD colspan="3">Subject:</TD>

</TR>

<TR>

<TD colspan="3">

<asp:TextBox id="txtSubject" AutoPostBack="False" runat="server"

Width="288px" Height="24px"></asp:TextBox>

</TD>

</TR>

<TR>

<TD colspan="3">Message:</TD>

</TR>

<TR>

<TD colspan="3">

<asp:TextBox id="txtMessage" AutoPostBack="False" Rows="10"

runat="server" Width="313px" Height="160px">

</asp:TextBox>

</TD>

</TR>

<tr>

<td colspan="3">

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 505

506 Chapter 10 • ASP.NET

<asp:Button id="btnEmail" runat="server" Text="Send Email">

</asp:Button>

</td>

</tr>

</TABLE>

<DIV style="Z-INDEX: 101; LEFT: 352px; WIDTH: 264px;

POSITION: absolute; TOP: 24px; HEIGHT: 400px">

<TABLE cellSpacing="1" cellPadding="1" width="300" border="0"

style="WIDTH: 300px; HEIGHT: 80px">

<TR>

<TD>

<asp:RequiredFieldValidator id="rfvTxtfrom" runat="server"

ControlToValidate="txtFrom"

Display="Dynamic"

Font-Name="Verdana"

Font-Size="10pt">

* please provide an e-mail address

</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator id="revTxtfrom" runat="server"

ControlToValidate="txtFrom"

ValidationExpression="^.*\@.*\..*$"

Display="static"

Font-Name="verdana"

Font-Size="10pt">

Please enter a valid e-mail address

</asp:RegularExpressionValidator>

</TD>

</TR>

<TR>

<TD>

<asp:RequiredFieldValidator id="rfvTxtto" runat="server"

ControlToValidate="txtTo"

Display="Dynamic"

Font-Name="Verdana"

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 506

ASP.NET • Chapter 10 507

Font-Size="10pt">

* please provide an e-mail address

</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator id="revTxtto" runat="server"

ControlToValidate="txtTo"

ValidationExpression="^.*\@.*\..*$"

Display="static"

Font-Name="verdana"

Font-Size="10pt">

Please enter a valid e-mail address

</asp:RegularExpressionValidator>

</TD>

</TR>

<TR>

<TD>

<asp:RegularExpressionValidator id="revTxtcc" runat="server"

ControlToValidate="txtCC"

ValidationExpression="^.*\@.*\..*$"

Display="static"

Font-Name="verdana"

Font-Size="10pt">

Please enter a valid e-mail address

</asp:RegularExpressionValidator>

</TD>

</TR>

</TABLE>

</DIV>

Remember that you also need to bring over all the code-behind code as well
into the new user control CS page This is what you should have:

namespace simpleMail

{

using System;

using System.Data;

using System.Drawing;

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 507

508 Chapter 10 • ASP.NET

using System.Web;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using System.Web.Mail;

/// <summary>

/// Summary description for WebUserControl1.

/// </summary>

public abstract class WebUserControl1 : System.Web.UI.UserControl

{

protected System.Web.UI.WebControls.TextBox txtFrom;

protected System.Web.UI.WebControls.TextBox txtTo;

protected System.Web.UI.WebControls.TextBox txtCC;

protected System.Web.UI.WebControls.TextBox txtSubject;

protected System.Web.UI.WebControls.Button btnEmail;

protected System.Web.UI.WebControls.RequiredFieldValidator fvTxtfrom;

protected System.Web.UI.WebControls.RegularExpressionValidator

revTxtfrom;

protected System.Web.UI.WebControls.RequiredFieldValidator rfvTxtto;

protected System.Web.UI.WebControls.RegularExpressionValidator revTxtto;

protected System.Web.UI.WebControls.RequiredFieldValidator rfvTxtcc;

protected System.Web.UI.WebControls.RegularExpressionValidator revTxtcc;

protected System.Web.UI.WebControls.TextBox txtMessage;

public WebUserControl1()

{

this.Init += new System.EventHandler(Page_Init);

}

private void Page_Load(object sender, System.EventArgs e)

{

// Put user code to initialize the page here

}

private void Page_Init(object sender, EventArgs e)

{

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 508

ASP.NET • Chapter 10 509

//

// CODEGEN: This call is required by the ASP.NET Web Form

// Designer.

InitializeComponent();

}

#region Web Form Designer generated code

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

this.btnEmail.Click += new

System.EventHandler(this.btnEmail_Click);

this.Load += new System.EventHandler(this.Page_Load);

}

#endregion

private void btnEmail_Click(object sender, System.EventArgs e)

{

MailMessage mail = new MailMessage();

mail.From = txtFrom.Text;

mail.To = txtTo.Text;

mail.Cc = txtCC.Text;

mail.Subject = txtSubject.Text;

mail.Body = txtMessage.Text;

mail.BodyFormat = MailFormat.Text;

SmtpMail.Send(mail);

}

}

You should build this and make sure you do not have any errors. Next, you
need to take your new custom user control and add it to a new Web Form page.
This is what it the code should look like:

<%@ Page language="c#" Codebehind="WebForm2.aspx.cs"

AutoEventWireup="false" Inherits="simpleMail.WebForm2" %>

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 509

510 Chapter 10 • ASP.NET

<%@ Register TagPrefix="simpleEmail" TagName="Email"

Src="WebUserControl1.ascx" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<html>

<head>

<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

<meta name="CODE_LANGUAGE" Content="C#">

<meta name="vs_defaultClientScript"

content="JavaScript (ECMAScript)">

<meta name="vs_targetSchema"

content="http://schemas.microsoft.com/intellisense/ie5">

</head>

<body MS_POSITIONING="GridLayout">

<form id="WebForm2" method="post" runat="server" >

<simpleEmail:Email id="myEmail" runat="server" />

</form>

</body>

</html>

This includes a new page directive @Register that will register your control
based on the information you supply.What you need to supply is the property
values: TagPrefix is set to simpleEmail. TagName is set to Email, and, most impor-
tantly, the Src is set to the path of your user control where it is a relative path in
the same directory. Set this Web Form as a start page and run the application—
your custom User Control will be there and fully functional.

Custom Controls
Custom controls are created in much the same way as the user controls, the dif-
ference being that they are autonomous from any Web Form and that you can
use them anywhere within the application.When applying a custom control, you
must use the @Register directive along with the TagPrefix, but in this example,
where the Src is used for the user control, you use the Namespace=“CustomCon”
and supply the Assembly attribute, as shown here:

<%@ Page language="c#"

Codebehind="WebForm1.aspx.cs"

AutoEventWireup="false"

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 510

ASP.NET • Chapter 10 511

Inherits="simpleMail.WebForm1"

%><%@ Register

TagPrefix="simpleEmail"

Namespace="customCon"

Assembly="conEamil"

%>

NOTE

The @Register directive must appear after or below the @Page directive.

Understanding the Web.config File
The Web.config file will be placed in the application folder in each Web solution
project created.This is an XML file that you can edit with any text editor, and it
holds key configuration information for your application.You can also add to this
file with custom configuration settings. Let’s take a look at one and go over some
of the settings within:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<system.web>

<!— DYNAMIC DEBUG COMPILATION—>

<compilation

defaultLanguage="c#"

debug="true"/>

<!— CUSTOM ERROR MESSAGES—>

<customErrors

mode="Off"/>

<!— AUTHENTICATION—>

<authentication mode="None" />

<!— APPLICATION-LEVEL TRACE LOGGING—>

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 511

512 Chapter 10 • ASP.NET

<trace

enabled="false"

requestLimit="10"

pageOutput="false"

traceMode="SortByTime"

localOnly="true"/>

<!— SESSION STATE SETTINGS—>

<sessionState

mode="InProc"

stateConnectionString="tcpip=127.0.0.1:42424"

sqlConnectionString="data source=127.0.0.1;user id=sa;password="

cookieless="false"

timeout="20"/>

<!— PREVENT SOURCE CODE DOWNLOAD—>

<httpHandlers>

<add verb="*" path="*.vb"

type="System.Web.HttpNotFoundHandler,System.Web" />

<add verb="*" path="*.cs"

type="System.Web.HttpNotFoundHandler,System.Web" />

<add verb="*" path="*.vbproj"

type="System.Web.HttpNotFoundHandler,System.Web" />

<add verb="*" path="*.csproj"

type="System.Web.HttpNotFoundHandler,System.Web" />

<add verb="*" path="*.webinfo"

type="System.Web.HttpNotFoundHandler,System.Web" />

</httpHandlers>

<!— GLOBALIZATION—>

<globalization

requestEncoding="utf-8"

responseEncoding="utf-8"/>

</system.web>

</configuration>

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 512

ASP.NET • Chapter 10 513

One of the first settings in the Web.config file is the <compilation> tag. In
that tag, you can set the source language of the application and the debug prop-
erty.When you deploy your application, set this property to False to speed up
server performance.Also, if you are unable to get debugging working on your
server, check to see if the attribute is set to False.

You can turn custom error messages on or off by setting the attribute within
the tag. Every time the application is run, the new setting will take effect, much
like a Global.asp page would do for an ASP application.

Using the Global.asax Page
In the upcoming examples, you will set many variables within your Global.asax
page.Two of these variables are set in the Application_Start and Session_Start
methods. In this situation, you can use the Global.asax page much the same way
as you would use the Global.asa file for your ASP application, the one difference
being that you can run the Global.asax file across a Web farm of servers. Both of
these methods belong to the HttpApplication base class.

You can make changes to the Global.asax file, and when the application starts,
the page will be parsed and the settings acted upon.Also, you do not need to
have a Global.asax file in your Web application. If you do not supply one, you
will not have any supported application settings or session settings.

Working with Web Forms
Web Forms (ASPX pages) are the replacement for ASP pages in ASP.NET.All
controls and UI functionality will be placed within your Web Forms.Web Forms
inherit all the methods and properties of the Page class, which belongs to the
System.Web.UI namespace.

Creating a Simple Web Form
Let’s look at some real-world examples of ASP.NET Web applications.We first
need to open VS.NET Beta 2 and create a new C# ASP.NET Web application
(see Figure 10.2).

Name the project simpleMail and have the Location set as localhost. By
default, one Web Form will be created.You can leave its name as WebForm1.aspx.

In the example, you want to create a form that will send an e-mail.You first
need to include the namespace System.Web.Mail.This will enable you to use all
the Mail methods within the SMTP mail service. In the Solutions Explorer
window, select Show all files from the title bar. Now, you will have a plus sign

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 513

514 Chapter 10 • ASP.NET

in front of your ASPX page. Click on the plus sign and select the code-behind
page (cs).At the top of the cs page, you will see the using directives; this is where
you need to add your using directive for mail:

using System.Web.Mail;

Now you will have all the methods and properties of this class. Let’s open the
ASPX file and go to HTML view by selecting the HTML tab at the bottom of
the window.You are going to need some text boxes and a submit button for your
form, which you can get by dragging them from the Toolbox.The code should
look something like this:

<div style="Z-INDEX: 100; LEFT: 10px; WIDTH: 300px; POSITION:

relative; TOP: 10px; HEIGHT: 400px">

<TABLE cellSpacing="1" cellPadding="1" width="300" border="0">

<TR><TD>From: </TD><TD colspan="2">

<asp:TextBox id="txtFrom" runat="server" ></asp:TextBox>

</TD>

</TR><TR><TD> To:</TD><TD colspan="2">

<asp:TextBox id="txtTo" runat="server" AutoPostBack=

"False"></asp:TextBox>

</TD></TR><TR><TD>

CC:</TD><TD colspan="2">

www.syngress.com

Figure 10.2 Opening a New C# Web Application in VS.NET Beta 2

167_C#_10.qxd 12/5/01 10:31 AM Page 514

ASP.NET • Chapter 10 515

<asp:TextBox id="txtCC" runat="server" ></asp:TextBox>

</TD></TR><TR><TD colspan="3"></TD></TR><TR>

<TD colspan="3">Subject:</TD></TR><TR><TD colspan="3">

<asp:TextBox id="txtSubject" runat="server" Width="288px"

Height="24px"></asp:TextBox>

</TD></TR><TR>

<TD colspan="3">Message:</TD></TR><TR><TD colspan="3">

<asp:TextBox id="txtMessage" Rows="10" runat="server" Width="313px"

Height="160px"></asp:TextBox>

</TD></TR><tr><td colspan="3">

<asp:Button id="btnEmail" runat="server" Text="Send Email"></asp:Button>

</td></tr></TABLE>

Double-click on the button; this will open up the .aspx.cs page and present
you with a method for the OnClick event for the button.This is where you will
add in your mail function code:

MailMessage mail = new MailMessage();

mail.From = txtFrom.Text;

mail.To = txtTo.Text;

mail.Cc = txtCC.Text;

mail.Subject = txtSubject.Text;

mail.Body = txtMessage.Text;

mail.BodyFormat = MailFormat.Text;

SmtpMail.Send(mail);

Here you are setting the values of the separate textboxes equal to the listed
mail properties. Lastly, the Send method of the SmtpMail class is used to send the
e-mail message. But how can you make sure that the user will input the correct
data? Easy—use Validation controls. But first, you must set up an area for them to
be displayed outside of the table.Add a <div> tag with a table next to the table
for your e-mail form. It should look something like this:

<DIV style="Z-INDEX: 101; LEFT: 352px; WIDTH: 264px; POSITION:

absolute;

TOP: 24px; HEIGHT: 400px">

<TABLE style="WIDTH: 300px; HEIGHT: 80px" cellSpacing="1" cellPadding=

"1" width="300" border="0">

<TR><TD>

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 515

516 Chapter 10 • ASP.NET

<asp:RequiredFieldValidator id="rfvTxtfrom" runat="server"

ControlToValidate="txtFrom" Display="Dynamic" Font-Name="Verdana"

Font-Size="10pt">* please provide an e-mail address

</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator id="revTxtfrom" runat="server"

ControlToValidate="txtFrom" ValidationExpression="^.*\@.*\..*$"

Display="static" Font-Name="verdana" Font-Size="10pt">

Please enter a valid e-mail address

</asp:RegularExpressionValidator> </TD></TR><TR><TD>

<asp:RequiredFieldValidator id="rfvTxtto" runat="server"

ControlToValidate="txtTo" Display="Dynamic" Font-Name="Verdana"

Font-Size="10pt">* please provide an e-mail address

</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator id="revTxtto" runat="server"

ControlToValidate="txtTo" ValidationExpression="^.*\@.*\..*$"

Display="static" Font-Name="verdana" Font-Size="10pt">

Please enter a valid e-mail address

</asp:RegularExpressionValidator>

</TD></TR><TR><TD><asp:RegularExpressionValidator id="revTxtcc"

runat="server" ControlToValidate="txtCC" ValidationExpression=

"^.*\@.*\..*$" Display="static" Font-Name="verdana"

Font-Size="10pt">Please enter a valid e-mail address

</asp:RegularExpressionValidator>

</TD></TR></TABLE></DIV>

Here you are using two separate validation controls: RequiredFieldValidator ver-
ifies that something has been entered, and RegularExpressionValidator verifies that
the data entered is valid based on the regular expression you have set. Each one
of these controls are dragged and dropped into place from the toolbox.
Remember that you must supply the ControlToValidate attribute with the control
you want to validate. Here is the regular expression used in the example to vali-
date the e-mail field:

ValidationExpression="^.*\@.*\..*$".

To translate, this means from the beginning of the string look for any number
of any characters followed by the @ sign, followed by any number of any charac-
ters, followed by a period (.), followed by any number of any characters to the end

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 516

ASP.NET • Chapter 10 517

of the string.This will allow for extremely long e-mail addresses that may contain
more than one dot (period) before or after the @ sign.This is common for govern-
ment or public institution mail servers, as well as in some large corporations. See
Table 10.4 for a breakdown of the regular expression symbols used in this example.

Table 10.4 Regular Expression Symbols

Symbol Meaning

^ The start of a string.
$ The end of a string.
. Any character.
* Zero or more occurrences of the preceding.
\ Escape used for special characters or when searching for a specific

character that has another meaning in regular expression syntax.
For example, to search for the period character, you would have
to use “\ .” because the period means any character in regular
expression syntax.

Compile the project and run the application by setting the start page and
pressing F5.

Building an XML Poll
In this section, you will be building a simple polling page.You will create two
polling topics each containing three voting options.The user will click on the
radio buttons that reflect their answers to the poll.This data will then be added to
an XML document that will act as your data source.You will then post back the
updated statistics for the poll. (You can find the files for this example on the CD,
see XMLpoll.aspx, XMLpoll.aspx.cs, poll.xml, and stats.xslt.)

1. Start a new Web application project in VS.NET.

2. Rename WebForm1.aspx as XMLpoll.aspx.

3. In design mode, right-click on the page and select Properties. Change
the Page Layout drop-down to FlowLayout and click Apply.Then
click OK.This will help with display in Netscape browsers (see the
sidebar “ASP.NET Server Controls Do Not Display Correctly in
Netscape 4.x” earlier in this chapter).

4. You are now going to create the polling table layout in your Web Form,
XMLpoll. Choose Table | Insert | Table.The Insert Table dialog
appears.

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 517

518 Chapter 10 • ASP.NET

5. Select 9 rows and 1 column, clear the Width property, and then click
OK.You can handle the display options later with CSS.

6. In the first cell, type Programmers Poll.

7. In the second cell, type My Focus is on:.

8. In the third cell, drag RadioButton (from the toolbox under Web
Forms) into this cell.

9. Next to the radio button (in the same cell), type Desktop.

10. Click in the cell, press Ctrl+A to select all, and press Ctrl+C to copy.

11. Click in the next cell and press Ctrl+V to paste.

12. Do this for the next cell, skip one (this cell will contain a subtitle), then
do this for the next three.

13. In the cell that you skipped, type in My Primary Dev Tool is:.

14. Change the text next to each of the RadioButton controls to Web,
Mobile, VSNET, XmlSpy, and Other, respectively.

15. Your page should now look something like the table shown in
Figure 10.3.

www.syngress.com

Figure 10.3 Adding RadioButtons to the XMLpoll Web Form

167_C#_10.qxd 12/5/01 10:31 AM Page 518

ASP.NET • Chapter 10 519

Now you can go into HTML mode and adjust some of your code. Rename
your RadioButton controls as shown in Table 10.5. Remember, to rename a con-
trol, simply view it in HTML mode and change its ID; by default VS.NET will
number them consecutively, as shown in the left column of Table 10.5.

Table 10.5 RadioButton Control Name Change

Current Control Name Change To:

RadioButton1 focus_Desktop
RadioButton2 focus_web
RadioButton3 focus_mobile
RadioButton4 IDE_VSNET
RadioButton5 IDE_XmlSpy
RadioButton6 IDE_other

In HTML, RadioButtons with the same ID are used to create an array so that
only one can be selected at a time.The RadioButton control requires unique names,
hence focus_Desktop, focus_web, focus_mobile, and so on.The RadioButton control pro-
vides the attribute GroupName to generate this HTML RadioButton array. So in
each of your “focus” RadioButton controls, add GroupName=“focus”, and for
each of your “IDE” RadioButton controls, add GroupName=“IDE”. This will
create two radio button arrays in your rendered HTML.

Open XMLpoll.aspx.cs. If you can’t find this page listed in your Solution
Explorer, click the icon for Show All Files, then click the plus sign that appears
next to XMLpoll.aspx (see Figure 10.4).

When you drop your first RadioButton control on the page,VS.NET adds the
following two lines to your code-behind page:

www.syngress.com

Figure 10.4 Displaying the Code-Behind File in the Solutions Explorer

167_C#_10.qxd 12/5/01 10:31 AM Page 519

520 Chapter 10 • ASP.NET

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

This is the namespace that defines all the properties and methods of all Web
controls.As you added each radio button control to the page,VS.NET also added
a reference for it within your page class:

protected System.Web.UI.WebControls.RadioButton focus_web;

protected System.Web.UI.WebControls.RadioButton focus_Desktop;

protected System.Web.UI.WebControls.RadioButton focus_mobile;

protected System.Web.UI.WebControls.RadioButton IDE_VSNET;

protected System.Web.UI.WebControls.RadioButton IDE_other;

protected System.Web.UI.WebControls.RadioButton IDE_XmlSpy;

Now, you can go back to XmlPoll.aspx and view it in design mode:

1. From the toolbar, drag a Button control below the table.

2. Either switch back to HTML mode and rename the control vote with a
Text value of Vote. Or, from design mode, right-click the Button con-
trol and select Properties.

3. When the properties window opens, change the ID value to vote and
the Text value to Vote (see Figure 10.5).

www.syngress.com

Figure 10.5 Setting the Button Control’s Properties

167_C#_10.qxd 12/5/01 10:31 AM Page 520

ASP.NET • Chapter 10 521

4. Switch to design view.

5. Double-click the vote button to add an event handler for the button’s
OnClick event.

Notice that VS.NET has added the following to the page class:

protected System.Web.UI.WebControls.Button vote;

The following has been added to the InitializeComponent method. Its purpose
is to register the new event handler. If you remove this line, the vote_Click
method will never be called:

this.vote.Click += new System.EventHandler(this.vote_Click);

And, of course, the template for the Server_Click method that is an event
handler for the button:

private void vote_Click(object sender, System.EventArgs e)

{

}

In this event handler, create two variables: focus and IDE.You will use these
variables to store the value of the users selections for focus and IDE, respectively:

string focus;

string IDE;

Test which RadioButton in the Focus poll was checked and assign a corre-
sponding value to the focus variable:

//get developer focus

if(focus_Desktop.Checked)

{

focus = "Desktop";

}

else if(focus_web.Checked)

{

focus = "Web";

}

else if(focus_mobile.Checked)

{

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 521

522 Chapter 10 • ASP.NET

focus = "Mobile";

}

else

{

focus = "not given";

}

Do the same for the variable IDE:

//get developer tool

if(IDE_VSNET.Checked)

{

IDE = "VSNET";

}

else if(IDE_XMLSpy.Checked)

{

IDE = "XMLSpy";

}

else if(IDE_other.Checked)

{

IDE = "other";

}

else

{

IDE = "not given";

}

Now that you know what was checked, pass that data to a new method that
will update your XML data source and display some statistics:

updateXPoll(focus, IDE);

This completes the code for the Vote_Click event.Ahead in this chapter, you
will create the updateXPoll method, which will update your in-memory XML
document.You will then send that data to another method you will create, called
updateFile, which will overwrite the existing XML data file on the server with
your new poll results.

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 522

ASP.NET • Chapter 10 523

Creating the updateXPoll Method
In the previous section, you handled the click event for the Vote button, which
gave you the poll results for the current user. In this section, you are going to take
the poll results and add them to your poll data. But, before you write the function
updateXPoll, let’s view the format of the XML data source (see Figure 10.6).

What you want to do in updateXPoll is append “data” nodes to the results
node.A data node will look like the following:

<data>

<response question-id="1" selection="Mobile"/>

<response question-id="2" selection="VSNET"/>

</data>

First, you need to add support for XML to your page. In the top section to
reference the namespaces containing the XML classes, add the following line:

using System.Xml;

In the updateXPoll method, create an instance of the XmlDocument object and
load poll.xml:

XmlDocument xpoll = new XmlDocument();

xpoll.Load(Server.MapPath("poll.xml"));

www.syngress.com

Figure 10.6 Poll.xml

167_C#_10.qxd 12/5/01 10:31 AM Page 523

524 Chapter 10 • ASP.NET

This creates an in-memory XML DOM instance named xpoll.Adding new
XML nodes can be a little confusing at first. It is a bottom-up process where you
work from the outermost leaf and append branches until they connect to a
branch with an ancestor that connects to the main tree.This means that you will
create the attributes of the response node first, then assign their values. Next, you
will create the response node and append the new attributes to it (you will do
the same for the second response node.) Following that, you will create a new
data node, then append the new response nodes to it.You will then append the
new data node to the appropriate branch node in xpoll, the results node.

Create a data element and two response elements with the attributes question-
ID and selection.This will create a new data node in the XML DOM:

XmlElement data = xpoll.CreateElement("data");

This will create a new response node in the XML DOM:

XmlElement response1 = xpoll.CreateElement("response");

This will create two new attribute nodes in the XML DOM:

XmlAttribute questionID = xpoll.CreateAttribute("question-id");

XmlAttribute selection = xpoll.CreateAttribute("selection");

Next, you want to assign the values of the attributes with your user data. For
the first question, the values will be as follows:

questionID.Value="1";

selection.Value = focus;

Now you need to add the attributes to the response node:

response1.SetAttributeNode(questionID);

response1.SetAttributeNode(selection);

Then do the same for the second response node:

XmlElement response2 = xpoll.CreateElement("response");

questionID = xpoll.CreateAttribute("question-id");

selection = xpoll.CreateAttribute("selection");

questionID.Value="2";

selection.Value = IDE;

response2.SetAttributeNode(questionID);

response2.SetAttributeNode(selection);

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 524

ASP.NET • Chapter 10 525

Add them as children to the data element:

data.AppendChild(response1);

data.AppendChild(response2);

Now that you have the data node built, you need to add it as a child to the
results node of xpoll:

xpoll.SelectSingleNode("//results").AppendChild(data);

You have successfully added your new poll data to the in-memory version of
your xmlpoll. Now you need to ensure that you update the file (new data nodes
are appended to the results node):

updateFile("poll.xml", xpoll);

Creating the updateFile Method
This method will take your in-memory version of xpoll and overwrite the
existing file. In order to write to a file, you need to add IO support to the page.
In the top section, add the following to reference the IO namespace:

using System.IO;

In this function, you will be using the File.CreateText method of the
StreamWriter object.This method will create a new file at the location and with
the name specified. If a file already exists with the same name in that path, it will
be overwritten:

StreamWriter sr = File.CreateText(Server.MapPath("poll.xml"));

Note the use of Server.MapPath. The file path is an HTTP relative path. In
order for the server to write to the file, it must have the actual path to the file (of
the form C:\inetpub\wwwroot\XmlPollApp\poll.xml). Server.MapPath converts a
relative or virtual path to a file path.

The OuterXml method of the XmlDocument class returns the contents of the
XML document as an XML formatted text string.This is the equivalent of the
MSXML parsers DOMdocument.xml property.The StreamWriter.Write method
writes text to the file:

sr.Write(xpoll.OuterXml);

When it is done, close the file by calling the Close method of the
StreamWriter class:

sr.Close();

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 525

526 Chapter 10 • ASP.NET

Next time the file is accessed, it will contain the newly added poll data. Next,
you will work on displaying the statistics of the current poll data on page load.

Displaying the Current Poll Statistics
You need to provide the user with some feedback, so you will create a statistics
XSL/Transform that will calculate the response percentages and display the
results on Page_load. So when the user is prompted for the poll, they will also see
the current statistics.After submitting their responses, the statistics will be updated
and the changes will be reflected to the user.

Let’s go back to XmlPoll.aspx and view it in the design mode:

1. From the toolbox under the Web Forms controls section, drag the XML
control onto the page next to the Vote button.This will add the neces-
sary references to the code-behind page.

2. Switch to HTML mode and scroll down to the end of the table.

3. Add a
 tag between the Button control and the XML control.Also,
rename the XML control stats:

<asp:Button id="vote" runat="server" Text="Vote"></asp:Button>

<asp:Xml id="stats" runat="server"></asp:Xml>

The XML control will apply an XSL/Transform to the XML data and display
the resulting HTML at this position in the page.The XML control has several
properties that you can use to set the XML data source and the XSLT source.

For this example, use the Document property, which accepts an XmlDocument
object, and the TransformSource property, which accepts a relative path to a file as
its input:

doc = new XmlDocument();

doc.Load(Server.MapPath("poll.xml"));

stats.Document = doc;

stats.TransformSource = "stats.xslt";

Recall that stats is the name of the XML control.You may be wondering why
you didn’t use the DocumentSource property of the XML control, which works
exactly like the TransformSource property.The reason for loading poll.xml into an
XmlDocument object is because you also use it for updateXPoll.This way, you load

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 526

ASP.NET • Chapter 10 527

the file only once. Figure 10.7 shows the XSLT used for the transform.You can
find this file, called stats.xslt, on the CD.

All you need to do is add a little CSS and your output will look like Figure
10.8.You can also find the CSS file, called xmlpoll.css, on the CD.

www.syngress.com

Figure 10.7 Stats.xslt

167_C#_10.qxd 12/5/01 10:31 AM Page 527

528 Chapter 10 • ASP.NET

www.syngress.com

Figure 10.8 XML Poll

ASP.NET Does Support Response and Request
If you’ve been going through ASP.NET samples on the Web and from
books or magazine articles, you’ve probably noticed the prolific use of
server controls and their PostBack functionality. And if you try to search
for the ASP.NET intrinsic objects, you won’t find the list on MSDN. So
what happened to Response and Request? For you ASP developers, I’m
glad to say that these objects are still there and function similar to their
ASP 3.0 counter parts. The functionality is built into all of the UI controls,
but you can still write C# code that uses them directly.

To retrieve values from a form with method get, use the following:

Request.QueryString["name"] or

Request.QueryString[i]

Migrating…

Continued

167_C#_10.qxd 12/5/01 10:31 AM Page 528

ASP.NET • Chapter 10 529

Working with ADO.NET
Up to this point in the chapter, you have built sample applications using Web
Forms. In the upcoming applications, you will add data retrieval from an SQL
database with ADO.NET. In the next two sample applications—the message
board and shopping cart—you will take a close look at how ADO.NET and
SQL interact.You will also get a closer look at the successor to the ADO
Recordset, the ADO.NET DataSet.

Building a Message Board with SQL
In this section, you are going to build a message board (see Figure 10.9).This appli-
cation will display a list of all current message boards (Item [1] in Table 10.6). It
will allow users to dynamically generate new message board groups (Item [2]) and
monitor them (Item [3]). (Users will have the ability to delete messages from mes-
sage board that they create [4].) Users will also have the ability to post new mes-
sages (Item [5]) or respond to any existing message (Item [6]) on any message board
(Item [7]).This application will also contain a different interface for the site admin-

www.syngress.com

To retrieve a value from a form with method post, use the following:

Request.Form["name"] or

Request.Form [i]

Notice the use of the square brackets when accessing an array or
collection. Also, Response still works much the same:

Response.Write("some string")

Response.End()

A new way of writing to the screen in a predefined spot is to use
the Label control. If you view the source after running the page, you will
notice that the Label control is actually a handle to a span tag, which
can contain a CSS class for font and layout settings (use the Literal con-
trol if you don’t need the span tag wrapper).

You can dynamically write HTML or even JavaScript to the client by
assigning the string value to the text attribute of the control. Here, you
don’t need the span tags so you can use the Literal control:

MyLiteral.Text = "<script language='javascript'>

window.alert(\"Got here\") </script>";

167_C#_10.qxd 12/5/01 10:31 AM Page 529

530 Chapter 10 • ASP.NET

istrator (Item [8]) who will have the ability to delete any message or response (Item
[9]) or even an entire message board (Item [10]).To enable this functionality, you
will have to develop several stored procedures and methods.To see a mapping of
these requirements to the corresponding pages and methods, see Table 10.6.You
can find all the code for this project on the CD—see the page column of Table
10.6 for the filenames. See Figure 10.10 to view all the tables in the database.

Table 10.6 Message Board Processes Overview

Process Dependency Function Page

Display List Stored Procedure Returns list of BoardList.aspx
of Message (sproc): message boards [1]
Boards getAllGroups

XSLT for users Converts data to User_group_list.xslt
HTML [1]

XSLT for Admin Converts data to Admin_group_list.xslt
HTML with delete
enabled [8]

www.syngress.com

Figure 10.9 Message Board Interface

Continued

167_C#_10.qxd 12/5/01 10:31 AM Page 530

ASP.NET • Chapter 10 531

Admin Login [8] BoardList.aspx
Moderator Sproc: Returns the mod BoardList.aspx
Login LoginModerator id of a valid

moderator [4]
Create New Sproc: Creates a new CreateMod.aspx
Moderator NewModerator moderator and

logs them in
Create New Sproc: AddGroup Generates a new CreateBoard.aspx
Group message board

group [2]
Delete a Sproc: delGroup Removes message DeleteBoard.aspx
Group board group and

all related messages
and responses [10]

Display Sproc: returnAllMess Returns all Board.aspx
Selected messages and
Board responses for the

given group [5] [6]
XSLT Convert data into Message_board_list

collapsible tree .xslt
Add New Sproc: AddMessage Add a message to Response2message
Message given group [5] .aspx
Add Sproc: AddResponse Add a response to Response2message
Message a message [6] .aspx
Response
Delete Sproc: delMessage Removes a message Board.aspx
Message from a group

[4] [9]
Delete Sproc: delResponse Removes a Board.aspx
Response response from a

message [4] [9]

All data interaction between the pages and the SQL database will be handled
via ADO.NET methods within a component file (mbdataaccess.cs).You will be
using the SqlClient classes from the namespace System.Data.SqlClient.The SQL
Managed Provider, which resides within the System.Data.SqlClient namespace, is
optimized to work with MS SQL.

www.syngress.com

Table 10.6 Continued

Process Dependency Function Page

167_C#_10.qxd 12/5/01 10:31 AM Page 531

532 Chapter 10 • ASP.NET

To really optimize the code, you can use stored procedures for all data access.
Here is a list of stored procedures that you will need for this example:

■ addGroup Adds a new message board group into the database.

■ addMessage Adds a message into the database.

■ addResponse Adds a response to the database.

■ delGroup Deletes a message board group from the database.

■ delMessage Deletes a message from the database and all responses to it.

■ delResponse Deletes a response from the database.

■ allGroups Returns all message board groups from the database.

■ returnAllMess Returns all messages and their associated responses in
an XML stream.

■ loginModerator Logs in a moderator.

■ newModerator Adds a new moderator:

1. Open up a new solution in VS.NET.

2. Add a new folder named components.

3. Right-click the new folder and add a new item.

4. Select C# class and name it mbdataaccess.cs.

www.syngress.com

Figure 10.10 Database Diagram

167_C#_10.qxd 12/5/01 10:31 AM Page 532

ASP.NET • Chapter 10 533

First, you need a connection to the database.This code will connect to the
local SQL Server database:

protected string connection = "initial catalog=MessageDb;persist

security info=False;user id=[user];password=[password];Data

Source=[server name]; packet size=4096";

public void addMessage(string MsName,string MsMessage, string MsSubject,

string MsEmail, int GpID)

{

SqlConnection connAddMess = new SqlConnection(this.connection);

You can set the connection string on the outside of the class and access for all
the functions within the component. Here you are writing the method
addMessage. Make sure that you have the correct using directives:

using System;

using System.Data;

using System.Data.SqlClient;

You will be accessing the stored procedure addMessage, which takes five input
parameters:

SqlCommand cmdAddMess = new SqlCommand("addMessage",connAddMess);

cmdAddMess.CommandType = CommandType.StoredProcedure;

First, create a new variable of type SqlCommand (cmdAddMess), pass the two
parameters for SqlCommand, the name of the stored procedure, and the connec-
tion you are using for this command. Let’s look at the declaration of one of the
parameters:

SqlParameter prmMsName = new SqlParameter("@MsName",

SqlDbType.NVarChar, 50);

prmMsName.Direction = ParameterDirection.Input;

cmdAddMess.Parameters.Add(prmMsName);

prmMsName.Value = MsName;

You declare a new variable of type SqlParameter; pass the name of the param-
eter used in the stored procedure, the data type, and size.You then set the direc-
tion to Input. Next, add it to the parameters collection of the SqlCommand.
Finally, pass the value you have locally to the stored procedure.You must do this
for the rest of the input parameters.

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 533

534 Chapter 10 • ASP.NET

What you need to do now is open the connection, run the query using the
ExecuteNonQuery method of the SqlCommand class, and then close the connection:

connAddMess.Open();

cmdAddMess.ExecuteNonQuery();

connAddMess.Close();

This will add a new record into the message table.You can view the SQL
source file to see the stored procedure in any text editor:

CREATE PROCEDURE [addMessage]

(@MsName [nvarchar](50),

@MsMessage [text],

@MsSubject [nvarchar](50),

@MsEmail [nvarchar](50),

@GpID [int])

AS

BEGIN TRANSACTION addMess

DECLARE @MsDate [datetime]

SET @MsDate=GETDATE()

INSERT INTO [MessageDb].[dbo].[Message]

([MsName],

[MsMessage],

[MsSubject],

[MsEmail],

[GpID],

[MsDate])

VALUES

(@MsName,

@MsMessage,

@MsSubject,

@MsEmail,

@GpID,

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 534

ASP.NET • Chapter 10 535

@MsDate)

IF @@ERROR <> 0

BEGIN

ROLLBACK TRANSACTION addMess

RETURN

END

COMMIT TRANSACTION addMess

Most of the stored procedures (sprocs) are similar to the previous SQL script,
however, the sprocs for removing messages and message board groups are a little
more involved. Look for the MessageDB.sql file on the CD.To set up the
database on your machine, run the SQL script in Query Analyzer.The file
mbdataaccess.cs contains the following methods:

■ addMessage

■ addResponse

■ addGroup

■ delMessage

■ delResponse

■ delGroup

■ getAllGroups

■ addMod

■ loginDbConn (for moderator login)

■ getAllMess

The code for these methods is all very similar. Here is the AddMessage method:

public void addMessage(string MsName,

string MsMessage,

string MsSubject,

string MsEmail, int GpID)

{

SqlConnection connAddMess = new SqlConnection(this.connection);

SqlCommand cmdAddMess = new SqlCommand("addMessage",connAddMess);

cmdAddMess.CommandType = CommandType.StoredProcedure;

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 535

536 Chapter 10 • ASP.NET

SqlParameter prmMsName = new SqlParameter("@MsName",

SqlDbType.NVarChar, 50);

prmMsName.Direction = ParameterDirection.Input;

cmdAddMess.Parameters.Add(prmMsName);

prmMsName.Value = MsName;

SqlParameter prmMsMessage = new SqlParameter("@MsMessage",

SqlDbType.Text, 500);

prmMsMessage.Direction = ParameterDirection.Input;

cmdAddMess.Parameters.Add(prmMsMessage);

prmMsMessage.Value = MsMessage;

SqlParameter prmMsSubject = new SqlParameter("@MsSubject",

SqlDbType.NVarChar, 50);

prmMsSubject.Direction = ParameterDirection.Input;

cmdAddMess.Parameters.Add(prmMsSubject);

prmMsSubject.Value = MsSubject;

SqlParameter prmMsEmail = new SqlParameter("@MsEmail",

SqlDbType.NVarChar, 50);

prmMsEmail.Direction = ParameterDirection.Input;

cmdAddMess.Parameters.Add(prmMsEmail);

prmMsEmail.Value = MsEmail;

SqlParameter prmGpID = new SqlParameter("@GpID", SqlDbType.Int, 4);

prmGpID.Direction = ParameterDirection.Input;

cmdAddMess.Parameters.Add(prmGpID);

prmGpID.Value = GpID;

connAddMess.Open();

cmdAddMess.ExecuteNonQuery();

connAddMess.Close();

}

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 536

ASP.NET • Chapter 10 537

Now all the data connection code is contained in one file.To access the data,
simply create an instance of the mbdataaccess component and call its methods.This
is exactly like the ASP COM/COM+ scenario, where you create a VB or C++
COM/COM+ object to handle the data source interaction.To see this in action,
see the overview of boardlist (see Table 10.7).

The form depicted in Figure 10.11 is part of boardList.aspx. It contains the
following controls: Textbox, RequiredFieldValidator, RegularExpressionValidator,
CheckBox, Label, and Button.

The following is an example of using the RequiredFieldValidator:

<td align="right">

<asp:RequiredFieldValidator id="reqLogin"

www.syngress.com

Table 10.7 The boardlist Overview

Web Form BoardList.aspx boardlist.aspx.cs

<head>

<Link to stylesheet.css/>

<script=javascript

src=clientfunctions.js/>

</head>

<body>

<form>

<asp:Xml control/>

<user login UI />

</form>

</body>

page_Load

{

Create and display list of Message Boards.

}

Server_event_handlers

{

process logic for login

}

Figure 10.11 Login interface

167_C#_10.qxd 12/5/01 10:31 AM Page 537

538 Chapter 10 • ASP.NET

ControlToValidate="moderatorLogin"

runat="server" ErrorMessage="*"/>

<asp:TextBox id="moderatorLogin" runat="server"/>

</td>

This code uses the RequiredFieldValidator control to make the moderatorLogin
textbox a required field in the form. Setting the RequiredFieldValidator’s
ControlToValidate attribute to moderatorLogin does this. If the field is left blank,
the text contained in the RequiredFieldValidator’s attribute ErrorMessage is displayed
in red.

The login is required to be an e-mail address. In order to validate this field,
you can use the RegularExpressionValidator.This control is placed where you want
the error message to appear if the field does not match the regular expression.
Here is an example of the RegularExpressionValidator control:

<asp:RegularExpressionValidator id="rexLogin"

ControlToValidate="moderatorLogin" runat="server"

ErrorMessage="invalid login"

ValidationExpression="^.*\@.*\..*$"/>

Notice the attribute ControlToValidate, which allows you to place the control
anywhere on the page while validating the textbox moderatorLogin.The
ErrorMessage attribute works exactly the same as its counterpart in the
RequiredFieldValidator.The interesting attribute is ValidationExpression.This field
holds the regular expressions used to validate the contents of moderatorLogin.You
can supply your own regular expression, or in VS.NET, you can choose from a list
of common validation expressions (for more detail on this, see the E-mail sample
application in the “Working with Web Forms” section earlier in this chapter).

Using VS.NET to Validate Form
Input with a Regular Expression
To validate form input with a regular expression using VS.NET, complete the
following steps:

1. Open a Web Form in design mode.

2. From the Web Forms toolbox, drag a textbox control onto the page.

3. From the Web Forms toolbox, drag a RegularExpressionValidator control
onto the page.

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 538

ASP.NET • Chapter 10 539

4. Right-click on the control and select Properties.The Properties
window appears (see Figure 10.12).

5. Click in the field next to ValidationExpression, a little button with a
ellipse on it will appear—click this button.You will be looking at the
regular expression editor dialog (see Figure 10.13).

6. Simply select from the list, enter your own, or edit one from the list and
click OK.

Now, back to the login interface.The validation controls prevent the login
submit from occurring until the validation rules are satisfied. Once the rules are
met, login is enabled. Remember that the checkbox and textboxes are all server

www.syngress.com

Figure 10.12 The VS.NET Properties Window

Figure 10.13 The Regular Expression Editor Dialog

167_C#_10.qxd 12/5/01 10:31 AM Page 539

540 Chapter 10 • ASP.NET

controls.This will give you access to their contents in the server click event of the
button control login.

In VS.NET, the easiest way to generate the code necessary for a server click
event is to double-click on the server button control while viewing it in design
mode.This will generate the necessary references and a method template in the
corresponding code-behind page.

This reference will be added to the page class. It enables you to access this
control’s properties and methods in your code:

protected System.Web.UI.WebControls.Button login;

This will be added to the InitializeComponent method.This registers the event
handler login_Click:

this.login.Click += new System.EventHandler(this.login_Click);

This event template will be added to the bottom of the page class:

private void login_Click(object sender, System.EventArgs e)

{

adminCheckBox is the check box control.You can check its value here, within
the login_Click event handler (method):

if(adminCheckBox.Checked)

{

The site admin is logging in. For simplicity, let’s make the admin login static:

if((moderatorLogin.Text =="sa@site.admin") &&

(moderatorPassword.Text=="password"))

{

//login admin

this.IsAdmin = true;

Session["IsAdmin"] = true;

//re-initalize list

initialize_MessageList();

adminLabel.Text ="administrator: logged in.";

}

else

{

adminLabel.Text = "* invalid

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 540

ASP.NET • Chapter 10 541

admin login *";

}

We cover Initialize_MessageList later.What we want to point out here is the
Label control.This control allows us access to a span tag on the client.This means
that you can pass text, or even HTML, to the page by including it in a string
assigned to the Text property of the Label control.A useful property of this control
is CSSclass.This enables you to assign a Cascading Style Sheet class to the Label.

To get a global instance of the dataaccess object, add the following code to the
variable declaration section at the top of the page class.This is the section where
all the controls are instantiated on the server:

protected mb.components.mbdataaccess grouplist;

This code segment declares a variable grouplist of type mb.components.mbdataac-
cess where mb is my project namespace (it is the name of my Webproject in
VS.NET). Components is the folder containing the file mbdataaccess.cs and the
namespace that contains the class mbdataaccess. Mbdataaccess is the class that con-
tains all the data access methods in mbdataaccess.cs.

In the Page_Load method, add the following:

grouplist = new mb.components.mbdataaccess();

This creates an instance of the mb.components.mbdataaccess object.The object
instance grouplist now has access to all the data access methods.You can use it to
log in the moderator:

string moderatorID =

grouplist.loginDbConn(moderatorLogin.Text, moderatorPassword.Text);

if(moderatorID !="error")

{

Session["moderatorID"] = int.Parse(moderatorID);

adminLabel.Text = "<span

style='color:red'>moderator

logged in";

Now that the moderator is logged in, you can add a link so that the moder-
ator can create new message board groups or message boards:

CreateNew.Text =

"

<a style='color:white'

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 541

542 Chapter 10 • ASP.NET

href='createBoard.aspx?mod="

+ moderatorID + "' target='main'>

create new group";

}

}

}

As moderators create new message boards (handled by a relatively simple page
you can find on the CD: createBoard.aspx), a list of boards is stored in the
database.You can simply retrieve that list on Page_load.There are many ASP con-
trols that can display a list, but the one which gives you the most control over the
HTML rendering is the XML control.This control has two primary attributes:
xmlsource and xsltransform source.There are multiple properties for these two
sources based on the source format: file, string, or DOM.You can set these prop-
erties in the method initialize_Messagelist.The reason this method is called in the
Admin login section is because you will use a different XSLT for admins.The
admin XSLT will enable deleting of groups. By using two different XSLTs, you
can provide different interfaces with different functionality based on user level.

Because you are going to be using XML, you will need to add the following
using directive at the top of the code-behind page to reference the namespace
containing the XML classes:

using System.Xml;

Before you can call initialize_MessageList, you must first get the list from the
database and convert it to XML. Do this in the Page_Load method:

listdoc = new XmlDocument();

Create a new instance of XmlDocument listdoc, which is a global variable
declared in the same section as dataaccess:

listdoc.LoadXml(grouplist.getAllGroups().GetXml());

Using the global dataaccess object grouplist, call the getAllGroups method, which
returns a DataSet object.You can easily convert the DataSet object into an XML-
formatted string by calling its GetXml method.This is then loaded into the
XmlDocument listdoc.

initialize_MessageList is a very simple method. Note that xList is the name of
the XML control.This method will cause the data to be transformed and ren-
dered in the HTML where the control is:

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 542

ASP.NET • Chapter 10 543

private void initialize_MessageList()

{

string xsltSource;

if(this.IsAdmin)

{

xsltSource = "admin_group_list.xslt";

}

else

{

xsltSource = "user_group_list.xslt";

}

xList.Document = listdoc;

xList.TransformSource = xsltSource ;

}

XML and XSLT
Although XSLT is not the primary focus of this book, XMLS and XSLT are very
powerful tools to have in your developer’s toolbag of skills.This section gives a
quick overview of the XML and XSLT file used from this application. Figure 10.14
shows the XML from getAllBoards, and Figure 10.15 shows the XSLT from
user_group_list.xslt as rendered in IE6.

www.syngress.com

Figure 10.14 XML from getAllBoards, Rendered in IE6

167_C#_10.qxd 12/5/01 10:31 AM Page 543

544 Chapter 10 • ASP.NET

The generated HTML is a series of anchor tags with an embedded query string
containing data used by board.aspx to retrieve the correct message board data.
Figure 10.16 shows the HTML produced by the transform. Note that the attribute
target=“main” is a reference to the frame in the frameset with ID=“main”.

Notice that admin_group_list.xslt (see Figure 10.17) is almost identical except
for the extra table cell content in front of the original link.

www.syngress.com

Figure 10.15 user_list.xslt

Figure 10.16 XML XSL/Transform Results

167_C#_10.qxd 12/5/01 10:31 AM Page 544

ASP.NET • Chapter 10 545

In Figure 10.18, you can see the generated HTML. In Figure 10.19, you can
see an extra delete image next to the list items. Clicking on this image will pass
the board ID to the delete page.The delete page has no UI, it simply verifies that
the user is an admin by checking the Session[“IsAdmin”] value, then passes the
board ID to the delete method of the dataaccess component.

You can use one parameterized XSLT for both user and admin, however, that
approach would add complexity to both the XSLT and the code-behind page.

www.syngress.com

Figure 10.17 admin_group_list.xslt

Figure 10.18 XML XSL/Transform Results for Admin

167_C#_10.qxd 12/5/01 10:31 AM Page 545

546 Chapter 10 • ASP.NET

The next page, board.aspx, will display the supplied board XML data based on
the type of user.Table 10.8 is an overview of the structure of this page.

Board receives the ID for the given message board in the query string:

int boardID = int.Parse(Request.QueryString["board"]);

This is used to load the corresponding messages and responses:

DataTable result = dbMethod.getAllMess(boardID);

www.syngress.com

Figure 10.19 boadList.aspx Admin View

Table 10.8 Board Overview

Web Form board.aspx board.aspx.cs

<head>

<Link to stylesheet.css/>

<script=javascript src=

clientfunctions.js/>

</head>

<body>

<form>

<button new message/>

<button new response/>

[<button detect selection/>]

[Moderator | admin]

<asp:Xml control/>

</form>

</body>

page_Load

{

show delete button ?

show respond to message button ?

show group title

store board ID in Session["boardID"]

get list of messages and responses

}

Server_event_handlers

{

if delete enabled. Delete responses

or messages

}

167_C#_10.qxd 12/5/01 10:31 AM Page 546

ASP.NET • Chapter 10 547

When a user clicks on an item, its ID is stored in a hidden field using client-
side JavaScript.The hidden fields in this page are HTML controls:

<input type="hidden" id="selection" runat="server" name="selection">

Just like the Web controls, the HTML controls have their own namespace.To
access this control’s properties in your code-behind page, you need to add a vari-
able to the page class that references a corresponding HTML control on the
ASPX page:

protected System.Web.UI.HtmlControls.HtmlInputHidden selection;

Using the String Builder Class
String concatenation is one of the most expensive operations that you can do on
the server. Personal experience has shown that almost 80 percent of the CPU can
be used while building a large string in a for loop while reading through a
Recordset—let’s just say that it’s not a best practice. For you ASP writers, if you are
using JavaScript, use an array and dynamically add to the array, when you are
done call array.join(‘’) or array.toString(). For you VBScript writers, the solution is
less clear, but dynamic arrays are definitely a headache (best of luck.) So how do
you do it with .NET? .NET has a class specifically designed for this:The
StringBuilder class. In order to use the StringBuilder class, you must include a refer-
ence to System.Text.This is how it would look in our code-behind page:

Using System.Text;

.

.

StringBuilder Sb = new StringBuilder();

Sb.Append("stuff to concatenate ");

Sb.Append("more stuff to concatenate");

Response.Write(Sb.toString());

The result would be this:

stuff to concatenate more stuff to concatenate

In board.aspx.cs, the message and response data is returned as one long
XML formatted string split up over multiple rows in a DataTable.The following
code loops through the columns and rows of the DataTable while concatenating
one large string.The string is then loaded into an XmlDocument object for later
processing:

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 547

548 Chapter 10 • ASP.NET

#//create an instance of our dataaccess object

dbMethod = new mb.components.mbdataaccess();

DataTable result = dbMethod.getAllMess(boardID);

#//create an instance of the string builder object

StringBuilder xstr = new StringBuilder();

xstr.Append("<messages>");

for(int i=0; i < result.Rows.Count; i++)

{

for(int j=0; j < result.Columns.Count; j++)

{

xstr.Append(result.Rows[i][j]);

}

}

xstr.Append("</messages>");

#//load the resulting string into the DOM

messagedoc.LoadXml(xstr.ToString());

The resulting XML should look something like Figure 10.20.

www.syngress.com

Figure 10.20 Sample XML Data Result

167_C#_10.qxd 12/5/01 10:31 AM Page 548

ASP.NET • Chapter 10 549

The XML data was created using the MS SQL FOR XML AUTO clause.The
table column headers become attribute names within an XML element; in this
case, the element name chosen by SQL was m. Notice also that all responses to
any given message become a child element with the name r.You could have
chosen to convert the attributes into actual elements themselves by using FOR
XML AUTO, ELEMENTS instead, however, the structure is what matters, and
what you have will work fine.

The XSLT for this XML data set is a little longer, but the level of complexity
is about the same as those shown earlier in the chapter.The XSLT renders
HTML that is tied to the classes in messageBoard.css, along with client-side
JavaScripts that enable selection, as well as expand and collapse capabilities.You
can find the XSLT, message_board_list.xslt, on the disk.You can find all the code
necessary to build this project on the CD.

Building a Shopping Cart with SQL
In ASP 3.0, the Session and Application objects suffered from severe limitations,
including data loss with server crashes and the inability to maintain state across
servers in server gardens and server farms. Unfortunately, some of these limita-
tions still exist in ASP.NET. However, Session no longer loses data with server
crashes and can work effectively across servers in server gardens and farms
(MSDN recommends that developers avoid storing large amounts of data in a
single Session variable). Application is still limited to one process, so it can be a
limiting factor when addressing scalability.

So what does it all mean? It means that you have to balance your server
resources and make tradeoffs. Using an Application variable to store a large static
dataset is efficient; from the data server view there is only one read, all subsequent
requests for data would come from an in-process object rather than the database.
This would also increase page performance for the same reason; however, this
does use more IIS resources. On the other hand, the Application object does not
work across multiple servers; to enable this scenario, you would increase database
access, thus the load on the data server. MSDN also recommends using a database
to store session information if the site wants to employ personalization or future
data mining of persistent data gathered from tracking their users actions while on
the site.

Each choice has limits and involves tradeoffs; for the sample application, you
will be persisting the data in an Application-level variable, and you will be using
Session variables to maintain state in some instances.You need to be aware, however,

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 549

550 Chapter 10 • ASP.NET

that you can use other approaches to solve this problem, including solutions that
do not use Application or Session.

In this section, you will build a shopping cart (see the UI in Figure 10.21).
The SimpleCart application will contain a catalog of items that can be displayed
five at a time (Item [1] in Table 10.9), the user will be able to move forward and
back through the catalog (Item [2]). Users will have the ability to select items
from the catalog and add it to their shopping carts (Item [3]). Users will also have
the ability to view (Item [4]) the contents of their shopping carts, remove items,
clear their carts, or check out.To see a mapping of these requirements to the cor-
responding pages and methods, see Table 10.9.You can find all the code for this
project on the CD—see the page column of Table 10.9 for the filenames.

Table 10.9 SimpleCart Processes Overview

Process Dependency Function Page

Display Catalog Stored Procedure Returns list of Page1.aspx
(sproc): all books [1]
getAllBooks

www.syngress.com

Figure 10.21 SimpleCart UI

Continued

167_C#_10.qxd 12/5/01 10:31 AM Page 550

ASP.NET • Chapter 10 551

Component class Handles data inter- Dataaccess.cs
action with SQL [1]

Component class Handles all catalog Catalog.cs
interaction [1] [2]

XSLT for catalog Converts data to Catalog.xslt
data HTML [1]

Display Cart Component class Handles all cart XmlShoppingCart.cs
interaction [3]

XSLT for cart data Converts data to Cart.xslt
HTML [4]

Notice the simple schema for this project (see Figure 10.22). It also has only
one stored procedure that returns all books.You will examine the three compo-
nents in the following sections:

■ dataaccess.cs

■ XmlShoppingCart.cs

■ catalog.cs

Creating dataaccess.cs
The dataaccess.cs file is a simple component that contains only one method—
getAllBooks().This method contains all the logic necessary to call the stored proce-
dure, retrieve all books, and return a DataSet. You can find this file in its entirety
on the CD (see dataaccess.cs in the Components folder of the application):

using System;

using System.Collections;

using System.ComponentModel;

www.syngress.com

Table 10.9 Continued

Process Dependency Function Page

Figure 10.22 Database Schema for SimpleCart

167_C#_10.qxd 12/5/01 10:31 AM Page 551

552 Chapter 10 • ASP.NET

using System.Diagnostics;

You will need to add these two namespaces to the file to provide data access
functionality:

using System.Data;

using System.Data.SqlClient;

namespace simpleCart.components

{

public class dataaccess

{

Set the connection string to connect to the SQL data store:

private string connection = "Persist Security Info=False;

User ID=[user name]; password=[password];

Initial Catalog=shopDb;Data Source=[server name]";

Create the method getAllBooks; this method will connect to the database and
call the stored procedure GetAllBooks:

public DataSet getAllBooks()

{

SqlConnection conn =

new SqlConnection (this.connection) ;

conn.Open () ;

Create the command object to reference the stored procedure:

SqlCommand cmd =

new SqlCommand ("GetAllBooks" , conn) ;

cmd.CommandType = CommandType.StoredProcedure;

Here you will use the SQL data adapter so that you can retrieve the data
returned by getAllBooks and store it in a DataSet:

SqlDataAdapter da = new SqlDataAdapter (cmd) ;

DataSet ds = new DataSet () ;

da.Fill (ds , "Books") ;

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 552

ASP.NET • Chapter 10 553

Next, close the connection to the database and return the resulting DataSet:

conn.Close();

return ds;

}

}

}

In this section, you created the component that you will use to retrieve the
data from the database in a dataset. In the next section, you will create the com-
ponent that will function as the shopping cart.

Creating XmlShoppingCart.cs
This component is a wrapper component for XML. It provides add, remove,
view, and clear functionality.The only catch is that items added to the cart must
be XmlNodes from Catalog or must adhere to the same document structure.You
can find this file in its entirety on the CD (see XmlShoppingCart.cs in the com-
ponents folder of the application):

using System;

Add support for XML by including the XML namespace:

using System.Xml;

namespace simpleCart.components

{

Define the shopping cart class:

public class xmlShoppingCart

{

private XmlDocument myCart;

private string elementType;

This initializes the cart. On page_ load, the cart can be initialized with an
existing xmlCart string.This enables client caching of the cart:

public void initCart(string dataSource, string elementType)

{

this.elementType = elementType;

myCart = new XmlDocument();

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 553

554 Chapter 10 • ASP.NET

if(dataSource != null)

{

myCart.LoadXml(dataSource);

}

else

{

//load default cart root

myCart.LoadXml("<shopcart-items></shopcart-items>");

}

}

This method handles adding an item to the cart by importing the node from
the catalog XML data:

public string addItem2Cart(XmlDocument item)

{

try

{

XmlNode newItem =

myCart.ImportNode(item.DocumentElement.FirstChild, true);

myCart.DocumentElement.AppendChild(newItem);

return "Success";

}

catch(Exception e)

{

return e.ToString();

}

}

This method removes an item from the cart based on its ID value using the
removeChild method of the XML DOM object:

public string removeItemFromCart(string idvalue,

string attributename)

{

// example: XmlNode curnode =

//myCart.SelectSingleNode("//Books[isbn='0012-456-789x']");

string XPathQuery = "//" + this.elementType + "[" +

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 554

ASP.NET • Chapter 10 555

attributename + "='" + idvalue + "']";

XmlNode curnode = myCart.SelectSingleNode(XPathQuery);

try

{

myCart.DocumentElement.RemoveChild(curnode);

return "Success";

}

catch(Exception e)

{

return e.ToString();

}

}

This method empties the cart by removing all the child nodes:

public void clearCart()

{

XmlElement root = myCart.DocumentElement;

root.RemoveAll(); //removes all child nodes

}

This method returns the current contents of the cart as an XML DOM
object:

public XmlDocument getCartDescription()

{

return myCart;

}

This method returns the current contents of the cart as an XML formatted
string:

public string getCartDescriptionString()

{

return myCart.OuterXml;

}

}

}

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 555

556 Chapter 10 • ASP.NET

So far, you have built the component that gets the data from the database and
the component that handles the cart operations. Next, you will create the object
that handles displaying the catalog incrementally: catalog.cs.

Creating catalog.cs
This is the largest and most complex of the components. On initialize, it loads
and stores a DataSet object. Catalog adds a new table to the DataSet, which con-
tains metadata. Catalog is able to return the data as XmlDocuments by range.You
can find this file in its entirety on the CD (see catalog.cs in the Components
folder of the application).

This class makes extensive use of DataSet operations.You will look at creating
DataRows, DataTables, DataViews, and DataSets.You will also look at creating new
DataSets based on the results of filtering your primary dataset:

using System;

You will need to add the Data namespace in order to make use of the
DataSet and its related object:

using System.Data;

namespace simpleCart.components

{

/// <summary>

/// bookCatalog acts as cached datasource.

/// Enables retrieval of data in data ranges

/// </summary>

Here you begin creating the catalog object:

public class bookCatalog

{

private DataSet dsAllBooks;

/// <summary>

/// Initalizes bookCatalog by reading in a dataset

/// </summary>

/// <param name="ds"></param>

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 556

ASP.NET • Chapter 10 557

First, load all the data returned by SQL into your Catalog object, this will
enable you to filter the data and return the appropriate subset:

public void initCatalog(DataSet ds)

{

dsAllBooks = ds;

int recordCount = dsAllBooks.Tables[0].Rows.Count;

try

{

dsAllBooks.Tables.Add(

createSummaryTable(0, recordCount-1, recordCount));

}

catch(Exception e)

{

string temp = e.ToString();

//this fails when attempting to add the table twice

}

}

/// <summary>

/// Creates a table that is added to the DataSet.

/// This table contains some metadata

/// about the dataset returned.

/// </summary>

/// <param name="startPos"></param>

/// <param name="range"></param>

/// <param name="RecordCount"></param>

/// <returns>Returns a DataTable containing Metadata</returns>

This method takes metadata about the entire dataset and adds it to a new
DataTable: dtSummary.This DataTable is used by other methods of this
object/class:

private DataTable createSummaryTable(int startPos, int range,

int RecordCount)

{

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 557

558 Chapter 10 • ASP.NET

Create the new table:

DataTable dtSummary = new DataTable("Summary");

DataRow drSummary;

Add new columns to the table:

dtSummary.Columns.Add(

new DataColumn("RecordCount", typeof(int)));

dtSummary.Columns.Add(

new DataColumn("FirstItemIndex", typeof(int)));

dtSummary.Columns.Add(

new DataColumn("LastItemIndex", typeof(int)));

Create a new row and add the data to its columns:

drSummary = dtSummary.NewRow();

drSummary["RecordCount"] = RecordCount;

drSummary["FirstItemIndex"] = startPos;

drSummary["LastItemIndex"] = startPos + range;

Add the new row to the new table:

dtSummary.Rows.Add(drSummary);

Return the new table containing the supplied data:

return dtSummary;

}

/// <summary>

/// This Method returns the input DataSet

/// </summary>

/// <returns>DataSet containing: DataTable books</returns>

public DataSet catalog()

{

return dsAllBooks;

}

/// <summary>

/// Specialized interface to catalogRangeByCategory.

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 558

ASP.NET • Chapter 10 559

/// This Method returns all the data for only the given book

/// </summary>

/// <param name="book_isbn"></param>

/// <returns>DataSet containing: DataTable books

///& DataTable "Summary"</returns>

public DataSet catalogItemDetails(string book_isbn)

{

return catalogRangeByCategory(-1, -1, book_isbn);

}

/// <summary>

/// Specialized interface to catalogRangeByCategory.

/// This Method returns all the books within the given range

/// </summary>

/// <param name="startPos"></param>

/// <param name="range"></param>

/// <returns></returns>

public DataSet catalogRange(int startPos, int range)

{

return catalogRangeByCategory(startPos, range, null);

}

This function filters the data by creating a new DataView. The resulting data
is added to a new table; these new tables along with a new summary table are
added to a new DataSet.This new DataSet is returned to the caller:

protected DataSet catalogRangeByCategory(int startPos, int range,

string book_isbn)

{

DataSet dsBookRange;

DataTable dtBooks;

DataTable dtTemp;

string strExpr;

string strSort;

DataRow[] foundRows;

int endPos;

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 559

560 Chapter 10 • ASP.NET

int RecordCount;

DataViewRowState recState;

Create a local copy of the table Books:

dtTemp = dsAllBooks.Tables["Books"];

Copy the table structure of table Books into a new DataTable object:

dtBooks = dtTemp.Clone();//create Empty Books Table

Create the appropriate data filter:

if(book_isbn != null)

{

//return a single item

strExpr = "isbn='" + book_isbn + "'";

}

else

{

strExpr = "";

}

strSort ="title";

recState = DataViewRowState.CurrentRows;

Filter the data storing the results in an array:

foundRows = dtTemp.Select(strExpr, strSort, recState);

Grab the appropriate range of the selected data:

RecordCount = foundRows.Length;

if((startPos == -1) && (range == -1))

{

startPos = 0;

range = RecordCount;

}

if((startPos + range) > RecordCount)

{

endPos = RecordCount;

}

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 560

ASP.NET • Chapter 10 561

else

{

endPos = startPos + range;

}

Fill the new DataTable with the selected data subset:

for(int i = startPos; i < endPos; i ++)

{

dtBooks.ImportRow((DataRow)foundRows[i]);

}

Create a new DataSet and add the newly filled DataTable:

dsBookRange = new DataSet();

dsBookRange.Tables.Add(dtBooks);

Add a summary table to the new DataSet:

// add a summary table to the dataset

dsBookRange.Tables.Add(

createSummaryTable(startPos, range, RecordCount));

Return the newly created DataSet:

return dsBookRange;

}

}

}

If you look closely at the method catalogRangeByCategory, you will get a
glimmer of how powerful DataSets are.The DataSet is the successor to the ADO
2.6 Recordset object; it can actually store the entire structure of a multitable rela-
tional database and all its data.You can perform query and filter operations on it
almost like a real relational database. It is also one of a few data types that can be
sent to and from Web Services.

When the data source doesn’t change often and is used primarily as read-
only, it makes sense to cache the data in a DataSet at the application level.What
does that mean? The Application_Start method within the Global.asax file is exe-
cuted when the first user accesses the site; the application does not end until
roughly 20 minutes after no user accesses the site.This scenario is depicted in

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 561

562 Chapter 10 • ASP.NET

Figure 10.23.The data source is accessed once during the application lifetime.
The result is cached as a DataSet, and all instances of simpleCart that live during
the application retrieve their data from the application variable DataSet,
Application[“catalog”].

You can set this up in the Global.asax file in the Application_start method:

protected void Application_Start(Object sender, EventArgs e)
{

simpleCart.components.dataaccess dbMethod;

dbMethod = new simpleCart.components.dataaccess();

Application["catalog"] = dbMethod.getAllBooks();

}

Next, you will create the page that will host the controls: page1.aspx.To see
an overview of what is accomplished on this page see Table 10.10.You can find
the code for this page on the CD (Page1.aspx and Page1.aspx.cs).

www.syngress.com

Figure 10.23 Application Level Data Caching

Application Scope

onStart
Application["catalog"] = (DataSet)getAllBooks

Session Scope

Instance of
simpleCart

Session Scope

Instance of
simpleCart

Session Scope

Instance of
simpleCart

Session Scope

Instance of
simpleCart

Session Scope

Instance of
simpleCart

Data

DataAccess Component

getAllBooks

167_C#_10.qxd 12/5/01 10:31 AM Page 562

ASP.NET • Chapter 10 563

In Page_Load, you create instances of catalog and cart:

dbMethod = new simpleCart.components.dataaccess();

BookList = new simpleCart.components.bookCatalog();

BookCart = new simpleCart.components.xmlShoppingCart();

showCatalog(); //initialize catalog

showCart();

In Page1.aspx, you have a collection of hidden controls:

<div style="VISIBILITY: hidden">

<asp:textbox id="addItem" runat="server" AutoPostBack="True" />

<asp:TextBox id="removeItem" runat="server" AutoPostBack="True"/>

www.syngress.com

Table 10.10 Page1 Overview

Web Form Page1.aspx Page1.aspx.cs

<head>

<client-script functions/>

</head>

<body>

<form>

<asp:Xml Catalog/>

<asp:Xml Cart/>

<asp:Label feedback/>

<hidden text server controls/>

</form>

</body>

page_Load()

{

create instance of dataaccess,

catalog, and cart

show catalog

show cart

case: add

update cart

show cart

case: remove

update cart

show cart

case: checkout

update cart

show cart

}

show catalog()

show cart ()

167_C#_10.qxd 12/5/01 10:31 AM Page 563

564 Chapter 10 • ASP.NET

<asp:textbox id="firstRecord" runat="server" AutoPostBack="True"/>

<asp:textbox id="lastRecord" runat="server" AutoPostBack="True"/>

<asp:textbox id="direction" runat="server" AutoPostBack="True" />

<asp:textbox id="recordCount" runat="server" AutoPostBack="True"/>

<asp:TextBox id="Ready4Checkout" runat="server"

AutoPostBack="True"/>

</div>

OnLoad (in the browser), firstRecord, lastRecord, and recordCount TextBox values
are populated by client-side JavaScript.As the user makes selections, the other
fields are also populated by client-side JavaScript.Table 10.11 shows the relation
of user actions on the values of these hidden fields.

Table 10.11 Effect of Client Events on Hidden Field Values

User Action Result

Click Add AddItem.value is set to the books ID.
RemoveItem.value is cleared.
Form is submitted.

Click Next Direction.value is set to “next”.
Form is submitted.

Click Previous Direction.value is set to “previous”.
Form is submitted.

In showCatalog method, you check the values of these hidden fields to deter-
mine what range of data needs to be returned from the catalog object.This data
is used as the document source in the XML control—catalog:

string prevNext = direction.Text;

// "previous" or "next"

int totalRecords = int.Parse(recordCount.Text);

// number of records from previous load

int prevFirst = int.Parse(firstRecord.Text);

// first record # from previous load

int prevLast = int.Parse(lastRecord.Text);

// last record # from previous load

int range = prevLast - prevFirst;

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 564

ASP.NET • Chapter 10 565

switch(prevNext)

{

case "previous":

{

if(prevFirst <= range)

{

xstrBooklist = BookList.catalogRange(0,range).GetXml();

}

else

{

if(range != defaultRange) range = defaultRange;

xstrBooklist = BookList.catalogRange(

(prevFirst-range-1), range).GetXml();

}

}break;

case "next":

{

if((prevLast + range) >= totalRecords)

{

int nextRange = totalRecords-prevLast-1;

xstrBooklist = BookList.catalogRange(

prevLast+1, nextRange).GetXml();

}

else

{

if(range != defaultRange) range = defaultRange;

xstrBooklist = BookList.catalogRange(

prevLast+1, range).GetXml();

}

}break;

default: xstrBooklist =

BookList.catalogRange(0,this.defaultRange).GetXml();

break;

}

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 565

566 Chapter 10 • ASP.NET

Load the result into an XmlDocument object; load the XSL/Transform file; set
the properties of the asp:Xml control for rendering:

catalogContent.LoadXml(xstrBooklist);

catalogDisplay.Load(Server.MapPath("catalog.xslt"));

catalog.Document = catalogContent;

catalog.Transform = catalogDisplay;

Figure 10.24 depicts an example of the XML source returned by BookList.

You can find the XSLT used to transform the data on the CD (look for
catalog.xslt) Figures 10.25 and Figure 10.26 show the HTML produced by
catalog.xslt.

Figure 10.27 shows a cart containing three books. Note that the structure of
the XML is almost identical to that shown in Figure 10.24.This is because
Cart.addItem2Cart simply copies the node from the XML data source (catalog).

The XSLT for displaying the cart data is a bit more complex than some of
the other XSLT shown; it displays the cart data in a table and performs math
operations.The filename is cart.xslt—you can find it on the CD.

www.syngress.com

Figure 10.24 BookList Sample Data

167_C#_10.qxd 12/5/01 10:31 AM Page 566

ASP.NET • Chapter 10 567

www.syngress.com

Figure 10.25 HTML Produced by catalog.xslt

Figure 10.27 Sample Cart Containing Three Books

Figure 10.26 HTML Produced by catalog.xslt and Rendered in IE6

167_C#_10.qxd 12/5/01 10:31 AM Page 567

568 Chapter 10 • ASP.NET

So how does cart work? Recall that you store the selected operation in
hidden controls on the page. In ShowCart, you initialize the cart to the value of
Session[“cart”].The first time the page loads, this Session variable is null.When you
perform any operations, such as Add, Remove, or Clear, you update this Session
variable so that the cart’s state is current:

private void Page_Load(object sender, System.EventArgs e)

{

BookList = new simpleCart.components.bookCatalog();

BookCart = new simpleCart.components.xmlShoppingCart();

showCatalog(); //initialize catalog

showCart(); //initialize cart

if(addItem.Text != null && addItem.Text !="")

{

//add item isbn to cart

XmlDocument newBook = new XmlDocument();

newBook.LoadXml(

BookList.catalogItemDetails((string)addItem.Text).GetXml());

BookCart.addItem2Cart(newBook);

//update Session variable that holds cart state

Session["myShoppingCart"] = BookCart.getCartDescriptionString();

//rewrite cart to page

showCart();

}

if(removeItem.Text != null && removeItem.Text != "")

{

//remove item isbn from cart

BookCart.removeItemFromCart(removeItem.Text, "isbn");

//update Session variable that holds cart state

Session["myShoppingCart"] = BookCart.getCartDescriptionString();

//rewrite cart to page

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 568

ASP.NET • Chapter 10 569

showCart();

}

if(Ready4Checkout.Text == "true")

{

//(1) code to login customer could go here

//(2) code to process order could go here

//(3) build the feedback table

XmlDocument myOrder = BookCart.getCartDescription();

StringBuilder feedback = new StringBuilder();

feedback.Append("<table border='1' cellspacing='0'

bordercolor='silver' width='300px' bgcolor='#ffffff'

style='margin:3px'>");

feedback.Append("<tr><td colspan=2 bgcolor='silver'>

Thank you for your order. The following items are being

shipped to you:</td></tr>");

XmlNodeList Books = myOrder.SelectNodes("//Books");

for(int i=0; i < Books.Count; i++)

{

string title =

Books.Item(i).SelectSingleNode("title").InnerText;

string price =

Books.Item(i).SelectSingleNode("price").InnerText;

feedback.Append("<tr><td style='font-size:8pt'>");

feedback.Append(title);

feedback.Append("</td><td>");

feedback.Append(price);

feedback.Append("</td></tr>");

}

feedback.Append("</table>");

lblFeedBack.Text = feedback.ToString();

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 569

570 Chapter 10 • ASP.NET

//(4) clear the cart

BookCart.clearCart(); // empty virtual cart

showCart(); // reinitialize the cart

Session["myShoppingCart"] =

BookCart.getCartDescription().OuterXml;

// update server variable to prevent refilling of cart

Ready4Checkout.Text = "false";

}

}

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 570

ASP.NET • Chapter 10 571

Summary
In this chapter, you have worked with the ASP.NET architecture,Web Forms,
DataSets, and DataConnections with ADO.NET.You have worked with many of
the ASP.NET UI controls, including: Button, TextBox, CheckBox, RadioButton,
Label, and Xml.You have worked through examples using the ASP.NET validation
controls, including the asp:RegularExpressionValidator and the
asp:RequiredFieldValidator.You have also worked with numerous ASP.NET Server
classes, including the following:

■ System.Data Namespace ADO.NET DataSets and DataTables,
SqlCommand, SqlDataAdapter

■ System.Web.Mail namespace SmtpMail

■ System.Xml namespace XmlDocument, XmlAtrribute, XmlNode

■ System.Text namespace StringBuilder

■ System.IO namespace StreamWriter

By examining real-world examples, you can see the potential of ASP.NET
and the .NET Framework as viable solutions architecture.ASP.NET will take
Web development and Web applications programming to a new level, providing a
robust and scalable multideveloper platform.

Solutions Fast Track

Introducing the ASP.NET Architecture

ASP.NET architecture enables rapid prototyping of cross-platform
scalable applications.

A Web client requests a Web Form (ASPX) resource that is delivered
through IIS combining all additional resources, which may include a
database,Web Service, COM component, or a component class.All of
these are delivered through a compiled assembly (DLL) from the Web
application.

Each of the page types (ASPX,ASCX,ASMX, and ASAX) can have a
code-behind page where program logic can be stored.

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 571

572 Chapter 10 • ASP.NET

You can set session- and application-level variables within the
Global.asax page, in the Application_Start and Session_Start methods.You
can run the Global.asax file across a Web farm of servers.

Working with Web Forms

Web Forms (ASPX pages) are the replacement for ASP pages in
ASP.NET.

All controls and UI functionality will be placed within Web Forms.

Web Forms inherit all the methods and properties of the Page class,
which belongs to the System.Web.UI namespace.

You can add three main sets of controls to your Web Form: HTML
server controls,Web server controls, and validation controls.

Working with ADO.NET

ADO.NET is a worthy successor to ADO 2.6; it contains all the features
of its predecessor but with built-in support for XML.

ADO.NET DataSets can cache an entire SQL database structure,
including relations and constraints along with data.You can store
DataSets at session or application level, reducing the load from the
database server.

ADO.NET DataSets are one of the few complex objects that you can
pass to and from Web Services because they can be represented as an
XML file with an embedded XSD schema.

www.syngress.com

167_C#_10.qxd 12/5/01 10:31 AM Page 572

ASP.NET • Chapter 10 573

Q: How do I set up my project to load only Flow Layout instead of Grid?

A: In your Solution Explorer, select the menu option Properties; when the
solution is highlighted, select Environment and then choose Flow Layout.

Q: Can I set up VS.NET to display in Netscape?

A: Yes, in the same Properties window for the solution, select Script for
Netscape 3.0.

Q: When I deploy my ASP.NET project, I do not see any of the .cs code-behind
pages, why is that?

A: They are compiled into the DLL and stored in the bin directory of the Web
root.

Q: I want to turn off word complete in my text editor, is that possible?

A: Yes—choose Tools | Options | Text editors | HTML; you will be able
to uncheck that option in the dialog box.

Q: Why must I use the SQLClient class when working with SQL as opposed to
using the OLEDB class?

A: The SQL class has been optimized to work with SQL Server to provide per-
formance gains over the OLE DB.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

167_C#_10.qxd 12/5/01 10:31 AM Page 573

167_C#_10.qxd 12/5/01 10:31 AM Page 574

Web Services

Solutions in this chapter:

■ The Case for Web Services

■ Web Service Standards

■ Working with Web Services

■ Advanced Web Services

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 11

575

167_C#_11.qxd 12/5/01 10:50 AM Page 575

576 Chapter 11 • Web Services

Introduction
The growth of the Internet demands that businesses provide clients with a better,
more efficient user experience. Existing technologies have made it very difficult
to make applications communicate with each other across businesses.The varied
resources used, such as operating systems (OSs), programming languages and
object models, pose big challenges to application integrators.

Web Services have been created to solve the interoperability of applications
across operating systems, programming languages, and object models.Web
Services can achieve this by relying on well supported Internet standards, such as
Hypertext Transfer Protocol (HTTP) and Extensible Markup Language (XML).

In this chapter, we tell you why Web Services are an important new develop-
ment in the area of Internet standards, and what business problems they address.
We talk about the Simple Object Access Protocol (SOAP), which lets you
exchange data and documents over the Internet in a well-defined way, and
related standards to describe and discover Web Services. Finally, we cover tech-
niques for error handling and state management and discuss how Web Services
integrate with the Microsoft .NET platform.

The Case for Web Services
In a broad sense,Web Services may be defined as “Internet-based modular appli-
cations that perform specific business tasks and conform to a specific technical
format,” to quote Mark Colan from IBM. If you accept this definition, you may
have very well already developed a number of Web Services. However, the crux
of this definition is the “specific technical format.” Similar to the way a network
becomes more and more useful with the number of systems participating on that
network, data interchange between those systems becomes more and more pow-
erful as the interchange conforms to a common format. Everybody can come up
with their own protocols to exchange data, and in the past, many people indeed
have designed such protocols, but to make distributed application development a
reality and have it be truly useful, clearly a common, open, standards-based, uni-
versally adopted mechanism needs to be agreed upon.And this is where the more
narrow definition of a Web Service comes in:A Web Service is a Web application
using the SOAP protocol.

www.syngress.com

167_C#_11.qxd 12/5/01 10:50 AM Page 576

www.syngress.com

The Role of SOAP
SOAP stands for Simple Object Access Protocol. SOAP was designed with the fol-
lowing three goals in mind:

■ It should be optimized to run on the Internet.

■ It should be simple and easy to implement.

■ It should be based on XML.

SOAP is an open Internet standard. It was originally proposed by IBM,Ariba,
and Microsoft, and the W3C has taken on the initiative to develop it further.The
current version is SOAP 1.1 (April 2000).You can find the specifications at
www.w3.org/TR/SOAP.Work is currently under way on version 1.2 (see the
W3C working draft at www.w3.org/TR/soap12), which is, in our opinion, only
a minor revision.You can join the authoritative discussion list for SOAP by going
to http://discuss.develop.com/soap.html.

SOAP, somewhat contrary to its name, is fundamentally just a protocol that
lets two systems—a client and a server—exchange data. Of course, the client
system may be, and often is, just another server machine, not a human end user.

Although the SOAP specification was written in such a way as to be imple-
mented on a variety of Internet transport protocols, it is most often used on top
of HTTP. In our discussions that follow, when we talk about SOAP and Web
Services, we always mean SOAP over HTTP (or Secure HTTP [HTTPS], for
that matter).

SOAP supports two message patterns: the first is a simple one-way exchange,
where a client issues a request against a server, and will not receive an answer
back.We focus in this chapter on the second message pattern, which consists of a
request-response interaction, familiar to all Web developers.A client issues an
HTTP request for a resource on a server, and the server replies by sending an
HTTP response. SOAP adds to that a standard way to pass data back and forth,
including a standard way to report errors back to the client. In traditional Web
applications, the only thing that’s standardized in a Web request is the URL, the
HTTP verb (GET, PUT, and so on), and some of the HTTP headers. Everything
else is specific to the application at hand, particularly as it relates to the passing of
application-specific data and data structures.A client can, say, POST additional
information using the form submission mechanism. But imagine that you’d like
to post a series of floating point numbers to a server. How would you do that?
How would you ensure that the server understands what you’re sending it? How

Web Services • Chapter 11 577

167_C#_11.qxd 12/5/01 10:50 AM Page 577

578 Chapter 11 • Web Services

would you ensure that the data goes to the right place on the server? SOAP
addresses these challenges by defining the following:

■ A mechanism to pass simple and structured data between clients and
servers using a standard XML syntax

■ A mechanism to call objects running remotely on a server

SOAP has two faces. On the one hand, stressing the second item in the pre-
ceding list, you can look at it as a remote procedure call (RPC) protocol familiar
to anybody who has worked with distributed object models in the past. On the
other hand, putting more emphasis on the first item, you can consider it a stan-
dardized way to interchange (XML) documents.

However, SOAP being a “simple” protocol, it does not by itself define a
number of added-value mechanisms familiar to application developers using not-
so-simple protocols (such as Common Object Request Broker Architecture
[CORBA] or Component Object Model [COM]/Distributed COM [DCOM]):

■ Security

■ Transaction management

■ Guaranteed delivery

Why SOAP?
SOAP is not the first attempt at standardizing on an RPC and document inter-
change mechanism, and it may not be the last one. In the RPC area, previous
attempts include CORBA and COM/DCOM, which originated in the client-
server world, but both of which now include functionality to work more less well
on the Internet, and David Winer’s XML-RPC (see www.xmlrpc.com/spec/),
which was designed from the ground up to work over the Internet. In the docu-
ment area, we have seen EDI come (and go?).What makes SOAP important and,
quite frankly, remarkable, is that it is supported by all major players in the business,
including, from the very beginning, IBM and Microsoft, and more recently, Sun
Microsystems.The same universal support is true of a number of related standards,
such as Web Services Description Language (WSDL) and Universal Description,
Discovery, and Integration (UDDI), which we discuss later in this chapter.

As Microsoft developers, we should take notice of the fact that the new
Microsoft .NET Framework is currently the only system platform that was
designed from the ground up based on Web Services and SOAP.Web Services on

www.syngress.com

167_C#_11.qxd 12/5/01 10:50 AM Page 578

Web Services • Chapter 11 579

the Microsoft platform are not a mere concept, but they are real, and they are
here, today (in Beta, anyway…).

Why Web Services?
The recent emphasis on Web Services denotes a noteworthy shift in application
development: away from insular, monolithical solutions and towards truly dis-
tributed, modular, open, interenterprise Internet-based applications.The hope
certainly is that Web Services will do to enterprise applications what the World
Wide Web did to interactive end user applications. In our opinion, then,Web
Services are primarily a technique that allows disparate server systems to talk to
each other and exchange information, and maybe less a mechanism directly
encountered by human end users, for which the Web and the traditional Web
browser remains the primary data access point. If you have ever been involved in
trying to integrate different systems from different vendor companies, you know
how painful an endeavor this can be. Integrating one system with one other
system, although often very complex, can usually be done somehow, but inte-
grating many systems with many other systems is really beyond the capabilities of
any of the current middleware solutions, particularly if done intercompanywide
over public networks. SOAP and Web Services offer hope here, because that
technique is simple, and because it is a universally accepted standard.

We should all imagine a whole new class of applications appearing on the
horizon very soon: massively distributed applications, integrating data from many
sources from many different systems all over the world, very fault-tolerant, and
accessible at all times from anywhere. One of these new applications is slated to be
Microsoft’s strategic priority .NET myServices (previously code-named Hailstorm),
which, if fully realized, may very well replace their desktop operating systems.

The World of Web Services
Web Services are useful only if clients can find out what services are available in
the first place, where to locate them, and how exactly those services can be
called.A number of initiatives are under way driven by the major vendors in the
Web Service area to address those application development and business needs.
Two of the more important ones, both of which are supported by the Microsoft
.NET Framework and fully integrated into Visual Studio.NET Beta 2, are the
following:

www.syngress.com

167_C#_11.qxd 12/5/01 10:50 AM Page 579

580 Chapter 11 • Web Services

■ Web Service Description Language (WSDL) An XML format to
describe how a particular Web Service can be called, what arguments it
takes, and so on.

■ Universal Description, Discovery, and Integration (UDDI) A
directory to publish business entities and the Web Services they offer,
and where you can find those services. UDDI is implemented as a Web
Service itself.

Additionally, there’s DISCO, a mechanism based on XML developed by
Microsoft to dynamically discover Web Services running on a particular machine.
Putting everything together, a picture of the world of Web Services starts to
evolve that may look like Figure 11.1.

WARNING

A variety of groups with Microsoft have implemented the SOAP stan-
dard. Apart from the .NET Web Services group, these include, among
others, .NET Remoting, Windows XP Message Queue, SOAP Toolkit (Web
Services based on COM), and BizTalk Server.

Apparently, these groups all have their own code bases, and the var-
ious SOAP implementations differ in their level of support of the stan-
dard. For instance, the .NET Remoting group implemented “jagged” and
sparse arrays, whereas the .NET Web Services did not. Another difference
is the support of MIME-encoded attachments. Be aware then when
you’re thinking about reusing SOAP code or code designs from one
Microsoft product to another that you may have to carefully investigate
the details of what exactly is implemented in the various products.

www.syngress.com

Figure 11.1 Web Service Standards

Lin
k

to
 D

isc
ov

er
y D

oc
um

en
t

Lo
ca

te
a S

er
vic

e

Re
tu

rn
 Se

rv
ice

 R
es

po
ns

e

Re
qu

es
t S

er
vic

e

Re
tu

rn
 Se

rv
ice

 D
es

cri
pt

ion

Re
qu

es
t S

er
vic

e D
es

cri
pt

ion

Re
tu

rn
 D

isc
ov

er
y D

oc
um

en
t

Re
qu

es
t D

isc
ov

er
y D

oc
um

en
t

UDDI
Or Other Directory

Service
Web Service

Web Service Client

Directory: UDDI

Discovery: DISCO

Description: WSDL

Wire Format: SOAP

Data Format: XML

Wire Transport: HTTP

167_C#_11.qxd 12/5/01 10:50 AM Page 580

Web Services • Chapter 11 581

Web Service Standards
In this section, we cover in detail the various Web Services standards introduced in
the previous section: SOAP, the wire transport protocol,WSDL to describe Web
Services, DISCO to discover, and UDDI to publish Web Services.You will also
write your very first Web Service using the tools provided by Microsoft Visual
Studio.NET. By the end of this section, you will have enough knowledge to go
ahead and create your own Web Services.The remainder of this chapter then
addresses more advanced topics, such as error handling and state management.

Wiring Up Distributed
Objects—The SOAP Protocol
SOAP is the standard used to exchange data over the Internet using Web
Services. SOAP is commonly referred to as a wiring protocol.As with many other
standards, it is often more helpful to see some examples of the standard in action
before moving on to reading the standards document. Using Visual Studio.NET, it
is very easy to create simple Web Services and see how data is being exchanged.
Because SOAP is based on XML and not a binary protocol, such as DCOM, you
can inspect the data exchange in detail using a network tunneling tool and see
exactly what is going on under the hood.

Creating Your Very First Web Service
Let’s look at a SOAP exchange between a client and a server by way of a few
examples.Although Web Services are most interesting when used to couple
server computers, our examples are more geared towards end users interacting
with a Web Service server; we only do this to keep the examples reasonably
simple and self-contained.

As mentioned earlier, we look only at SOAP as implemented over the HTTP
protocol.Also, we initially focus on SOAP as an RPC mechanism. In Chapter 11,
when we discuss the development of a more comprehensive Web Service, you
will encounter SOAP used to interchange complex XML documents.

Let’s start by setting up a simple echo Web Service.This service simply
returns whatever character string a user submits. Creating a class that echoes its
input is fairly straightforward, of course (see Figure 11.2).

www.syngress.com

167_C#_11.qxd 12/5/01 10:50 AM Page 581

582 Chapter 11 • Web Services

Figure 11.2 Echo Method

namespace soapExamples

{

public class simpleService {

public simpleService() {

}

public string echo(string input) {

return input;

}

}

}

How can you now make this into a Web Service? In other words, what is
needed to make this method accessible to everybody in the world who has an
Internet connection and knows where to find your method?

It may be hard to believe initially, but all that’s needed using the .NET
Framework is—apart from an Internet Information Server (IIS) Web server, of
course—two tiny little changes:

■ Your class simpleService needs to inherit from
System.Web.Services.WebService.

■ Your method echo needs to be decorated with the
System.Web.Services.WebMethod attribute.

See Figure 11.3 for your first fully functioning Web Service. Note that the
complete code for the echo Web method is in the directory soapExamples/ on
the CD accompanying this book.

Figure 11.3 Echo Web Method (simpleService.asmx.cs)

namespace soapExamples

{

public class simpleService : System.Web.Services.WebService

{

public simpleService() {

www.syngress.com

Continued

167_C#_11.qxd 12/5/01 10:50 AM Page 582

Web Services • Chapter 11 583

}

protected override void Dispose(bool disposing) {

}

[System.Web.Services.WebMethod]

public string echo(string input) {

return input;

}

}

}

Let’s now open up the Visual Studio.NET integrated development environ-
ment and create the echo Web Service from scratch, proceeding as follows:

1. Create a new ASP.NET Web Service called soapExamples: Go to File |
New | Project, choose the entry ASP.NET Web Service under the
Visual C# Projects folder, keep the default Location, and enter
soapExamples as the Name of the project (see Figure 11.4).This will
set up a new virtual directory of the same name (see Figure 11.5).

www.syngress.com

Figure 11.3 Continued

Figure 11.4 Setting Up a New ASP.NET Web Service

167_C#_11.qxd 12/5/01 10:50 AM Page 583

584 Chapter 11 • Web Services

2. Visual Studio.NET will then configure the necessary FrontPage server
extensions, define an assembly, and create supporting project files for
you.Annoyingly, the wizard also creates a default Web Service file called
Service1.asmx, which you may remove in the Solution Explorer by
right-clicking on the file and selecting Delete. Or, you can simply
rename that file to simpleService.asmx in the Solution Explorer and
proceed with Step 4.

3. Now you create your actual Web Service: Right-click on the
soapExamples project in the Solution Explorer, and choose Add |
Add New Item. Choose Web Service from the list of available tem-
plates, and call it simpleService.asmx (see Figure 11.6).

www.syngress.com

Figure 11.5 Visual Studio.NET Automatically Sets Up a New Web

Figure 11.6 Creating a New Web Service

167_C#_11.qxd 12/5/01 10:50 AM Page 584

Web Services • Chapter 11 585

4. Select the Web Service simpleService.asmx in the Solution Explorer,
and click on the little View Code icon to see the code for this Web
Service added by the wizard.

5. Replace the code with the code for this class shown in Figure 11.3.

6. The last step is the most remarkable step if you’ve been used to tradi-
tional ASP developing. Compile your project: select Build | Build
from the User menu, or press Ctrl+Shift+B. In other words,ASP.NET
applications, such as a Web Service application, are compiled applications
(and yes, it will create a .NET DLL for you!).

How Does Visual Studio.NET Organize Your Project?
When you tell Visual Studio.NET to create a new Web Service application, the
following process happens, using this section’s example of an application called
soapExamples:

1. A new IIS virtual directory called soapExamples is created in
%SystemDrive%\InetPub\wwwroot\.As part of the .NET Framework
installation, application mappings were already added to map .NET spe-
cific file extensions, such as .aspx, to the .NET DLL aspnet_isapi.dll,
located in %SystemRoot%\Microsoft.NET\Framework\v1.0.2914\,
which handles .NET-specific Web requests (see Figure 11.7).

www.syngress.com

Figure 11.7 Mapping .NET File Extensions

167_C#_11.qxd 12/5/01 10:50 AM Page 585

586 Chapter 11 • Web Services

2. The IIS directory is converted to a FrontPage Server Extensions Web,
allowing for Visual Studio.NET design support.

3. Under the IIS virtual directory, a variety of standard FrontPage directo-
ries are created (see Figure 11.8).

4. The bin directory is created underneath the IIS virtual directory. It will
contain the compiled application.

5. A number of files are created and placed in the IIS virtual directory, as
described in Table 11.1.

Table 11.1 Files Created by Visual Studio.NET for soapExamples Web Service

File Name Description

soapExamples.csproj XML file containing project-level settings, such
as a list of all files contained in this project.

soapExamples.csproj.webinfo XML file containing Web-related project-level
settings, such as the URL to start this
application.

soapExamples.vsdisco XML file containing DISCO dynamic discovery
information for this Web Service.

AssemblyInfo.cs C# class defining assembly metadata, such
as version number information.

Web.Config XML file containing configuration for the
Web Service, such as security, session
handling, and debug settings.

Global.asax Equivalent to Global.asa file in plain ASP.
Points to C# class file Global.asax.cs.

Global.asax.cs C# class file containing instructions on what
to do during events generated by ASP.NET,
such as when a new application starts or
shuts down.

www.syngress.com

Figure 11.8 Directory Structure for New ASP.NET Web Service

Continued

167_C#_11.qxd 12/5/01 10:50 AM Page 586

Web Services • Chapter 11 587

Global.asax.resx Resource file to store localization information
for Global.asax. Empty by default.

Service1.asmx Sample Web Service file, pointing to C# class
file Service1.asmx.cs, created automatically by
Visual Studio.NET.

Service1.asmx.cs Sample C# Web Service class file, created
automatically by Visual Studio.NET.

Service1.asmx.resx Sample Web Service resource file to store
localization information for Service1.asmx.
Empty by default. Created automatically by
Visual Studio.NET.

6. A directory called soapExamples is created in %USERPROFILE%\
My Documents\Visual Studio Projects\.Two files are created:
soapExamples.sln, a text file containing information as to what projects
are contained in the Visual Studio.NET solution, and soapExamples.suo,
a binary solution configuration file that cannot be edited directly.

7. A directory called soapExamples is created in %USERPROFILE%\
VSWebCache\ATURTSCHI\.This directory and various subdirectories
created underneath it contain the cached version of your Web Service.
You should normally not need to make any changes here, although it
can happen that the files here get out of synch with the files in the
“normal”Web directory underneath InetPub\wwwroot, in which case
you may have to manually copy some files around.

Not all of those files can be made visible in Visual Studio.NET. However, you
can see many of them by clicking on the Show All Files icon in the Solution
Explorer (see Figure 11.9).

www.syngress.com

Table 11.1 Continued

File Name Description

167_C#_11.qxd 12/5/01 10:50 AM Page 587

588 Chapter 11 • Web Services

www.syngress.com

Figure 11.9 Showing All Files through Solution Explorer

Separating Design and Code
Microsoft .NET makes a big step forward in neatly separating Web page
design from Web page code. There are actually two files for every Web
page: one file that holds all visual elements of a Web page, and another
file linked to it that holds the business logic for that page. Web Services
are ASP.NET Web applications, and therefore incorporate the same mech-
anism. Because Web Services don’t have a user interface as such, the only
content of the Web Service Web page is a directive linking it to the Web
Service class that contains all the code to handle Web Service requests.

For the simpleService Web Service, the corresponding “front end”
file, soapExamples.asmx, looks as follows:

<%@ WebService Language="c#" Codebehind="simpleService.asmx.cs"

Class="soapExamples.simpleService" %>

The Codebehind attribute points to the Web Service class file,
which by default has the same name as the ASMX file, with a file exten-
sion appended reflecting the programming language used, in this case
.cs for C#.

Developing & Deploying…

Continued

167_C#_11.qxd 12/5/01 10:50 AM Page 588

Web Services • Chapter 11 589

Running Your Very First Web Service
Now that you have developed a simple Web Service, you would obviously like to
see it in action, if only to check that everything works the way you expect it to
work. Because a Web Service at its core really isn’t anything else than a very special
Web application, you have the usual means of testing and debugging at your dis-
posal.These are running the Web Service through Visual Studio.NET, our preferred
integrated development platform, or calling it through a custom client application,
such as a simple Visual Basic script. In addition, you have the option of automatically
generating a client application that calls your Web Service through the Web
Reference mechanism. Let’s go through each of these three scenarios in detail.

Testing a Web Service Using Integrated
Visual Studio.NET Debugging
If you want to test your Web Service through the debugger that comes with
Visual Studio.NET, you first need to check and/or change some settings to
enable Visual Studio.NET to debug the application properly:

1. Click on the file Web.config in the Solution Explorer. Scan through it
and make sure that the debug attribute of the compilation element is set to
True (which is the default).This will cause debug information to be
included in the compiled DLL. Obviously, you want to change this set-
ting once you’re ready to deploy your application.

2. Go to Solution Explorer and right-click on the soapExamples project
folder to select its Properties. Under the Configuration Properties folder,

www.syngress.com

In order to keeps things “simple,” the Visual Studio.NET user inter-
face does not keep those two files apart, which may lead a little bit to
confusion. Instead, similar to what you may be used to in the Visual
Basic 6 form designer, you switch between design mode (the Web form),
and code mode (the underlying code) by clicking the corresponding
icons in the Solution Explorer. However, and this may throw you off a bit
initially, the files that keep the design and code content really are dif-
ferent files; however, Solution Explorer pretends that only one of the
files, namely the one containing the page design, exists. You can force
Solution Explorer to show you the file containing the page code by
clicking the Show All Files icon, however even when you then explicitly
click the code file, Visual Studio.NET will still show you the design page,
not the code page.

167_C#_11.qxd 12/5/01 10:50 AM Page 589

590 Chapter 11 • Web Services

click Debugging and make sure that ASP.NET Debugging is enabled,
as shown in Figure 11.10.

3. Right-click on the file simpleService.asmx, which is the file defining
your actual Web Service, and select Set As Start Page. (Or, you can
select this service as the solution Startup Project through the Properties
page of the soapExamples solution, as shown in Figure 11.11).

www.syngress.com

Figure 11.10 Enabling ASP.NET Debugging

Figure 11.11 Defining a Startup Project

167_C#_11.qxd 12/5/01 10:50 AM Page 590

Web Services • Chapter 11 591

4. You can now start testing your application by pressing F5 or by
choosing Debug | Start through the User menu.As usual, you can set
breakpoints anywhere in your code by simply pressing F9 or selecting
Debug | New Breakpoint on a line of code through the User menu.

5. Visual Studio.NET will recompile the application, just to be sure, and
launch Internet Explorer (see Figure 11.12).

Note the URL convention used by Microsoft .NET. Immediately after the
host name (localhost) is the name of the application (soapExamples), followed by
the name of the Web Service (simpleService), or rather, the name of the corre-
sponding Web Service definition file, which has the .asmx file extension.

ASP.NET runtime warns you that you are using the default namespace
http://tempuri.org.As you have seen in earlier chapters, every .NET class lives in
a namespace. Similarly, every Web Service must live in a namespace that is
exposed globally.This Web Service namespace allows application developers
worldwide to distinguish their Web Services from Web Services built by other

www.syngress.com

Figure 11.12 Starting the Web Service in Debug Mode

167_C#_11.qxd 12/5/01 10:50 AM Page 591

592 Chapter 11 • Web Services

people.The URL under which a Web Service can be reached, in this case
http://localhost/soapExamples/simpleService.asmx, is only an attribute of a con-
crete instance of a Web Service; this Web Service could potentially live on many
servers. So, you need to give your Web Service a distinguishing name through the
usage of a namespace. By default,ASP.NET will use http://tempuri.org/, but you
should really change this. Namespaces are created by using a URI (Uniform
Resource Identifier), which really can be anything (see www.faqs.org/rfcs/
rfc2396.html for an explanation of URIs). Common choices include using your
DNS entry in order to get a unique name.

Let’s then take the namespace related runtime warning in Figure 11.12 seri-
ously; stop the debugger by pressing Shift+F5, and include Web Service name-
space definitions in the code; urn:schemas-syngress-com-soap seems like a good
URI, and then simply add a namespace attribute with that value next to the Web
Service class definition, as shown in Figure 11.13 (changes in bold).

Figure 11.13 Including a Namespace Definition (simpleService.asmx.cs)

namespace soapExamples

{

[System.Web.Services.WebServiceAttribute(

Namespace="urn:schemas-syngress-com-soap")]

public class simpleService : System.Web.Services.WebService

{

public simpleService() {

}

[System.Web.Services.WebMethod]

public string echo(string input) {

return input;

}

}

}

After recompiling and restarting the application, you are presented with a
screen as in Figure 11.14.

www.syngress.com

167_C#_11.qxd 12/5/01 10:50 AM Page 592

Web Services • Chapter 11 593

We look at the service description in the next section on WSDL; for now,
just click on the echo link, which will take you to the welcome screen for the
echo Web Service method, as depicted in Figure 11.15.

The URL convention adopted by Microsoft .NET for the Web method wel-
come screen is to append the name of the exposed Web method through an
op=WebMethodName URL parameter, in this case op=echo.To actually call the
Web method, the convention is to just add the name of the Web method to the
URL, and to append the name of input parameters as URL parameters to the
end, as you’ll see in a second.

Enter a value, say “Hello World”, in the text box labeled input, which by the
way, corresponds of course to the only input parameter you have defined for the
echo Web method, and click Invoke.This then takes you to the output screen, as
shown in Figure 11.16.

The input has been echoed in something that clearly looks like XML.As you
can see in Figure 11.15, Microsoft offers you three ways to call a Web Service:

■ Through a straight HTTP GET

■ Through a straight HTTP POST

■ Through SOAP

Calling a Web Service through an HTTP GET is a simplified way to call a
Web Service. Particularly, it allows you to call a Web Service through a Web
browser.The only thing you need to do is to append the method name to the
URL of the Web Service, and to add the parameters the way you would usually
add variables when submitting an HTML form in a Web application:

http://localhost/soapExamples/simpleService.asmx/echo?input=Hello+World

www.syngress.com

Figure 11.14 Web Service in Debug Mode after Namespace Has Been Added

167_C#_11.qxd 12/5/01 10:50 AM Page 593

594 Chapter 11 • Web Services

www.syngress.com

Figure 11.15 The echo Web Service Method

167_C#_11.qxd 12/5/01 10:50 AM Page 594

Web Services • Chapter 11 595

The result that you get from this call (see the following):

<?xml version="1.0" encoding="utf-8" ?>

<string xmlns="urn:schemas-syngress-com-soap">Hello World</string>

This is an XML-ish representation of the fact that the return argument is a
string, living in the urn:schemas-syngress-com-soap namespace, and having a value of
“Hello World”.

As you can imagine, this technique will work only for the very simplest of
Web Services.What if you wanted to pass a complex data type to the Web
Service? What if you wanted to pass an XML document to the Web Service?

The POST method offered to you by Visual Studio.NET in Figure 11.15 is
very similar to the GET method, the only difference being that the parameter
values are put into the body of the HTTP request, exactly the way you would if
you POSTed information to a Web application through a form.

This technique of calling Web Services through simple HTTP GETs and
POSTs is not the standard way of calling Web Services. It is very inflexible, and in
fact not supported by most vendors. On the other hand, until such time as SOAP
will become universal and supported natively by all client applications, you may
find simple GETs and POSTs useful in cases where clients don’t yet understand
SOAP, but do have XML processing capabilities, as is the case with Macromedia
Flash 5.0.

Our suggestion, then, is to forgo convenience, and use the SOAP protocol for
calling Web Services from the very start. Unfortunately, this means that you have
to do a little bit more work.

Testing a Web Service Using a Client Script
What do you need to do to call the echo Web method through proper SOAP?
On the Web Service overview screen, as depicted in Figure 11.17, you can get all
the information you need.

www.syngress.com

Figure 11.16 Output of the echo Web Method

167_C#_11.qxd 12/5/01 10:50 AM Page 595

596 Chapter 11 • Web Services

You can make the following observations for the SOAP request:

■ A SOAP request is issued using an HTTP POST.

■ The request is POSTed to the Web Service ASMX page (http://local-
host/soapExamples/simpleService.asmx, in this case).

■ SOAP uses an additional HTTP header, called SOAPAction, that contains
the URI of the Web Service followed by the Web method name
(urn:schemas-syngress-com-soap/echo in this case).

■ The HTTP body of the POST contains an XML document, called the
SOAP envelope, delimited by an <Envelope> tag.

■ The SOAP envelope itself has a <Body> element, and within that ele-
ment are elements defining the Web method you are calling (<echo>)
and what parameters it takes (<input>).

www.syngress.com

Figure 11.17 The SOAP Section of the Web Service Overview Screen

167_C#_11.qxd 12/5/01 10:50 AM Page 596

Web Services • Chapter 11 597

For the SOAP response, in turn:

■ The SOAP response is a normal HTTP response.

■ The HTTP body of the SOAP response contains an XML document,
called the SOAP envelope, that has the same structure as the SOAP
request envelope discussed in the preceding list.

■ The SOAP envelope itself has a <Body> element, and within that body
element are elements declaring the response from the Web method (the
default is adding the word Response to the method name (that is,
<echoResponse>), along with the return argument (the default is adding
the word Result to the method name, that is, <echoResult> here).

A detailed discussion of the SOAP protocol is well beyond the scope of this
book, however, the basic structure of the SOAP protocol is already apparent:

■ Requests are POSTed to a server, which in turn issues a response
to the client.

■ All requests and responses are XML documents, that start with
<Envelope> and <Body> elements. Method names show up within the
SOAP Body section, and method arguments and return values in turn
show up within the method section.

■ The server finds the Web class that handles the request through a combi-
nation of the URL to the corresponding ASMX file in the HTTP
request, the SOAPAction header, and the XML element having the name
of the Web method to call following immediately after the SOAP Body
element.

Because Visual Studio.NET does not currently support directly calling a Web
method though SOAP (unless you use Web References, which you will do in the
next subsection), let’s write a little standalone Visual Basic VBS script instead.
Simply take the SOAP request shown in Figure 11.17 and POST that informa-
tion to the Web Server using the Microsoft.XMLHTTP ActiveX control, as
shown in Figure 11.18.

Figure 11.18 VBS Script to Test the echo Web Method (echo.vbs)

myWebService = "http://localhost/soapExamples/simpleService.asmx"

myMethod = "urn:schemas-syngress-com-soap/echo"

www.syngress.com

Continued

167_C#_11.qxd 12/5/01 10:50 AM Page 597

598 Chapter 11 • Web Services

'** create the SOAP envelope with the request

s = ""

s = s & "<?xml version=""1.0"" encoding=""utf-8""?>" & vbCrLf

s = s & "<soap:Envelope "

s = s & " xmlns:xsi=""http://www.w3.org/2001/XMLSchema-instance"""

s = s & " xmlns:xsd=""http://www.w3.org/2001/XMLSchema"""

s = s & " xmlns:soap=""http://schemas.xmlsoap.org/soap/envelope/"">"

s = s & vbCrLf

s = s & " <soap:Body>" & vbCrLf

s = s & " <echo xmlns=""urn:schemas-syngress-com-soap"">" & vbCrLf

s = s & " <input>Hello World</input>" & vbCrLf

s = s & " </echo>" & vbCrLf

s = s & " </soap:Body>" & vbCrLf

s = s & "</soap:Envelope>" & vbCrLf

msgbox(s)

set requestHTTP = CreateObject("Microsoft.XMLHTTP")

msgbox("xmlhttp object created")

requestHTTP.open "POST", myWebService, false

requestHTTP.setrequestheader "Content-Type", "text/xml"

requestHTTP.setrequestheader "SOAPAction", myMethod

requestHTTP.Send s

msgbox("request sent")

set responseDocument = requestHTTP.responseXML

msgbox("http return status code: " & requestHTTP.status)

msgbox(responseDocument.xml)

www.syngress.com

Figure 11.18 Continued

167_C#_11.qxd 12/5/01 10:50 AM Page 598

Web Services • Chapter 11 599

Because this is a simple Visual Basic script file, you can run it by simply
double-clicking on it in Windows Explorer, which will start Windows Scripting
Host.The script will show us the SOAP request (see Figure 11.19), send it to the
server, tell us that it received an HTTP 200 status return code (see Figure 11.20),
which means that everything went smoothly, and then display the SOAP response
that includes the echoed input parameter (see Figure 11.21).

The truly amazing fact, however, is that you can run this script, which is not
connected in any way to your Visual Studio.NET project, in debug mode. In
other words, if you set a breakpoint in one of your project files, start the
debugger (by just pressing F5), and then go to Windows Explorer or to a com-
mand line and run the script in Figure 11.18; execution will stop at your break-
points. See Figure 11.22 for a depiction of the echo Web method, paused right

www.syngress.com

Figure 11.19 Sending a SOAP Request

Figure 11.20 Retrieving a Successful Http Status Code

Figure 11.21 The Successful SOAP Response

167_C#_11.qxd 12/5/01 10:50 AM Page 599

600 Chapter 11 • Web Services

before it returns the response back to the client. Notice, for example, the compli-
cated call stack right, which gives you an idea of the heavy lifting that the .NET
Framework does for you in order for Web Services to work properly.

Stop for a moment and consider what you have so far done in this section.
Nothing prevents you from taking the Visual Basic script you just created and
including it as client-side script in a traditional Web page (other than the fact that
your clients will need to use Internet Explorer on a Windows platform, of
course). If you do this, you have just created a Web Service client application that
runs inside a browser window, making your echo service accessible to everybody
who has an Internet connection and knows how to find your service.

So far, the only thing you have done is pass a string argument back and forth.
The SOAP specification goes a lot further, as you can imagine; it defines a stan-
dard for passing a number of basic data types, complex data structures, and XML
documents between a SOAP client and a SOAP server.You can also serialize
objects and pass them over the wire.You will see examples of this in the section
“Working with Web Services,” later on in this chapter.

www.syngress.com

Figure 11.22 Stopping Your Application at a Breakpoint

167_C#_11.qxd 12/5/01 10:50 AM Page 600

Web Services • Chapter 11 601

You can find the complete code for the echo Web method on the CD accom-
panying this book in the directory soapExamples/.

Testing a Web Service Using a Web Reference
Lastly, you can run and test a Web Service application by letting Visual
Studio.NET create a .NET client proxy class for you, automatically.This proxy
class contains one method for each Web method exposed by the Web Service.
The tasks of creating the correct SOAP envelope, sending the data over the wire
through HTTP, waiting for the response back from the server, and parsing the
SOAP response envelope for the return value are all done for you.This may very
well end up being your method of choice, because you don’t need to worry
about the details of the SOAP protocol, but can concentrate on solving the
higher-level business problems at hand. However, to do this, you need to create a
separate .NET client application, and then let Visual Studio.NET glue the two
together by adding a reference to your Web Service server application. In order
to do this, however, we need to first talk about how Web Services can be
described and discovered by potential clients.

www.syngress.com

Deploying Web Services
How do you deploy a Web Service, such as the soapExamples service you
just created? The good news is that because Web Services are really just
a special kind of an .NET Web application, that is they run under
ASP.NET, deploying a Web Service is no different than deploying any
other ASP.NET application: You simply create a new IIS virtual directory
on the target server, copy all files from your project into the new loca-
tion, and you’re done. Before you do that, though, be sure to compile
your Web Service with all debug information removed for better perfor-
mance (see the section “Testing A Web Service Using Integrated Visual
Studio.NET Debugging” earlier in this chapter for details).

However, in the real world, Web Services will likely often act as
wrappers around legacy systems, such as database systems or enterprise
applications. The difficulty, then, of deploying a Web Service will not be
deploying the Web Service as such, but making sure that the Web
Service works well together with those legacy systems.

Developing & Deploying…

167_C#_11.qxd 12/5/01 10:50 AM Page 601

602 Chapter 11 • Web Services

Describing Web Services—WSDL
Because you have programmed the soapExamples Web Service that includes the
echo Web method yourself, you “know” how to access it.Well, at least you
remember that the echo method takes an input parameter, of type string, which
you called input, and returns as its output another string.And although you may
not quite remember how to correctly call this Web method, particularly the gory
details of that SOAP envelope, you can always just point your browser to the
welcome page (see Figure 11.15) to get more information.

In the world of classic COM, to use an analogy if you are familiar with that
framework, classes are described using their interfaces, which in turn were
exposed through type libraries.Type libraries are binary files that are created by
compiling a file, written in the Interface Definition Language (IDL), that
describes the interface of a COM component. It is by enquiring a component
type library that a COM client learns how to call a COM server.

In the world of Web Services, the role of a type library is taken by the WSDL
description of a Web Service. Not very surprisingly,WSDL is an XML language.
Unlike in COM, it does not need to get compiled, which is a very big advantage
indeed.

In Microsoft .NET, you can generate the WSDL Web Service description in
three ways:

■ You can get the WSDL description dynamically by calling the Web
Service URL appended by the WSDL parameter; in this case, simply
http://localhost/soapExamples/simpleService.asmx?WSDL.This is the
preferred method, because it always gives you an up-to-date description
of the service.

■ You can (statically) generate the WSDL description by using the disco.exe
tool found at %ProgramFiles%\Microsoft.NET\FrameworkSDK\Bin\. It
takes the URL of your Web Service as an argument and writes the infor-
mation into an XML file. For this example, type disco http://
localhost/soapExamples/simpleService.asmx on a command line.

■ Finally, you can programmatically create WSDL files by using the corre-
sponding classes in the System.Web.Services.Description namespace. Note
that the documentation sometimes erroneously refers to SDL, an older
Web Service description technology that is no longer supported, but rest
assured that these classes really do deal with WSDL only.

www.syngress.com

167_C#_11.qxd 12/5/01 10:50 AM Page 602

Web Services • Chapter 11 603

WSDL is a complex standard that is still undergoing changes, and discussing it
in detail is beyond the scope of this book; you can find more information about
WSDL, including the actual WSDL specification, which is currently stands at ver-
sion 1.1, at www.w3.org/TR/wsdl.

However, you can get a cursory understanding of the structure of WSDL by
looking at the WSDL description of the echo Web method, which you can access
by going to http://localhost/soapExamples/simpleService.asmx?WSDL (see
Figure 11.23).

Figure 11.23 WSDL Description for the Echo Web Method

<?xml version="1.0" encoding="utf-8"?>

<definitions

targetNamespace="urn:schemas-syngress-com-soap"

xmlns:s="http://www.w3.org/2001/XMLSchema"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:s0="urn:schemas-syngress-com-soap"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

<s:schema attributeFormDefault="qualified"

elementFormDefault="qualified"

targetNamespace="urn:schemas-syngress-com-soap">

<s:element name="echo">

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="input"

nillable="true" type="s:string" />

</s:sequence>

</s:complexType>

</s:element>

<s:element name="echoResponse">

<s:complexType>

www.syngress.com

Continued

167_C#_11.qxd 12/5/01 10:50 AM Page 603

604 Chapter 11 • Web Services

<s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="echoResult"

nillable="true" type="s:string" />

</s:sequence>

</s:complexType>

</s:element>

<s:element name="string" nillable="true" type="s:string" />

</s:schema>

</types>

<message name="echoSoapIn">

<part name="parameters" element="s0:echo" />

</message>

<message name="echoSoapOut">

<part name="parameters" element="s0:echoResponse" />

</message>

<message name="echoHttpGetIn">

<part name="input" type="s:string" />

</message>

<message name="echoHttpGetOut">

<part name="Body" element="s0:string" />

</message>

<message name="echoHttpPostIn">

<part name="input" type="s:string" />

</message>

<message name="echoHttpPostOut">

<part name="Body" element="s0:string" />

</message>

<portType name="simpleServiceSoap">

<operation name="echo">

<input message="s0:echoSoapIn" />

<output message="s0:echoSoapOut" />

</operation>

</portType>

www.syngress.com

Figure 11.23 Continued

Continued

167_C#_11.qxd 12/5/01 10:50 AM Page 604

Web Services • Chapter 11 605

<portType name="simpleServiceHttpGet">

<operation name="echo">

<input message="s0:echoHttpGetIn" />

<output message="s0:echoHttpGetOut" />

</operation>

</portType>

<portType name="simpleServiceHttpPost">

<operation name="echo">

<input message="s0:echoHttpPostIn" />

<output message="s0:echoHttpPostOut" />

</operation>

</portType>

<binding name="simpleServiceSoap" type="s0:simpleServiceSoap">

<soap:binding

transport="http://schemas.xmlsoap.org/soap/http"

style="document" />

<operation name="echo">

<soap:operation soapAction="urn:schemas-syngress-com-soap/echo"

style="document" />

<input>

<soap:body use="literal" />

</input>

<output>

<soap:body use="literal" />

</output>

</operation>

</binding>

<binding name="simpleServiceHttpGet"

type="s0:simpleServiceHttpGet">

<http:binding verb="GET" />

<operation name="echo">

<http:operation location="/echo" />

<input>

www.syngress.com

Figure 11.23 Continued

Continued

167_C#_11.qxd 12/5/01 10:50 AM Page 605

606 Chapter 11 • Web Services

<http:urlEncoded />

</input>

<output>

<mime:mimeXml part="Body" />

</output>

</operation>

</binding>

<binding name="simpleServiceHttpPost"

type="s0:simpleServiceHttpPost">

<http:binding verb="POST" />

<operation name="echo">

<http:operation location="/echo" />

<input>

<mime:content type="application/x-www-form-urlencoded" />

</input>

<output>

<mime:mimeXml part="Body" />

</output>

</operation>

</binding>

<service name="simpleService">

<port name="simpleServiceSoap" binding="s0:simpleServiceSoap">

<soap:address

location="http://localhost/soapExamples/simpleService.asmx" />

</port>

<port name="simpleServiceHttpGet"

binding="s0:simpleServiceHttpGet">

<http:address

location="http://localhost/soapExamples/simpleService.asmx" />

</port>

<port name="simpleServiceHttpPost"

binding="s0:simpleServiceHttpPost">

<http:address

www.syngress.com

Figure 11.23 Continued

Continued

167_C#_11.qxd 12/5/01 10:50 AM Page 606

Web Services • Chapter 11 607

location="http://localhost/soapExamples/simpleService.asmx" />

</port>

</service>

</definitions>

You can see from Figure 11.23 that WSDL has five parts, wrapped in the
<definitions> XML element:

■ The <types> section defines all data types used by the service. In this
case, you have two types, both of string type: the input parameter, which
is the argument passed to the echo Web method, and echoResponse, which
is the output from echo that’s returned to the caller.

■ The <message> section, which defines input and output parameters of
the Web Service. It refers back to the data types defined in the <types>
section of the preceding code. In this example are six individual <mes-
sage> sections.As you have seen earlier, for simple Web Services, .NET
defines three access methods—HTTP GET, HTTP POST, and SOAP.
The echo method uses the request-response message pattern, and you
see therefore two <message> sections for each of the three access
methods: one declaring the input parameter, the other one declaring the
output parameter.

■ The <portType> section ties the access methods to the messages
declared in the <message> section. Because you have three access
methods, you see three corresponding <portType> sections.

■ The <bindings> section declares the protocols used to access the echo
Web method—HTTP GET, HTTP POST, and SOAP. It also defines
the encoding used to send data over the wire; for HTTP GET and
POST, you simply use URL encoding, whereas for SOAP you use the
encoding mechanism provided by the SOAP standard.This section also
defines the value that has to be used in the SOAPAction HTTP header.

■ Everything is now tied together in the <service> section:You see your
Web Service, simpleService, appear, with its only method, echo, that has
three bindings attached to it, as explained earlier in this list, that can all
be accessed at the URL http://localhost/soapExamples/
simpleService.asmx.

www.syngress.com

Figure 11.23 Continued

167_C#_11.qxd 12/5/01 10:50 AM Page 607

608 Chapter 11 • Web Services

Discovering Web Services—DISCO
DISCO, which presumably stands for “discovery”, is a mechanism developed by
Microsoft for clients to dynamically locate Web Services. More precisely, DISCO
guides clients to the WSDL files describing the call syntax of Web Services.
DISCO is not supported by anybody outside Microsoft, and it is unclear what
future, if any, DISCO has. In practice, DISCO has largely been replaced by
UDDI.

DISCO has two parts. Files with the .vsdisco extension contain information
where to dynamically search for Web Services on the local server. Files with the
.disco extension, in turn, contain information about already found Web Services
on the local server, particularly where the corresponding WSDL information is
located.You will now immediately realize the problem with DISCO: It is an
insular solution in that you need to know both the name of the server and the
DISCO location on that server before you can query for Web Services.

Microsoft Visual Studio.NET automatically adds and maintains a file with
extension .vsdisco to Web Service projects. It also puts a VSDISCO file into the
root directory of the Web server.These VSDISCO files look like the one shown
in Figure 11.24.

Figure 11.24 A Typical DISCO Discovery File

<?xml version="1.0" ?>

<dynamicDiscovery

xmlns="urn:schemas-dynamicdiscovery:disco.2000-03-17">

<exclude path="_vti_cnf" />

<exclude path="_vti_pvt" />

<exclude path="_vti_log" />

<exclude path="_vti_script" />

<exclude path="_vti_txt" />

<exclude path="Web References" />

</dynamicDiscovery>

When you point a Web browser to such a VSDISCO file, Microsoft .NET
starts to dynamically query the server for Web Services in the corresponding vir-
tual directory (and below). If you go to the URL http://localhost/soapExamples/
soapExamples.vsdisco, for example, IIS responds after a while by sending a
DISCO file back to you that looks like the one shown in Figure 11.25.

www.syngress.com

167_C#_11.qxd 12/5/01 10:50 AM Page 608

Web Services • Chapter 11 609

You can also statically generate a DISCO file using the disco.exe tool found
at %ProgramFiles%\Microsoft.NET\FrameworkSDK\Bin\.This is the same tool
that also outputs the WSDL description. It takes the URL of your Web Service as
an argument and writes the information into a file with a .disco extension.
Unfortunately, this DISCO file contains slightly different information, but it also
directs you to the WSDL description of the service, which is really all that mat-
ters (see Figure 11.26).

Figure 11.26 DISCO Discovery File Containing a Reference to WSDL
Description

<?xml version="1.0" encoding="utf-8"?>

<discovery

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.xmlsoap.org/disco/">

<contractRef

ref="http://localhost/soapExamples/simpleService.asmx?wsdl"

docRef="http://localhost/soapExamples/simpleService.asmx"

www.syngress.com

Figure 11.25 DISCO Information for the soapExamples Web Service

Continued

167_C#_11.qxd 12/5/01 10:50 AM Page 609

610 Chapter 11 • Web Services

xmlns="http://schemas.xmlsoap.org/disco/scl/" />

<soap

address="http://localhost/soapExamples/simpleService.asmx"

xmlns:q1="urn:schemas-syngress-com-soap"

binding="q1:simpleServiceSoap"

xmlns="http://schemas.xmlsoap.org/disco/soap/" />

</discovery>

Publishing Web Services—UDDI
Fortunately, a more comprehensive way to locate Web Services exists, and that’s the
Universal Description, Discovery, and Integration (UDDI) initiative, supported by
IBM, Microsoft, and a host of other vendors in the field of Web Services.

UDDI is a Web Service itself, and it allows businesses and individuals to pub-
lish information about themselves and the Web Services they are offering. It is
conceived as a global directory service, open to everybody, simple to use, and
comprehensive in its scope.You can find the UDDI home page at www.uddi.org.

The three major sponsors of UDDI operate distributed, replicated UDDI ser-
vices.The access points are as follows:

■ Microsoft http://uddi.microsoft.com

■ IBM www.ibm.com/services/uddi

■ HP http://uddi.hp.com

Visual Studio.NET Beta2 supports UDDI through the possibility to query
the UDDI directory and add references to Web Services into client applications.
You will see an example of that in the next section.

If you want to programmatically interface with UDDI, you can get the
Microsoft UDDI SDK, which consists of a series of both COM and .NET
classes to interact with the UDDI registry; you can download it from
www.microsoft.com/downloads/release.asp?ReleaseID=30880. Notice, though,
that because UDDI is itself a Web Service, you can certainly do everything your-
self and interface with it by simply issuing SOAP requests and parsing the SOAP
responses from the UDDI server for the information you are looking for.

The industry has put high hopes in UDDI.The functionality of the UDDI
registry is still somewhat limited, and the specifications are evolving, but the fact

www.syngress.com

Figure 11.26 Continued

167_C#_11.qxd 12/5/01 10:50 AM Page 610

Web Services • Chapter 11 611

it is so widely supported should encourage you to register yourself, your com-
pany, and the Web Services you offer. Best of all, it’s free.

Working with Web Services
In this section, we want to showcase more examples of Web Services, and how
the various standards work together.You can find the code of these examples on
the CD accompanying this book in the directory soapExamples/. In Chapter 11,
we present a fully worked out example of a real-world Web Service based on a
three tier architecture.

Passing Complex Data Types
In this example, you will create a Web method that returns the arithmetic mean
of a set of integer valued data points.You can call this method arithmeticMean and
let it be part of the simpleService Web Service started at the beginning of this
chapter.

The arithmeticMean method takes as argument an integer-valued array of data,
called arrayInput, and returns a floating point value, as detailed in Figure 11.27.

Figure 11.27 Web Method to Compute the Arithmetic Mean
(simpleService.asmx.cs)

01: [SoapDocumentMethodAttribute(Action="arithmeticMean",

02: RequestNamespace="urn:schemas-syngress-com-soap",

03: RequestElementName="arithmeticMean",

04: ResponseNamespace="urn:schemas-syngress-com-soap",

05: ResponseElementName="arithmeticMeanResponse")]

06: [WebMethod(Description="Computes the " +

07: "arithmetic means of an array of input parameters")]

08: public float arithmeticMean (int[] arrayInput) {

09: if ((arrayInput == null) || (arrayInput.Length < 1)) {

10: throw new Exception("No input data...");

11: } else {

12: int sum = 0;

13: for(int i=0; i<arrayInput.Length; i++) {

14: sum += arrayInput[i];

15: }

www.syngress.com

Continued

167_C#_11.qxd 12/5/01 10:50 AM Page 611

612 Chapter 11 • Web Services

16: return (float)((float)sum / (float)arrayInput.Length);

17: }

18: }

Note that you’ve added additional metadata to the method (see Figure 11.27):

■ Specify that the SOAPAction HTTP header should be the method name,
overriding the default, which is the method name, preceded by the
namespace of the Web Service class (line 1).

■ Specify the namespaces used by SOAP in requests to and responses from
this Web method (lines 2 and 4). Namespaces specified at the Web
method level overrule namespaces specified at the Web class level. Here,
stick with the one you already defined on the class level.

■ Set the XML element names used in the SOAP envelope to wrap the
method data.As you have seen in the first example of the echo Web
method, and you don’t change this here, by default the method name is
used for SOAP requests (line 3), whereas the method name, appended
with the string Response, is used for SOAP responses (line 5).

■ Add a description of the Web method (lines 6 and 7).This shows up, for
instance, on the Web Service overview page, as shown in Figure 11.28.

www.syngress.com

Figure 11.27 Continued

Figure 11.28 Web Method Descriptions

167_C#_11.qxd 12/5/01 10:50 AM Page 612

Web Services • Chapter 11 613

You can start testing the new method by calling it using a simple HTTP
GET.The individual array input elements are simply appended at the end of the
URL—in the example, the numbers 1, 2, and 7:

http://localhost/soapExamples/simpleService.asmx/arithmeticMean?

arrayInput=1&arrayInput=2&arrayInput=7

You get the following result:

<?xml version="1.0" encoding="utf-8" ?>

<float xmlns="urn:schemas-syngress-com-soap">3.33333325</float>

The expected result for the arithmetic mean of 1, 2, and 7 is of course
3.33333333, and not 3.33333325, which shows that you should apparently be
more careful when dealing with floating point arithmetic. However, a close
inspection of this Web method at runtime using the integrated .NET debugger
shows that the correct floating value of 3.333333 is returned from arithmeticMean,
which seems to indicate that the .NET SOAP serializer adds the strange last two
digits to the result before sending it back to the calling client. Hopefully, this
behavior will be fixed in the final release.

Calling the method using SOAP, you can go to http://localhost/
soapExamples/simpleService.asmx?op=arithmeticMean to figure out the correct
syntax of the SOAP request envelope.You can then create a simple Visual Basic
script similar to the one in Figure 11.18 (see the file arithmeticMean.vbs on the
CD). In Figures 11.29 and Figure 11.30, you can see the SOAP-encoded data
being exchanged during a client call to the arithmeticMean Web method.

Figure 11.29 SOAP Request to arithmeticMean

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<arithmeticMean xmlns="urn:schemas-syngress-com-soap">

<arrayInput>

<int>1</int>

<int>2</int>

<int>7</int>

www.syngress.com
Continued

167_C#_11.qxd 12/5/01 10:50 AM Page 613

614 Chapter 11 • Web Services

</arrayInput>

</arithmeticMean>

</soap:Body>

</soap:Envelope>

Figure 11.30 SOAP Response from arithmeticMean

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>

<arithmeticMeanResponse xmlns="urn:schemas-syngress-com-soap">

<arithmeticMeanResult>3.33333325</arithmeticMeanResult>

</arithmeticMeanResponse>

</soap:Body>

</soap:Envelope>

Error Handling
What happens if something goes wrong? An important part of debugging an appli-
cation is realizing what can go wrong in the first place. In the case of Web Services,
you may frequently encounter three kinds of errors. If you construct the SOAP
envelope by hand as opposed to using, say,Web References, your first stab at it will
quite likely have some typos—this is the case of a malformed SOAP request.
Another frequent error source is that some arguments passed to your Web method
are not of the correct type. Finally, something can go wrong during execution of
code on the server, and you will need to know how such a server exception is
propagated back to the client, in order for you to take appropriate action.The fol-
lowing sections look at those three error scenarios in detail.

Malformed SOAP Request
Call again the arithmeticMean Web method as you did earlier (see Figure 11.29).
But this time, change the SOAP envelope in such a way that the XML is no

www.syngress.com

Figure 11.29 Continued

167_C#_11.qxd 12/5/01 10:50 AM Page 614

Web Services • Chapter 11 615

longer valid XML (this shouldn’t be too hard). Let’s look what happens if you
remove the start tag of the last int element, as shown in Figure 11.31, line 11.

Figure 11.31 A Malformed SOAP Request

01: <?xml version="1.0" encoding="utf-8"?>

02: <soap:Envelope

03: xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

04: xmlns:xsd="http://www.w3.org/2001/XMLSchema"

05: xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

06: <soap:Body>

07: <arithmeticMean xmlns="urn:schemas-syngress-com-soap">

08: <arrayInput>

09: <int>1</int>

10: <int>2</int>

11: 7</int>

12: </arrayInput>

13: </arithmeticMean>

14: </soap:Body>

15: </soap:Envelope>

You then get a SOAP response that looks like the one shown in Figure 11.32.

Figure 11.32 SOAP Response Indicating a Malformed Request

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<soap:Fault>

<faultcode>soap:Client</faultcode>

<faultstring>System.Web.Services.Protocols.SoapException:

Server was unable to read request. —-> System.Exception:

There is an error in XML document (7, 21). —->

System.Xml.XmlException: The 'arrayInput' start tag on line

'5' does not match the end tag of 'int'. Line 8, position 16.

at System.Xml.XmlTextReader.ParseTag()

www.syngress.com
Continued

167_C#_11.qxd 12/5/01 10:50 AM Page 615

616 Chapter 11 • Web Services

at System.Xml.XmlTextReader.ParseBeginTagExpandCharEntities()

at System.Xml.XmlTextReader.Read()

at System.Xml.XmlReader.Skip()

at System.Xml.Serialization.XmlSerializationReader.

UnknownNode(Object o)

at n2499d7d93ffa468fbd8861780677ee41.XmlSerializationReader1.

Read5_arithmeticMean()

at System.Xml.Serialization.XmlSerializer.Deserialize

(XmlReader xmlReader)

at System.Web.Services.Protocols.SoapServerProtocol.

ReadParameters()

at System.Web.Services.Protocols.SoapServerProtocol.

ReadParameters()

at System.Web.Services.Protocols.WebServiceHandler.Invoke()

at System.Web.Services.Protocols.WebServiceHandler.

CoreProcessRequest()

</faultstring>

<detail/>

</soap:Fault>

</soap:Body>

</soap:Envelope>

What has happened is that the SOAP deserializer on the server noticed that
the XML was not valid, threw an exception, and returned a SOAP Fault.A
SOAP fault is what’s returned to the client if an error occurred during program
execution on the server.You can check programmatically for a SOAP Fault on
the client in two ways:

■ SOAP Faults return an HTTP error code 500 (Server error).

■ SOAP Faults include the XML element <Fault> in the SOAP return
envelope.

Inside the <Fault> element are four standard sections:

■ <faultcode> Denotes if the error is a client or server error. In the
example case of malformed XML, this is a client error. In fact, if you

www.syngress.com

Figure 11.32 Continued

167_C#_11.qxd 12/5/01 10:50 AM Page 616

Web Services • Chapter 11 617

start the debugger in Visual Studio.NET and step through the code as
you did in the earlier section on debugging using a client script, you will
see that the arithmeticMean Web method is never even reached—program
execution stops and control is returned to the client during the SOAP
deserialization process, before the Web Service class is ever instantiated.

■ <faultstring> Includes additional information about the error. By
default, this contains the call stack at the time the error occurred.

■ <detail> Where you as an application developer can put additional
information about the error. Here, it is empty.

■ <faultactor> An additional element defined by the SOAP specifica-
tions, but not returned by Microsoft .NET in this example.

Wrong Argument Types
What if you try to pass a float argument to the Web method, that is, if your
SOAP request contains the following element?

<int>1.1</int>

Similar to the malformed XML example earlier, a SOAP Fault is returned by
the SOAP deserializer indicating a client fault.This is very powerful—it means
that you will rarely have to worry about argument checking, because the .NET
runtime environment will do this for you. (You still have to write code on the
client to handle this situation appropriately, of course.)

Exceptions in Server Code
Most often, exceptions will occur during program execution in your Web Service
class and objects created by that class on the server.The arithmeticMean class, for
instance, generates an exception whenever the argument array passed to it is empty.

In Figure 11.33, you see such a SOAP request to arithmeticMean: the arrayInput
argument array containing the integers of which you want to compute the arith-
metic mean is empty, and because you did not write your Web method in a
robust way, a server error is returned (as shown in Figure 11.34).

Figure 11.33 SOAP Request to arithmeticMean

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

www.syngress.com
Continued

167_C#_11.qxd 12/5/01 10:50 AM Page 617

618 Chapter 11 • Web Services

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<arithmeticMean xmlns="urn:schemas-syngress-com-soap">

<arrayInput/>

</arithmeticMean>

</soap:Body>

</soap:Envelope>

Figure 11.34 SOAP Request from arithmeticMean

<?xml version="1.0"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<soap:Fault>

<faultcode>soap:Server</faultcode>

<faultstring>System.Web.Services.Protocols.SoapException:

Server was unable to process request.

—-> System.Exception: No input data...

at soapExamples.simpleService.arithmeticMean

(Int32[] arrayInput) in

c:\inetpub\wwwroot\soapexamples\simpleservice.asmx.cs:line 31

</faultstring>

<detail/>

</soap:Fault>

</soap:Body>

</soap:Envelope>

Again, notice how powerful Microsoft .NET is. In the Web class code (Figure
11.27, lines 9 and 10), you just threw a new System.Exception, with a custom error
message (“No input data…”). .NET then did all the hard work and converted the
system error into a SOAP Fault (see Figure 11.34) and even added the error mes-
sage into the <faultstring> element, even though the formatting is maybe less than
perfect.You also see that this time this is a server error (<faultcode>soap:Server</
faultcode>), as expected. It turns out that you have fine-grained control over
SOAP Faults, and error handling in general.

www.syngress.com

Figure 11.33 Continued

167_C#_11.qxd 12/5/01 10:50 AM Page 618

Web Services • Chapter 11 619

Finally, note that if you call a Web method through a simple HTTP GET (or
POST) request using a Web browser, depending on the exact request, all you may
get could be the bleak browser error page (see Figure 11.35)—another reason to
use SOAP from the very beginning!

Writing a SOAP Client Application
Maybe you’re a little bit tired by now—manually writing Visual Basic scripts to
test your Web Service—and would rather do some pointing and clicking.This is,
in fact, possible using Visual Studio.NET, although you lose some control over
what’s going on by going this route.

Let’s then go ahead and create a Windows Forms–based client application for
the echo Web method of the simpleService Web Service. Close the Visual
Studio.NET solution you may be working on and create a new C# Windows
application by selecting File | New | Project, choosing the entry Windows
Application under the Visual C# Projects folder, and entering
soapExamplesClient as the Name of the project as shown in Figure 11.36.

www.syngress.com

Figure 11.35 Not a Very Informative Error Page

167_C#_11.qxd 12/5/01 10:50 AM Page 619

620 Chapter 11 • Web Services

This will set up the necessary project files, and add a new Windows Form
called form1.cs. Interestingly,Windows Forms applications do not separate design
from code, and you will see references to form elements pop up in your C# code
file, even though Visual Studio.NET goes through some efforts trying to “hide”
those from you.

You need to teach the client to “know” about your Web Service. Go to the
Solution Explorer, right-click the soapExamplesClient project, and select Add
Web Reference. From here you could, for example, query a UDDI registry.
Pretend that you didn’t know what services are available on your machine, and
use the DISCO discovering mechanism exposed under Web References On
Local Web Server in the lower-left part of the Add Web Reference window (see
Figure 11.37).

After a period of reflection, the DISCO file for your server will appear on
the left panel, and the Web Service shows up as Linked Reference Group on the
right panel (see Figure 11.38).

Click on the DISCO file, and get to the next window (see Figure 11.39).
You can see the location of the corresponding WSDL file conveniently dis-

played both within the DISCO file on the left and the listing of Web Services on
the right.You can now click Add Reference and let Visual Studio.NET contact
the Web Service to gather all relevant data about this service through the WSDL
mechanism.

www.syngress.com

Figure 11.36 Setting Up a New C# Windows Forms Application

167_C#_11.qxd 12/5/01 10:50 AM Page 620

Web Services • Chapter 11 621

www.syngress.com

Figure 11.37 The Add Web Reference Window

Figure 11.38 Showing Available Linked Reference Groups through the
DISCO Mechanism

167_C#_11.qxd 12/5/01 10:50 AM Page 621

622 Chapter 11 • Web Services

Note that if DISCO fails you, as it has us a few times, just copy and paste the
WSDL location (http://localhost/soapExamples/simpleService.asmx?wsdl)
directly into the Address input box of the dialog, which is probably the preferred
method anyway.

Let’s see what Visual Studio.NET has done for you: go to the Solution
Explorer, click the Show All Files icon to get into expert mode, expand all
folders under the Web References folder, select simpleService.cs, and click on
the View Code icon (Microsoft does not make this easy!).What you see is
something like Figure 11.40.

What has happened? Visual Studio.NET has generated a proxy class for the
simpleService Web class of the soapExamples Web Service.This proxy allows you to
do a number of things:

■ It has methods to call all methods your referenced Web Service exposes
both through synchronous and asynchronous SOAP requests.

■ All of the SOAP wire communication, including serializing and deserial-
izing data, is done through the proxy, freeing you from a lot of manual
coding.

■ It allows you to work with remote Web Services the way you would
with local objects, including full IntelliSense support.

www.syngress.com

Figure 11.39 Showing Available Web Services through the DISCO
Mechanism

167_C#_11.qxd 12/5/01 10:50 AM Page 622

Web Services • Chapter 11 623

Concretely, it creates the localhost.simpleService class, which has the following
public methods:

■ echo() and arithmeticMean() to call the corresponding Web methods
directly through issuing a (synchronous) SOAP request.

■ Beginecho() and BeginarithmeticMean(), which call the corresponding Web
methods through an asynchronous SOAP request.These methods have as
an input parameter a reference to a System.AsyncCallback delegate which
in turn references the callback method to be called when the asyn-
chronous SOAP request has completed.

■ Finally, Endecho() and EndarithmeticMean() are used to return the value of
SOAP response after completion of an asynchronous SOAP request.

Note that simpleService inherits from the System.Web.Services.Protocols
.SoapHttpClientProtocol class, where all the heavy lifting occurs to make SOAP
calls possible.

www.syngress.com

Figure 11.40 A Web Service Proxy

167_C#_11.qxd 12/5/01 10:50 AM Page 623

624 Chapter 11 • Web Services

WARNING

The Web Services proxy that Visual Studio.NET generates for you has
some shortcomings in Beta2. For instance, it does not support some of
the more standard HTTP codes, such as 302 (Object Moved). In practice,
what this means is that if your Web server sends back an HTTP 302 code,
the proxy will stop running and throw an exception instead of the cor-
rect behavior of following the new URL to the (moved) Web Service. This
scenario is not as remote as you might think, because IIS quite frequently
sends HTTP 302 codes (see, for example, the “State Information in the
Http Header (Cookies)” section later in this chapter).

So, let’s design a form for the echo Web method, like the one shown in
Figure 11.41.

You need to add essentially two lines of code to call the echo Web method, as
shown in Figure 11.42.

www.syngress.com

Figure 11.41 Creating a Web Service Client Form (Form1.cs of
soapExamplesClient)

167_C#_11.qxd 12/5/01 10:50 AM Page 624

Web Services • Chapter 11 625

Figure 11.42 Calling the echo Web Method (in Form1.cs of
soapExamplesClient)

private void callEcho_Click(object sender, System.EventArgs e) {

localhost.simpleService myWebSvc =

new localhost.simpleService();

try {

this.soapReturnEcho.Text =

myWebSvc.echo(this.enterText.Text);

} catch (Exception ex) {

// add error handling here...

}

}

Let Microsoft .NET handle everything else. Running the application, if
everything went well, will give you the picture shown in Figure 11.43.

If you want to run this application outside Visual Studio.NET, you will find
it at the following location: %USERPROFILE% \Visual Studio Projects\
soapExamplesClient\bin\Debug\.

If you were to analyze HTTP traffic between your Web Service client and
server applications using a network monitoring or network tunneling tool, you
would see the exact same SOAP envelopes exchanged that you encountered in
the earlier section “Testing a Web Service Using a Client Script.” For example,
TcpTunnelGui, which is an excellent network tunneling tool that ships as part of
the Apache SOAP implementation, nicely shows the SOAP exchange as depicted
in Figure 11.44.

You can find the complete code for this project on the CD accompanying
this book in the directory soapExamplesClient/.

www.syngress.com

Figure 11.43 A Happy Web Service Client

167_C#_11.qxd 12/5/01 10:50 AM Page 625

626 Chapter 11 • Web Services

Passing Objects
The SoapFormatter class in the System.Runtime.Serialization.Formatters.Soap names-
pace is responsible for serializing and deserializing data according to the SOAP pro-
tocol. It is capable of sending and receiving whole objects, in addition to handling
simple and complex data types, which you have already seen earlier in this chapter.

As an example, let’s construct a simple Web Service that sends performance
counter data to a Web client.The System.Diagnostics namespace contains the
PerformanceCounter class, which is perfect for your purposes.You then simply write a
Web method that takes as arguments the category, counter, and instance names nec-
essary to instantiate a performance counter object, which you then send as a serial-
ized object over SOAP to potential client applications. Note that valid argument
values can be gathered from the Performance Monitor tool that’s part of Windows
2000. In Figure 11.45, you see the few lines of code needed to implement such a
Web method. Simply add the code to your existing soapExamples project.

Figure 11.45 getCounterInfo Web Method (simpleService.asmx.cs)

[SoapDocumentMethodAttribute(Action="getCounterInfo",

RequestNamespace="urn:schemas-syngress-com-soap",

RequestElementName="getCounterInfo",

ResponseNamespace="urn:schemas-syngress-com-soap",

ResponseElementName="getCounterInfoResponse")]

[WebMethod(Description="Returns performance counter information")]

www.syngress.com

Figure 11.44 Tunneling the echo Web Service to Inspect the SOAP Traffic

Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 626

Web Services • Chapter 11 627

public System.Diagnostics.PerformanceCounter getCounterInfo(

string categoryName, string counterName, string instanceName) {

System.Diagnostics.PerformanceCounter perfCounter

= new System.Diagnostics.PerformanceCounter();

perfCounter.CategoryName = categoryName;

perfCounter.CounterName = counterName;

perfCounter.InstanceName = instanceName;

if (perfCounter.CounterType < 0) {

// counter is not a valid counter

throw new Exception("Counter Data Invalid!");

}

return perfCounter ;

}

As shown, you initiate a new PerformanceCounter object using the argument
data, check if you have a valid PerformanceCounter, and then simply return that
object to the calling client.The .NET Framework will then do all the work for
you, serializing the object through using a standard format.

If your Web Service client is itself a Microsoft .NET application, you are truly
in luck, because the client can then receive the Web Service response as a
PerformanceCounter object, and not as just an XML document containing SOAP
data. Here’s how you need to modify the client code:

1. Open again your soapExamplesClient client application in Visual
Studio.NET.

2. Right-click the localhost Web Reference in the Solution Explorer, and
select Update Web Reference, which will add code to call the
getCounterInfo Web method you just created to the client proxy
(see Figure 11.46).

3. Change the Windows Form a little bit to accommodate the
getCounterInfo Web method, as in Figure 11.47.

www.syngress.com

Figure 11.45 Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 627

628 Chapter 11 • Web Services

4. Add the necessary code to call the getCounterInfo Web method (see
Figure 11.48).

www.syngress.com

Figure 11.46 Proxy Code Added for New Performance Counter Web
Method (soapExamplesClient)

Figure 11.47 Adding Elements on the Windows Form for the
getCounterInfo method (Form1.cs in soapExamplesClient)

167_C#_11.qxd 12/5/01 10:51 AM Page 628

Web Services • Chapter 11 629

Figure 11.48 Calling the getCounterInfo Web Method (Form1.cs in
soapExamplesClient)

private void callGetCounterInfo_Click(

object sender, System.EventArgs e) {

localhost.simpleService myWebSvc =

new localhost.simpleService();

try {

this.soapReturnGetCounterInfo.Text =

myWebSvc.getCounterInfo(

this.categoryName.Text,

this.counterName.Text,

this.instanceName.Text).RawValue.ToString();

} catch (Exception ex) {

}

}

Note that the getCounterInfo Web method returns an object of type
PerformanceCounter, as IntelliSense correctly tells us (see Figure 11.49).

www.syngress.com

Figure 11.49 Microsoft’s IntelliSense in Action

167_C#_11.qxd 12/5/01 10:51 AM Page 629

630 Chapter 11 • Web Services

5. After compiling the application, you are now able to expose, say, the size
of available physical memory to the world, as depicted in Figure 11.50.
Obviously, you should probably now secure this Web Service (see the
“Security” section later in this chapter).

If the Web Service client does not run on the Microsoft .NET platform,
however, more work is needed. In this case, as a client application developer, you
can either define a class matching the return type and extend the SOAP deserial-
izer to handle that class type correctly, or as a last resort, you can always manually
parse the SOAP return envelope for the data you are interested in.

To illustrate what’s going on behind the scenes, let’s look at the SOAP enve-
lope passed back to the client in the Web Service response (see Figure 11.51).

Figure 11.51 SOAP Response from getCounterInfo Passing Back Serialized
Object Data

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>

<getCounterInfoResponse xmlns="urn:schemas-syngress-com-soap">

<getCounterInfoResult>

<Site xsi:nil="true"/>

<CategoryName>Memory</CategoryName>

www.syngress.com

Figure 11.50 Exposing Performance Information through a Web
Service

Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 630

Web Services • Chapter 11 631

<CounterName>Available KBytes</CounterName>

<RawValue>25080</RawValue>

</getCounterInfoResult>

</getCounterInfoResponse>

</soap:Body>

</soap:Envelope>

As you see, the various properties of the PerformanceCounter class are serialized
as XML elements, with their values being converted to a string format and added
as text nodes. If you are sending your objects instantiated from your own classes,
you can achieve finer control over how they are being serialized by using the
XmlAttributeAttribute and XmlElementAttribute classes found in the System.Xml
.Serialization namespace. In the same namespace, you also find classes that let you
manipulate the XML namespaces used during the serialization process.

The opposite is also possible: If you already have an XML schema that you
would like SOAP to use for data transfer, you can then take advantage of the
XML Schema Definition Tool xsd.exe, found in %ProgramFiles%\
Microsoft.NET\FrameworkSDK\Bin\, to generate the corresponding .NET
classes to support that schema. However, as you have seen in Chapter 6, there are
some restrictions on what kind of objects can be serialized in Beta 2.

Passing Relational Data
An interesting special case of passing objects over SOAP is passing back data
coming from a relational database, such as DataSets.The .NET SOAP serializer,
which is the piece of code that puts your data in XML format to be sent back
inside a SOAP return envelope, can indeed serialize DataSets out of the box.

Let’s have a look what happens under the hood, by writing a simple Web
method that queries Microsoft’s Northwind database for all data in the Shippers
table and returns a serialized DataSet (note that you cannot serialize a DataTable
using the default serializer).The code is in Figure 11.52, and also on the CD in
directory chapter11/rsTest/.

www.syngress.com

Figure 11.51 Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 631

632 Chapter 11 • Web Services

Figure 11.52 Code to Return a DataSet from the Northwind Database
(rsTest.asmx.cs)

using System;

using System.ComponentModel;

using System.Data;

using System.Data.SqlClient;

using System.Web;

using System.Web.Services;

using System.Web.Services.Protocols;

namespace rsTest

{

[WebServiceAttribute(Namespace="urn:schemas-syngress-com-soap")]

public class rsTest : System.Web.Services.WebService

{

public rsTest() {

}

[SoapDocumentMethodAttribute(Action="returnRS",

RequestNamespace="urn:schemas-syngress-com-soap:rsTest",

RequestElementName="returnRS",

ResponseNamespace="urn:schemas-syngress-com-soap:rsTest",

ResponseElementName="returnRSResponse")]

[WebMethod]

public DataSet returnRS() {

try {

string sqlConnectionString =

"server=(local)\\NetSDK;database=Northwind;User

ID=SA;Password=";

SqlDataAdapter sqlDataAdapter = new SqlDataAdapter(

"SELECT * FROM shippers", sqlConnectionString);

DataSet shippers = new DataSet();

sqlDataAdapter.Fill(shippers, "shippers");

return shippers;

}

www.syngress.com
Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 632

Web Services • Chapter 11 633

catch (Exception e) {

throw e;

}

}

}

}

When you now call the Web method returnRS, you get the SOAP envelope
as in Figure 11.53, which looks complicated indeed! If you study the XML
returned in detail, you will notice that the XML contains an XML Schema defi-
nition section for the DataSet returned, followed by the actual data, which con-
sists of three shipping company records.

Figure 11.53 SOAP Encoded DataSet Returned from Northwind Database

<?xml version="1.0" encoding="utf-8"?>

<DataSet xmlns="urn:schemas-syngress-com-soap">

<xsd:schema id="NewDataSet" targetNamespace=""

xmlns="" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

<xsd:element name="NewDataSet" msdata:IsDataSet="true">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="shippers">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ShipperID"

type="xsd:int" minOccurs="0" />

<xsd:element name="CompanyName"

type="xsd:string" minOccurs="0" />

<xsd:element name="Phone"

type="xsd:string" minOccurs="0" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

www.syngress.com

Figure 11.52 Continued

Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 633

634 Chapter 11 • Web Services

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:schema>

<diffgr:diffgram

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">

<NewDataSet xmlns="">

<shippers diffgr:id="shippers1" msdata:rowOrder="0">

<ShipperID>1</ShipperID>

<CompanyName>Speedy Express</CompanyName>

<Phone>(503) 555-9831</Phone>

</shippers>

<shippers diffgr:id="shippers2" msdata:rowOrder="1">

<ShipperID>2</ShipperID>

<CompanyName>United Package</CompanyName>

<Phone>(503) 555-3199</Phone>

</shippers>

<shippers diffgr:id="shippers3" msdata:rowOrder="2">

<ShipperID>3</ShipperID>

<CompanyName>Federal Shipping</CompanyName>

<Phone>(503) 555-9931</Phone>

</shippers>

</NewDataSet>

</diffgr:diffgram>

</DataSet>

If your client is running Microsoft .NET software, you’re in luck:The client
will automatically reassemble the SOAP response into a DataSet that you can
then use to continue processing. However, there are potential (business!) clients
on the Internet who do not and never will run on a Microsoft platform. For
those, the XML in Figure 11.53 is hard to parse.Theoretically, this should be pos-
sible, because the XML does contain the XML Schema definition needed to
understand and reassemble the data, but in practice, few people would want to
deal with such a monstrosity.

www.syngress.com

Figure 11.53 Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 634

Web Services • Chapter 11 635

Our advice, then, is to shy away from passing data coming from a database as
Microsoft DataSets, unless you really, really know that the only clients ever to
consume your Web Services will be Microsoft clients, running, preferably, on the
.NET platform.

Passing XML Documents
So far we have focused on using Web Services as an RPC (remote procedure call)
mechanism.Although the data being exchanged through SOAP has of course
been in the form of XML documents all along, it was the data being exchanged
and not the XML document as such that we were interested in so far.

There are cases, however, when you will just want to exchange XML docu-
ments between a client and a server; these XML documents could be invoices,
tagged magazine articles, your own custom data encoding scheme, and so on.
Often, these XML documents being exchanged will have an associated schema
against which they will be validated.

The example shown in Figure 11.54 is a simple service that accepts an XML
document and returns the same XML document, adding only an XML attribute
dateProcessed to the XML root element, indicating when the XML was processed.
It is part of the simpleService Web Service.

Figure 11.54 xmlTester Web Method (simpleService.asmx.cs)

01: [SoapDocumentMethodAttribute(Action="xmlTester",

02: RequestNamespace="urn:schemas-syngress-com-soap",

03: ResponseNamespace="urn:schemas-syngress-com-soap",

04: ParameterStyle = SoapParameterStyle.Bare)]

05: [WebMethod(Description="XML echo service that " +

06: "adds a dateProcessed attribute.")]

07: [return: XmlAnyElement]

08: public XmlElement xmlTester(

09: [XmlAnyElement]XmlElement inputXML){

10:

11: inputXML.SetAttribute("dateProcessed",

12: System.DateTime.Now.ToUniversalTime().ToString("r"));

13: return inputXML;

14: }

www.syngress.com

167_C#_11.qxd 12/5/01 10:51 AM Page 635

636 Chapter 11 • Web Services

Note you’ve added the instruction:

ParameterStyle = SoapParameterStyle.Bare

to the SoapDocumentMethodAttribute section (Figure 11.54, line 4), specifying
that the XML document that is the argument for the xmlTester Web method
should appear directly beneath the Body element of the SOAP request envelope,
and that you don’t want an intermediate XML element in the SOAP response
either.

When you run xmlTester through Visual Studio.NET, you will see that this
Web method can be called only through SOAP (see Figure 11.55), which makes
sense because you can’t pass an XML document through a simple HTTP GET
or HTTP POST.

You can test this service by writing a Visual Basic script similar to the ones
you created earlier in this chapter (see Figure 11.56).When running this script,
you can observe the SOAP data exchange taking place as shown in Figures 11.57

www.syngress.com

Figure 11.55 The Overview Page for the xmlTester Web Method

167_C#_11.qxd 12/5/01 10:51 AM Page 636

Web Services • Chapter 11 637

and 11.58. Note the additional attribute dateProcessed in Figure 11.58, shown in
bold, that was added through the Web xmlTester method.

Figure 11.56 VBS Script to Test the xmlTester Web Method (xmlTester.vbs)

myWebService = "http://localhost/soapExamples/simpleService.asmx"

myMethod = "xmlTester"

'** create the SOAP envelope with the request

s = ""

s = s & "<?xml version=""1.0"" encoding=""utf-8""?>" & vbCrLf

s = s & "<soap:Envelope "

s = s & " xmlns:xsi=""http://www.w3.org/2001/XMLSchema-instance"""

s = s & " xmlns:xsd=""http://www.w3.org/2001/XMLSchema"""

s = s & " xmlns:soap=""http://schemas.xmlsoap.org/soap/envelope/"">"

s = s & vbCrLf

s = s & " <soap:Body>" & vbCrLf

s = s & " <rootElement>" & vbCrLf

s = s & " <someNode someAttribute=""random"">" & vbCrLf

s = s & " <someOtherNode>some data</someOtherNode>" & vbCrLf

s = s & " </someNode>" & vbCrLf

s = s & " </rootElement>" & vbCrLf

s = s & " </soap:Body>" & vbCrLf

s = s & "</soap:Envelope>" & vbCrLf

msgbox(s)

set requestHTTP = CreateObject("Microsoft.XMLHTTP")

msgbox("xmlhttp object created")

requestHTTP.open "POST", myWebService, false

requestHTTP.setrequestheader "Content-Type", "text/xml"

requestHTTP.setrequestheader "SOAPAction", myMethod

requestHTTP.Send s

www.syngress.com
Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 637

638 Chapter 11 • Web Services

msgbox("request sent")

set responseDocument = requestHTTP.responseXML

msgbox("http return status code: " & requestHTTP.status)

msgbox(responseDocument.xml)

Figure 11.57 SOAP Request to xmlTester Web Method

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<rootElement>

<someNode someAttribute="random">

<someOtherNode>some data</someOtherNode>

</someNode>

</rootElement>

</soap:Body>

</soap:Envelope>

Figure 11.58 SOAP Response from xmlTester Web Method

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>

<rootElement dateProcessed="Tue, 18 Sep 2001 22:15:55 GMT">

<someNode someAttribute="random">

<someOtherNode>some data</someOtherNode>

www.syngress.com

Figure 11.56 Continued

Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 638

Web Services • Chapter 11 639

</someNode>

</rootElement>

</soap:Body>

</soap:Envelope>

Obviously, this is only the very tip of the iceberg.The ability to send generic
XML documents back and forth is a powerful feature of SOAP. In passing, we
mention that a related standard called SOAP Messages With Attachments
(www.w3.org/TR/SOAP-attachments) defines a way to pass generic files (binary
or text) using SOAP as MIME-encoded attachments. However, the Microsoft
.NET Framework does not currently support this standard.

Working with UDDI
The UDDI registry of Web Services is still in its infancy, and quite frankly, there
are not a lot of useful Web Services out there at the time of writing this book.
But there are some, and as UDDI seems to be the direction the industry is
heading, let’s write a simple client application that calls a publicly available third-
party Web Service that exposes data about climate conditions of international air-
ports.You can find the complete code for this client application in the directory
uddiClient/ in the CD accompanying the book.

You can start by creating a new Windows Forms–based application called
uddiClient. Query the UDDI registry as follows:

1. Go to the Solution Explorer, right-click the uddiClient project, and
select Add Web Reference.

2. Click Microsoft UDDI Directory on the left side of the dialog.

3. Visual Studio.NET will take you to http://uddi.microsoft.com/, and ask
you to enter the name of the business publishing the service. Enter
Cape Clear Software, an early adopter of Web Service technologies
(see Figure 11.59).

4. UDDI will return a page indicating that it has found Web Services pub-
lished by Cape Clear Software (see Figure 11.60), among them the
Airport Weather Check service. Expand that Web Service, and click the
tModel hyperlink. Note that if you are interested in the internal structure
of UDDI, you will usually find the information relevant for you as a
developer under the tModel entries.

www.syngress.com

Figure 11.58 Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 639

640 Chapter 11 • Web Services

www.syngress.com

Figure 11.59 Searching for a Business in the UDDI Directory

Figure 11.60 Selecting a Web Service in UDDI

167_C#_11.qxd 12/5/01 10:51 AM Page 640

Web Services • Chapter 11 641

5. The tModel contains a link to the WSDL, which will show up on the
left panel of the dialog; the right panel tells you that you have one avail-
able (Web) reference (see Figure 11.61).

6. Click Add Reference.This will create the necessary local client proxy
classes to call the AirportWeather Web Service.

WARNING

UDDI support is a recent addition to Visual Studio.NET. In our experience,
the UDDI Wizard lacks robustness and tends to crash a lot, forcing Visual
Studio.NET to restart. You may want to consider using the Wsdl.exe com-
mand-line tool instead.

If you check what has happened in Visual Studio Class View, you see that a
new proxy class com.capescience.www.AirportWeather has been added, with a

www.syngress.com

Figure 11.61 Displaying the WSDL Description of a Third-Party Web
Service in UDDI

167_C#_11.qxd 12/5/01 10:51 AM Page 641

642 Chapter 11 • Web Services

number of methods returning weather-related information of international air-
ports (see Figure 11.62).

You are just interested in temperature information, maybe, so you can set up a
little Windows form to test the service (see Figure 11.62).The code to call the
Web Service is shown in Figure 11.63.

Figure 11.63 Calling the getTemperature Web Method (Form1.cs of
uddiClient)

private void getTemperature_Click(

object sender, System.EventArgs e) {

try {

com.capescience.www.AirportWeather airportWeather =

new com.capescience.www.AirportWeather();

airportTemperature.Text =

www.syngress.com

Figure 11.62 Proxy Classes for the AirportWeather Web Service

Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 642

Web Services • Chapter 11 643

airportWeather.getTemperature(enterAirportCode.Text);

} catch(Exception ex) {

// error handling goes here...

}

}

One question you may be asking is how do we know the semantics of this
Web method? After all, the code block invoking the getTemperature method looks
as in Figure 11.64, that is, the argument to the method is named, rather unfortu-
nately, arg0.

Figure 11.64 The getTemperature Web Method Definition
(AirportWeather.cs of uddiClient)

public string getTemperature(string arg0) {

object[] results = this.Invoke("getTemperature", new object[] {

arg0});

return ((string)(results[0]));

}

Consulting the WSDL description (see file AirportWeather.wsdl) of this
method also doesn’t help, because the authors did not include any <description>
XML elements.The answer, then, is to either contact the business that published
this Web Service (UDDI does include such information), or hope that a Web
page exists out there describing what the Web Service does and what the param-
eters mean. Luckily, in the case of AirportWeather, such a Web page really exists at
www.capescience.com/webservices/airportweather/index.html.

You can now test your application by requesting the current temperature at
New York’s JFK airport, as shown in Figure 11.65. Unfortunately, the authors of
this Web Service want you to use the ICAO rather than the more familiar IATA
airport codes, but you can get your favorite airport’s code at www.ar-group.com/
Airport-Locator.asp.

We note in passing that there’s another slight problem with the Web method,
in that it returns a string that contains all the relevant information, but that is dif-
ficult to parse if all you really want is the temperature information. Returning a
complex XML structure might have been a better design decision.

www.syngress.com

Figure 11.63 Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 643

644 Chapter 11 • Web Services

Finally, let’s look at the data exchanged on the level of the SOAP protocol, as
seen through a TCP tunneling tool: Figure 11.66 shows the SOAP request to
find the current temperature at JFK Airport; Figure 11.67 shows the SOAP
response with the relevant data in bold (72F).

Figure 11.66 SOAP Request to Get the Temperature at JFK

POST /ccgw/GWXmlServlet HTTP/1.1

User-Agent: Mozilla/4.0

(compatible; MSIE 6.0; MS Web Services Client Protocol 1.0.2914.16)

Content-Type: text/xml; charset=utf-8

SOAPAction: "capeconnect:AirportWeather:com.capeclear.

weatherstation.Station#getTemperature"

Content-Length: 630

Expect: 100-continue

Connection: Keep-Alive

Host: localhost

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:tns="http://tempuri.org/"

xmlns:types="http://tempuri.org/encodedTypes"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body

soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<q1:getTemperature xmlns:q1="capeconnect:AirportWeather:com.

www.syngress.com

Figure 11.65 The AirportWeather Web Service in Action

Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 644

Web Services • Chapter 11 645

capeclear.weatherstation.Station">

<arg0 xsi:type="xsd:string">KJFK</arg0>

</q1:getTemperature>

</soap:Body>

</soap:Envelope>

Figure 11.67 SOAP Response with the Temperature at JFK

HTTP/1.0 200 OK

Content-Type: text/xml; charset=UTF-8

Content-Length: 601

SOAPAction: "capeconnect:AirportWeather:com.capeclear.

weatherstation.Station#getTemperature"

Servlet-Engine: CapeConnect/2.1 (Orcas/4.3; Tomcat Web Server/3.2.1)

<?xml version="1.0"?>

<SOAP-ENV:Envelope

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<cc1:getTemperatureResponse xmlns:cc1="capeconnect:

AirportWeather:com.capeclear.weatherstation.Station">

<return xsi:type="xsd:string">The Temperature at New York,

Kennedy International Airport, NY, United States is

72.0 F (22.2 C)

</return>

</cc1:getTemperatureResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

www.syngress.com

Figure 11.66 Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 645

646 Chapter 11 • Web Services

SOAP Headers
Similar to the way the HTTP protocol has a header section that contains general
information about the request and a body section that contains specific applica-
tion data relevant to the request, the SOAP protocol specifies that the SOAP
envelope has both a header and a body section. So far, you have only seen exam-
ples of SOAP requests (and responses) that had Body elements, but no Header ele-
ments.That’s because a SOAP Body element is required, whereas a SOAP Header
element is not. In fact, SOAP headers were designed to give SOAP an extension
mechanism.

The SOAP Header element appears right underneath the SOAP Envelope ele-
ment, and you’re free to define your header name and header value, and what it
means to have such a SOAP header present.As an example, you could encode
transaction information in a SOAP header. In the “Maintaining State” section to
follow, we show you a possible usage of SOAP headers as a mechanism to estab-
lish a notion of a client session, and we discuss what classes in the .NET
Framework you have to use to handle SOAP headers.

Advanced Web Services
Web Services were designed to be, above all, simple—simple to implement, and
simple to use. Simplicity has its price, however, and there are a variety of features
that you won’t find in Web Services—features that are part of older, more estab-
lished data exchange protocols, such as COM/DCOM or CORBA. Such fea-
tures include state management, security, and transaction processing.

You need to realize that programming on the Internet is different than pro-
gramming on a private network. Expecting the two to be the same would be
wrong.You don’t have the same level of control on the Internet that you have on
a local area network, and it is clear that data communication on the Internet will
mean having less direct control, and allowing for more things to go wrong.You
should therefore not expect to be able to implement a complex real-time transac-
tional system involving ten transaction partners using SOAP—at least not today.

Let’s look at two problem areas you are likely to encounter when developing
real-world Web Services. First, the question of whether to maintain state or not,
and if yes, how, and secondly how to handle security.

www.syngress.com

167_C#_11.qxd 12/5/01 10:51 AM Page 646

Web Services • Chapter 11 647

Maintaining State
Our suggestion is to not try to introduce state in Web Service applications, at
least for the time being. If you consider where state has traditionally been intro-
duced in Web applications, the most prominent area is probably in e-commerce
with the usage of so-called shopping carts. Clearly, you should not try to write a
Web Service shopping cart application.Another area is security.We discuss secu-
rity later in the chapter, but good alternatives exist to having explicitly stateful
applications in that area as well. In all other areas, introducing state is almost
always a bad idea. Considering that Web Services were designed to let distributed
systems talk to each other in a loosely coupled way, state just doesn’t seem to fit the
picture quite right from an architectural point of view. Still, you have a variety of
options to add state, which we discuss next.

Let’s first briefly review the options you have in architecting stateful Web
applications.

HTTP, the protocol underlying Web applications, is an inherently stateless
protocol.A client issues a request against a server, which in turn issues a response.
Every client request is seen by the server as a new request, not connected to any
previous request.Technically, the client issues an HTTP request by opening a
TCP/IP socket connection to the server, issues a request using the HTTP pro-
tocol, gets some data from the server, and then closes the socket.The next HTTP
request will be issued using a new TCP/IP socket connection, making it impos-
sible for the server to understand, on the protocol level, that the second request
may really be the continuation of the first request. Note that the keep-alive func-
tion in HTTP does not change this picture, because it is geared mainly towards
making the retrieval of Web pages containing many individual page elements
more efficient, but it does not guarantee in any way that a network connection
to the server is maintained over any longer period of time.

Introducing state means that you add logic on the server to be able to relate a
previous request from a particular client to a subsequent request from the same
client.This is being done by introducing information that identifies a particular
client to the HTTP request and response data, and developing application level
code that makes sense of that additional data. Saying that a client establishes a ses-
sion with a server just means that you have application logic that connects several
client requests to a logical session using that additional information, even though,
because of the nature of the HTTP protocol, there is no physical equivalent to a
session (i.e., no ongoing network connection over the lifetime of a client-server
interaction).

www.syngress.com

167_C#_11.qxd 12/5/01 10:51 AM Page 647

648 Chapter 11 • Web Services

Looking at the HTTP protocol, there are three places where you may add
state information identifying a client:

■ The URL against which the request is issued (the first line in an HTTP
request)

■ The header part of an HTTP request (including cookies)

■ The body part of an HTTP request

And the two latter possibilities hold for HTTP responses as well.We look at
some examples in the following sections.You can find the code about main-
taining state in the directory sessionTest/ on the CD that comes with this book.

State Information in the URL (URL Mangling)
You can maintain state information by adding a unique client session identifier to
the URL. Microsoft’s Passport service uses this method to assign and maintain
client session authentication information.ASP.NET natively supports this method
through a configuration entry in the config.web file.The advantage of this
method is that it is very scalable, supports Web farms and Web gardens, can be
configured to survive IIS restarts without losing session information, and that you
have the option of saving client information on an external SQL Server database.
Technically, what happens is that a Web application that is configured to map
state information to URLs will redirect a new incoming client request using an
HTTP 302 status code (Found) to a new URL that contains a session identifier.
Here’s how it works:

1. Set the cookieless attribute of the session element in the web.config
ASP.NET configuration file to True.

2. Create a new Web method with an attribute EnableSession set to
True, and use the System.Web.HttpContext.Current.Session object (or
Web.Service.Session, which amounts to the same object):

[WebMethod(EnableSession=true)]

public string sessionTest__URL() {

if (Session["HitCounter"] == null) {

Session["HitCounter"] = 1;

} else {

Session["HitCounter"] = ((int) Session["HitCounter"]) + 1;

}

www.syngress.com

167_C#_11.qxd 12/5/01 10:51 AM Page 648

Web Services • Chapter 11 649

return (Session["HitCounter"].ToString());

}

Let’s look what happens on the HTTP protocol level if a client calls this
method twice.You can look at the HTTP data exchange by using a TCP tun-
neling tool. Here we have used TcpTunnelGui, which ships as part of the Apache
Project’s SOAP implementation, but you can, of course, easily write your own
TCP tunnel program using the .NET Framework (do it—it’s a great exercise!).

You can call the Web Service through a simple HTTP GET request (we
ignore some of the irrelevant HTTP headers). In the first call, the client issues an
HTTP GET:

GET /sessionTest/sessionTest.asmx/sessionTest__URL HTTP/1.1

Host: localhost

Connection: Keep-Alive

Server issues an HTTP 302 (Moved) to a URL that contains the session
identifier:

HTTP/1.1 302 Found

Server: Microsoft-IIS/5.0

Date: Wed, 12 Sep 2001 22:14:21 GMT

Location: /sessionTest/(bf33go2yvicwfhbragscdwvu)/

sessionTest.asmx/sessionTest__URL

Cache-Control: private

Content-Type: text/html; charset=utf-8

Content-Length: 176

<html><head><title>Object moved</title></head><body>

<h2>Object moved to

<a href='/sessionTest/(bf33go2yvicwfhbragscdwvu)/

sessionTest.asmx/sessionTest__URL'>

here.</h2></body></html>

Client reissues an HTTP GET for the new URL:

GET /sessionTest/(bf33go2yvicwfhbragscdwvu)/

sessionTest.asmx/sessionTest__URL HTTP/1.1

Host: localhost

www.syngress.com

167_C#_11.qxd 12/5/01 10:51 AM Page 649

650 Chapter 11 • Web Services

Connection: Keep-Alive

Server send back the SOAP response:

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Date: Wed, 12 Sep 2001 22:14:21 GMT

Cache-Control: private, max-age=0

Content-Type: text/xml; charset=utf-8

Content-Length: 96

<?xml version="1.0" encoding="utf-8"?>

<string xmlns="urn:schemas-syngress-com-soap">1</string>

In the second call, the client issues an HTTP GET (using the modified
URL):

GET /sessionTest/(bf33go2yvicwfhbragscdwvu)/

sessionTest.asmx/sessionTest__URL HTTP/1.1

Host: localhost

Connection: Keep-Alive

The server responds, incrementing the session hit counter:

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Date: Wed, 12 Sep 2001 22:14:30 GMT

Cache-Control: private, max-age=0

Content-Type: text/xml; charset=utf-8

Content-Length: 96

<?xml version="1.0" encoding="utf-8"?>

<string xmlns="urn:schemas-syngress-com-soap">2</string>

So far, so good.The problem with implementing session state for Web Services
this way is that you need to teach your Web Service client application two things:

■ They need to follow HTTP 302 messages.

■ When issuing a follow-up request, they should either use relative URLs,
or they should remember changed URLs through HTTP 302 codes.

www.syngress.com

167_C#_11.qxd 12/5/01 10:51 AM Page 650

Web Services • Chapter 11 651

Both constraints are hard to implement, and somewhat contrary to the
underpinnings of the Web Services philosophy. Basically, you require your Web
Service clients to be very smart, as smart, indeed, as a Web browser is. None of
the current Web Service clients is currently capable of supporting this function-
ality, and that includes the .NET Web Service proxy.

State Information in the Http Header (Cookies)
You can add state information in additional HTTP headers.This is used in two
common scenarios:

■ Authentication The various authentication schemes, such as Basic
Authentication,Windows NTLM-based authentication, Kerberos-based
authentication, and others, work by sending an additional Authentication
header element between client and server.Typically, the client sends cre-
dential information to the server, which then verifies the information
received, may ask for additional information, and finally answers by
returning a session key (which is still sent in the Authentication header
field), that is then used by all subsequent client requests to access pro-
tected server resources.

■ Cookies Cookies are pieces of data that are persisted on the client
computer.They are stored and received using an additional HTTP
header element called Cookie.

ASP.NET has improved session handling using cookies; similarly to the
“cookieless” session management explained in the preceding section, it now sup-
ports cookie-based sessions that scale well, support Web farms and Web gardens,
and it can save client information away in a remote database out-of-the-box. Let’s
look at an example using cookies to store state information:

1. Set the cookieless attribute of the session element in the web.config
ASP.NET configuration file to False.

2. Create a new Web method with an attribute EnableSession set to
True, and use the System.Web.HttpContext.Current.Session object (or use
the Web.Service.Session object):

[WebMethod(EnableSession=true)]

public string sessionTest__httpHeader() {

if (Session["HitCounter"] == null) {

Session["HitCounter"] = 1;

www.syngress.com

167_C#_11.qxd 12/5/01 10:51 AM Page 651

652 Chapter 11 • Web Services

} else {

Session["HitCounter"] = ((int) Session["HitCounter"]) + 1;

}

return (Session["HitCounter"].ToString());

}

Let’s look what happens on the HTTP protocol level if a client calls this
method twice.You can call the Web Service through a simple HTTP GET
request (we ignore some of the irrelevant HTTP headers). In the first call, the
client issues an HTTP GET:

GET /sessionTest/sessionTest.asmx/sessionTest__httpHeader HTTP/1.1

Host: localhost

Connection: Keep-Alive

The server sends back the SOAP response, including a Cookie header
requesting the client to set a session cookie:

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Date: Thu, 13 Sep 2001 17:58:09 GMT

Transfer-Encoding: chunked

Set-Cookie: ASP.NET_SessionId=znbmf0mqcufv4p45s204wp45; path=/

Cache-Control: private, max-age=0

Content-Type: text/xml; charset=utf-8

<?xml version="1.0" encoding="utf-8"?>

<string xmlns="urn:schemas-syngress-com-soap">1</string>

In the second call, the client issues an HTTP GET, and sends the session
Cookie header received form the server in the previous call:

GET /sessionTest/sessionTest.asmx/sessionTest__httpHeader HTTP/1.1

Host: localhost

Connection: Keep-Alive

Cookie: ASP.NET_SessionId=znbmf0mqcufv4p45s204wp45

The server responds, incrementing the session hit counter (the Cookie header
is not sent again, because the server retrieved the Cookie header in the HTTP

www.syngress.com

167_C#_11.qxd 12/5/01 10:51 AM Page 652

Web Services • Chapter 11 653

request from the client, so it knows that the client honored its cookie request
from the first response):

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Date: Thu, 13 Sep 2001 17:58:20 GMT

Cache-Control: private, max-age=0

Content-Type: text/xml; charset=utf-8

Content-Length: 96

<?xml version="1.0" encoding="utf-8"?>

<string xmlns="urn:schemas-syngress-com-soap">2</string>

However, if you want to encode session state information into cookies, you
need to insist that all your Web Service clients are capable of handling cookies cor-
rectly. Only very few potential consumers will probably be willing to add that
functionality to their client applications because, again, cookies really belong into
the domain of Web browsers, and seem strange in a Web Service client application.

On the other hand, you could certainly add session state information in a
custom HTTP header (maybe called webState?).This would require manually
adding code to both the Web Service server to clients to correctly handle that
additional header element. Even worse,WSDL, the Web Service description
format, has no provisions to support such new, required HTTP headers.

State Information in the Http Body (SOAP Header)
The last possibility, finally, is to embed state information into the HTTP body
itself.This method really only makes sense if you use SOAP to call your Web
Service (as opposed to issuing simple HTTP GET or POST requests).

SOAP indeed does have the option of adding custom SOAP headers into the
SOAP envelope. Note that a SOAP header is not the same as an HTTP header; it
is a header relative to the SOAP message, that is it appears within the HTTP
body, inside the SOAP envelope.

There is currently no support for keeping client state information in SOAP
headers in ASP.NET, so you need to do everything yourself. Let’s try then to
re-create a simple hit counter using SOAP headers.You need to implement the
following:

■ Name your SOAP header element: call it webState.

www.syngress.com

167_C#_11.qxd 12/5/01 10:51 AM Page 653

654 Chapter 11 • Web Services

■ Create a class that can handle your SOAP header on the server.

■ Create a class on the server that records and maintains all client sessions,
using a static hash table.

Let’s look at the server code (see Figure 11.68).

Figure 11.68 Implementing a Hit Counter Using SOAP Headers

01: using System;

02: using System.Collections;

03: using System.ComponentModel;

04: using System.Data;

05: using System.Diagnostics;

06: using System.Web;

07: using System.Web.Services;

08: using System.Web.Services.Protocols;

09: using System.Runtime.InteropServices;

10:

11: namespace sessionTest {

12: [WebServiceAttribute(

13: Namespace="urn:schemas-syngress-com-soap")]

14: public class sessionTest : System.Web.Services.WebService {

15: public sessionTest() {

16: }

17:

18: protected override void Dispose(bool disposing) {

19: }

20:

21: public class soapHeader : SoapHeader {

22: public string webState;

23: }

24:

25: public soapHeader mySoapHeader;

26: public static Hashtable userSessions = new Hashtable();

27:

28: [SoapDocumentMethodAttribute(Action="sessionTest__soapHeader",

www.syngress.com

Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 654

Web Services • Chapter 11 655

29: RequestNamespace=

30 "urn:schemas-syngress-com-soap:sessionTestst",

31: RequestElementName="sessionTest__soapHeader",

32: ResponseNamespace=

33 "urn:schemas-syngress-com-soap:sessionTestst",

34: ResponseElementName="sessionTest__soapHeaderResponse")]

35: [SoapHeader("mySoapHeader",Direction=SoapHeaderDirection.InOut,

36: Required=true)]

37: [WebMethod]

38: public string sessionTest__soapHeader() {

39: // declare user session hit counter

40: int hitCounter;

41: // declare session identifier

42: string sessionID;

43:

44: if ((mySoapHeader.webState == null) ||

45: (mySoapHeader.webState.Trim().Length < 1)){

46: // create a new random session identifier

47: sessionID = System.Guid.NewGuid().ToString().ToUpper();

48: hitCounter = 1;

49: // create a new user session, and set hit counter to one

50: userSessions.Add(sessionID, hitCounter);

51: // return session identifier to user

52: mySoapHeader.webState = sessionID;

53: } else {

54: // valid user session?

55: sessionID = mySoapHeader.webState.ToString().Trim();

56: if(userSessions[sessionID] != null) {

57: // get session hit counter

58: hitCounter = (int)userSessions[sessionID];

59: // save away incremented session hit counter

60: userSessions[sessionID] = ++hitCounter;

61: } else {

www.syngress.com

Figure 11.68 Continued

Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 655

656 Chapter 11 • Web Services

62: // session identifier passed was invalid

63: // throw error

64: throw new Exception("Invalid session identifier

passed!");

65: }

66: }

67: // return session counter

68: return hitCounter.ToString();

69: }

70:

71: }

72: }

Note the following important elements in the code shown in Figure 11.68:

■ It includes a class soapHeader (line 21–23), which extends
System.Web.Services.Protocols.SoapHeader, with a public string variable
called webState (line 22), which is the SOAP header that should contain
your client state identifier.The code calls the corresponding Web Service
class instance variable mySoapHeader (line 25).

■ The code includes a static hash table called userSessions, which will con-
tain the collection of all client sessions (line 26).

■ It includes the Web method sessionTest__soapHeader (line 38) with the
attribute SoapHeader, (lines 35–36), where you specify that you require the
webState SOAP header, and that this SOAP header is bidirectional.This
means that if a client does not send you this SOAP header, the .NET
Framework will send a SOAP fault to the client, and you don’t need to
code for that possibility yourself.

■ Because you want to tell your clients what session identifier to use in
subsequent requests, you return the new session identifier in the same
webState SOAP header (line 68).

On the client side, because you require the presence of the webState SOAP
header, you need to initialize this header before issuing the SOAP request.
That is, if you write a client using Web references, your call to the
sessionTest__soapHeader Web method will look like this:

www.syngress.com

Figure 11.68 Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 656

Web Services • Chapter 11 657

testClient.localhost.sessionTest myClient =

new sessionTestClient.localhost.sessionTest();

myClient.soapHeaderValue = new testClient.localhost.soapHeader();

string result = myClient.sessionTest__soapHeader();

The following code is a sample client server interaction using the SOAP protocol
(ignoring HTTP headers). In the first call, the client issues an SOAP request,
leaving the webState SOAP header empty:

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>

<soapHeader xmlns="urn:schemas-syngress-com-soap">

<webState></webState>

</soapHeader>

</soap:Header>

<soap:Body>

<sessionTest__soapHeader

xmlns="urn:schemas-syngress-com-soap:sessionTest">

</sessionTest__soapHeader>

</soap:Body>

</soap:Envelope>

The server sends back the SOAP response, including the webState SOAP
header element with the new session identifier:

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>

<soapHeader xmlns="urn:schemas-syngress-com-soap">

<webState>{45D345B6-BE1F-434F-BFD7-D628C756A432}</webState>

</soapHeader>

</soap:Header>

www.syngress.com

167_C#_11.qxd 12/5/01 10:51 AM Page 657

658 Chapter 11 • Web Services

<soap:Body>

<sessionTest__soapHeaderResponse

xmlns="urn:schemas-syngress-com-soap:sessionTestst">

<sessionTest__soapHeaderResult>1</sessionTest__soapHeaderResult>

</sessionTest__soapHeaderResponse>

</soap:Body>

</soap:Envelope>

In the second call, the client issues another SOAP request, and sends the ses-
sion identifier in the webState SOAP header received form the server in the pre-
vious response:

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>

<soapHeader xmlns="urn:schemas-syngress-com-soap">

<webState>{45D345B6-BE1F-434F-BFD7-D628C756A432}

</webState>

</soapHeader>

</soap:Header>

<soap:Body>

<sessionTest__soapHeader

xmlns="urn:schemas-syngress-com-soap:sessionTest">

</sessionTest__soapHeader>

</soap:Body>

</soap:Envelope>

The server responds, incrementing the session hit counter:

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>

<soapHeader xmlns="urn:schemas-syngress-com-soap">

www.syngress.com

167_C#_11.qxd 12/5/01 10:51 AM Page 658

Web Services • Chapter 11 659

<webState>{45D345B6-BE1F-434F-BFD7-D628C756A432}</webState>

</soapHeader>

</soap:Header>

<soap:Body>

<sessionTest__soapHeaderResponse

xmlns="urn:schemas-syngress-com-soap:sessionTestst">

<sessionTest__soapHeaderResult>2</sessionTest__soapHeaderResult>

</sessionTest__soapHeaderResponse>

</soap:Body>

</soap:Envelope>

If you look at the WSDL description of this Web Service, shown in Figure
11.69, notice that it requests the client to send a webState SOAP header, and that
this header is required. However, as always, the WSDL file does not contain
semantic information helping a client to send a correct request. In other words,
although it does instruct clients to include this SOAP header, it does not tell
them what it means, or how to properly use it.This is a task that you, as a devel-
oper, have to do.

Also, note that the WSDL file does not contain HTTP GET and HTTP
POST bindings for this Web Service.This is because those two methods of calling
Web Services do not work when SOAP headers are required.

Figure 11.69 WSDL Description of the sessionTest__soapHeader Web Method

<?xml version="1.0" encoding="utf-8"?>

<definitions xmlns:s="http://www.w3.org/2001/XMLSchema"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:s0="urn:schemas-syngress-com-soap:sessionTest"

xmlns:s1="urn:schemas-syngress-com-soap"

targetNamespace="urn:schemas-syngress-com-soap"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

www.syngress.com

Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 659

660 Chapter 11 • Web Services

<s:schema attributeFormDefault="qualified"

elementFormDefault="qualified"

targetNamespace="urn:schemas-syngress-com-soap:sessionTest">

<s:element name="sessionTest__soapHeader">

<s:complexType />

</s:element>

<s:element name="sessionTest__soapHeaderResponse">

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1"

name="sessionTest__soapHeaderResult"

nillable="true" type="s:string" />

</s:sequence>

</s:complexType>

</s:element>

</s:schema>

<s:schema attributeFormDefault="qualified"

elementFormDefault="qualified"

targetNamespace="urn:schemas-syngress-com-soap">

<s:element name="soapHeader" type="s1:soapHeader" />

<s:complexType name="soapHeader">

<s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="webState"

nillable="true" type="s:string" />

</s:sequence>

</s:complexType>

<s:element name="string" nillable="true" type="s:string" />

</s:schema>

</types>

<message name="sessionTest__soapHeaderSoapIn">

<part name="parameters" element="s0:sessionTest__soapHeader" />

</message>

<message name="sessionTest__soapHeaderSoapOut">

www.syngress.com

Figure 11.69 Continued

Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 660

Web Services • Chapter 11 661

<part name="parameters"

element="s0:sessionTest__soapHeaderResponse" />

</message>

<message name="sessionTest__soapHeadersoapHeader">

<part name="soapHeader" element="s1:soapHeader" />

</message>

<portType name="_sessionTestSoap">

<operation name="sessionTest__soapHeader">

<input message="s1:sessionTest__soapHeaderSoapIn" />

<output message="s1:sessionTest__soapHeaderSoapOut" />

</operation>

</portType>

<binding name="_sessionTestSoap" type="s1:_sessionTestSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document" />

<operation name="sessionTest__soapHeader">

<soap:operation soapAction="sessionTest__soapHeader"

style="document" />

<input>

<soap:body use="literal" />

<soap:header n1:required="true"

message="s1:sessionTest__soapHeadersoapHeader" part="soapHeader"

use="literal" xmlns:n1="http://schemas.xmlsoap.org/wsdl/" />

</input>

<output>

<soap:body use="literal" />

<soap:header n1:required="true"

message="s1:sessionTest__soapHeadersoapHeader" part="soapHeader"

use="literal" xmlns:n1="http://schemas.xmlsoap.org/wsdl/" />

</output>

</operation>

</binding>

<service name="_sessionTest">

www.syngress.com

Figure 11.69 Continued

Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 661

662 Chapter 11 • Web Services

<port name="_sessionTestSoap" binding="s1:_sessionTestSoap">

<soap:address=location="

http://localhost/sessionTest/sessionTest.asmx" />

</port>

</service>

</definitions>

Again, we recommend you think twice (ten times?) before programming
stateful Web Services. If you decide to go ahead introducing state, we would
advise doing it through SOAP headers, because it seems to be the most natural
option you have, and because it is reflected in the WSDL description of your Web
Service.

The preceding example should give you a good starting point. However, as
you no doubt noticed, the example still needs a bit of work, in particular:

■ Although you can add new user sessions, you should have code that is
capable of deleting user session information after a certain amount of
time (otherwise your memory will eventually fill up to capacity).

■ It would be nice to be able to persist user information in a database like
MS SQL, the way ASP.NET can do it, and then add a trigger to go off
after a specified amount of time cleaning the expired sessions.

■ You should add functionality to support Web farms and Web gardens
(which, again,ASP.NET does support).

Security
The SOAP specification does not touch security.You can look at this as a plus,
because it keeps the standard small and implementable. RPC protocols that do
define security, such as CORBA and COM/DCOM are far more complicated,
harder to implement, and don’t work well on the Internet. On the other hand, as
a developer, you obviously shouldn’t ignore security altogether. In the end, you
have two possibilities:

■ Leverage the security features made available by IIS and ASP.NET.

■ Do it yourself.

www.syngress.com

Figure 11.69 Continued

167_C#_11.qxd 12/5/01 10:51 AM Page 662

Web Services • Chapter 11 663

If you go with the first option, you can secure your Web Services by using
the security features of IIS, such as Basic Authentication (probably over SSL),
NTLM, or Kerberos-based authentication if you are on an intranet, or authenti-
cation-based on Public Key Cryptography (PKC) using client certificates.The
latter is particularly interesting for Windows 2000 developers because Active
Directory allows you to automatically map client certificates to user accounts if
your certificates are issued by a Windows 2000 Certificate Server that’s a member
of your enterprise domain forest. Note that for this to work, your clients don’t
need to run on a Windows platform.

Additionally, you can use features provided by ASP.NET on top of what you
can do on the HTTP protocol level.ASP.NET allows you to use Microsoft
Passport to authenticate users, although you will have to pay licensing fees if you
want to go down this route. Note that .NET myServices (previously code-named
Hailstorm), Microsoft’s own Web Service offering in the making, is based on
Passport.

ASP.NET also allows you to grant and deny users of your services every
imaginable kind of rights once they have been authenticated (this is called
authorization).

Yet another interesting option is to use SOAP Digital Signature.Also based
on PKC, it enables you to digitally sign the body of a SOAP envelope and to
include the signature information in a special SOAP header.This does not actu-
ally encrypt the SOAP message, but it does guarantee its integrity, that is, you
know that nobody has changed its content as it traveled from one machine to
another. See www.w3.org/TR/SOAP-dsig/ for more information.

Security in the context of Web Services is still very much an evolving area
and is currently far from well understood.You can find more information in an
article that recently appeared in XML-Journal (“Securing and Authenticating
SOAP Based Web Services,” by M. Moore and A.Turtschi, XML-Journal, volume
2, issue 9).

www.syngress.com

167_C#_11.qxd 12/5/01 10:51 AM Page 663

664 Chapter 11 • Web Services

Summary
Web Services is a new technology designed primarily to facilitate communica-
tions between enterprises on the Internet.Web Services are supported by all
major software vendors, and are based on Internet standards:

■ HTTP as the network protocol (among others)

■ XML to encode data

■ SOAP as the wire transport protocol

■ WSDL to describe Web Service syntax

■ UDDI to publish Web Service information

Microsoft’s .NET Framework is based on Web Services, and Visual
Studio.NET is an excellent platform to develop Web Services.Web Services are
different from previous technologies used to create distributed systems, such as
COM/DCOM, in that:

■ They use open standards.

■ They were designed from the ground up to work on the Internet,
including working well with corporate firewalls.

■ They use a “simple” protocol not requiring multiple round trips to the
server.

■ They purposefully don’t address advanced features such as security or
transaction support as part of the protocol specification.

We showed you a variety of examples of Web Services exchanging simple and
complex types of data. In addition to using SOAP based Web Services as an RPC
(Remote Procedure Call) mechanism, you can use SOAP to exchange any type
of XML documents.We explained the basic structure of the SOAP protocol:
SOAP exchanges an XML document called a SOAP Envelope, which has two
parts:

■ The SOAP Header, which is designed to be extended to include appli-
cation-specific metadata, such as security- or session-related identifiers.

■ The SOAP Body, which contains the necessary information to find a
class and method on the server to handle the Web Service request, in
addition to parameter data that may be necessary to process such a
request.

www.syngress.com

167_C#_11.qxd 12/5/01 10:51 AM Page 664

Web Services • Chapter 11 665

The SOAP specification defines a number of XML encoding schemes for dif-
ferent data types, such as strings, integers, floats, arrays, enumerations, and so on.
SOAP also includes a mechanisms for error handling.

We showed you how to call Web Services using standalone Visual Basic
scripts, client-side script in a Web browser, and through creating Windows
Forms–based applications.Visual Studio.NET includes tools that create client
proxies for (remote) Web Services for you, greatly simplifying the effort of devel-
oping Web Service client applications.

Finally, we talked about two advanced topics that are not directly part of the
Web Services standards, but that are nevertheless important for developers,
namely security and state management.We recommend to use standard security
mechanisms such as SSL and public key cryptography, and to forgo state manage-
ment until Web Service clients are more robust.

Solutions Fast Track

The Case for Web Services

Web Services are a new Internet standard, supported by all major
vendors, to facilitate data exchange across system boundaries.

Standards include a wire protocol (SOAP), a way to describe services
(WSDL), and a way to publish services (UDDI).

Web Service Standards

Web Services are classes that extend System.Web.Services.WebService.

A method becomes a Web method by decorating it with
[System.Web.Services.WebMethod].

Visual Studio.NET includes a powerful debugger.

Once you are in debug mode, external programs calling your Web
Service will go through the debugger.

Writing a Visual Basic script to call your Web Service through SOAP is a
fast, easy way to test your application.

Visual Studio.NET tells you the correct format of the SOAP request
envelope when you open the Web Service overview page:

www.syngress.com

167_C#_11.qxd 12/5/01 10:51 AM Page 665

666 Chapter 11 • Web Services

http://serverName/webServiceProjectName/
webServiceName?op=webMethodName.

Working with Web Services

SOAP can encode arrays, enumerations, and so on.You are rarely directly
exposed to the complexities of the underlying protocols because Visual
Studio.NET does most of the work for you.

Error handling is seamless. Microsoft .NET lets you work with SOAP
errors the way you work with any other exceptions.

Adding a Web reference lets you use remote Web Services the way you
would use local objects, including IntelliSense support, hiding all
complexities of SOAP from you.

Visual Studio.NET will automatically add client proxy code into your
solution.

You add a Web reference by pointing to the WSDL description of the
Web Service.

You can find WSDL files through DISCO or UDDI.

SOAP lets you pass instantiated objects between clients and servers. If
both the client and the server application run on the .NET platform, the
communication is seamless.

You can pass any kind of XML through SOAP.This is particularly
relevant for interenterprise and third-party integration applications.

Visual Studio.NET integrates nicely with UDDI.You can find third-
party Web Services and add them to your solutions without ever leaving
the development environment.

Advanced Web Services

SOAP itself does not contain a state management mechanism.

Web Services should be stateless, even more so than traditional Web
applications.

If you really do need state information, you may want to look into using
SOAP headers.

www.syngress.com

167_C#_11.qxd 12/5/01 10:51 AM Page 666

Web Services • Chapter 11 667

The SOAP protocol does not address security.

Use the mechanisms provided by the underlying network protocols, such
as encrypting your network channel (HTTPS) and using Public Key
Cryptography (certificates).

Q: Can I consume Web Services in .NET that have been written in other
languages?

A: That’s the idea! Web Services define a standard to pass data between heteroge-
neous systems over the Internet. If you are writing a Web Service client in
.NET, you don’t have to worry what language the Web Service you are con-
suming has been written in, or on what platform it is running.

Q: Can Web Services pass binary data efficiently?

A: Yes and no.Web Services are based on XML, and thus the emphasis is maybe
more on textual data.You can add binary data as CDATA sections in your
XML documents you are sending. However, probably a better way is to add
binary data as MIME-encoded attachments to your SOAP calls (see the pro-
posed SOAP Messages With Attachments standard at
www.w3.org/TR/SOAP-attachments). Note, though, that .NET Web
Services do not currently support attachments out of the box. If you are
sending large amounts of binary data, you may want to look into compressing
the data you are sending.

Q: Is registration to UDDI free?

A: Yes, at the moment it is.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

167_C#_11.qxd 12/5/01 10:51 AM Page 667

668 Chapter 11 • Web Services

Q: Where can I find more information about the business case for Web Services,
and how Web Services compare with other distributed technologies such as
COM/DCOM, CORBA, and EJBs?

A: A good starting point is Orchestra Network’s white paper at
www.orchestranetworks.com/us/solutions/0105_whitepaper.cfm.

Q: Where can I find more examples of Web Services?

A: Visit Visual Studio.NET’s CodeSwap site at www.vscodeswap.com/.
XMethods has a large repository of publicly available Web Services at
www.xmethods.net/.

Q: Where can I find a list of SOAP implementations?

A: Paul Kulchenko maintains a list on his Perl::Lite site at
www.soaplite.com/#Toolkits.

Q: Where can I find more information about how the various implementations
of SOAP-based Web Services interoperate?

A: XMethods maintains the SOAPBuilders Interoperability Lab at
www.xmethods.net/ilab/.You can also find an excellent overview article
discussing the various aspects of interoperability at www-106.ibm.com/
developerworks/webservices/library/ws-asio/?dwzone=webservices.

www.syngress.com

167_C#_11.qxd 12/5/01 10:51 AM Page 668

Building a Jokes
Web Service

Solutions in this chapter:

■ Motivation and Requirements for the
Jokes Web Service

■ Functional Application Design

■ Implementing the Jokes Data Repository

■ Implementing the Jokes Middle Tier

■ Creating a Client Application

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 12

669

167_C#_12.qxd 12/5/01 11:20 AM Page 669

670 Chapter 12 • Building a Jokes Web Services

Introduction
In this chapter, we show you—step-by-step—how to build a real-world Web
Service, using all the tools and techniques covered in the previous chapters.This
Web Service case study will take you through all the important factors to be con-
sidered when creating a Web Service application.Together, we create a two-tier
Web Service consisting of the following:

■ A business logic layer (middle tier) written in C#

■ A database backend using SQL Server 2000

We also show you how to access this service through a Windows Forms-
based front-end portal application.While developing this application, we cover a
range of subjects relevant to real-world Web Service projects.We start off by
offering some suggestions for proper Web Service application architecture.We
then discuss how to pass structured data from your Web Service to your client
application, including basic marshalling and complex object serialization.We talk
about namespaces and extended Web Service attributes, and how to properly use
them. Further topics include how to secure Web Services, how to generate client
proxies, error handling both on the server and on the client, working with Event
Logs, and the automatic generation of documentation.

Motivation and Requirements
for the Jokes Web Service
In the case study presented by this chapter, we won’t be showing you an ordering
application for buying or selling anything, instead we’re giving away free content
in the form of jokes.Think of our application of the future as a modern version
of the venerable Quote Of The Day (quotd) Internet service. Quotd has been
around for almost two decades, used mostly as a TCP/IP test service (see
www.faqs.org/rfcs/rfc865.html). It runs on port 17, and all it does is send you an
uplifting quote of some wise dead person, before closing the connection again.
You can install it as part of the so-called “Simple TCP/IP Services” through
Control Panel | Add/Remove Programs | Add/Remove Windows
Components | Networking Services. Many servers on the Internet still have
this service installed, even though it has maybe fallen out of favor in recent years;
for an example, simply use Telnet to establish a TCP connection to port 17 of
server 209.21.91.3.

www.syngress.com

167_C#_12.qxd 12/5/01 11:20 AM Page 670

www.syngress.com

Let’s try to formulate some design goals for the Jokes Web Service, and see
how they compare with what was possible twenty years ago when quotd was
designed:

■ Although we still give away free content, we would like to know who
our users are! Hence, there should be some sort of registration process.

■ We want to be highly interactive.We are interested in user feedback for
particular jokes, and our users should also be able to add content—that
is, jokes—of their own. However, too much interactivity can be a dan-
gerous thing, so there should be moderators standing by to remove
objectionable content.

■ Quotd is essentially a 7-bit ASCII service (in fact it’s limited to the 94
printable ASCII characters).That’s great if you live in the U.S., but even
Europeans will already be a little bit annoyed at you, because their
accented characters will get lost, and users in Asia won’t be able to use
the service in their native language. Clearly, we want our updated service
to fully support Unicode.

■ Our service should be universally accessible. Quotd is usually blocked by
firewalls because it uses a nonstandard port.

To summarize, we would like to develop a Web Service that delivers jokes to
registered users, has portal functionality to let users register, and allows them to
submit their own jokes. Moreover, we want a mechanism for registered users to
rate jokes, say on a scale from 1 to 5. Finally, there should be a class of super
users, called moderators, who should be able to administer both users und jokes.

Note that we get support for international users and universal accessibility for
free by using Web Services technology:

■ Because Web Services are based on XML, we can ensure Unicode sup-
port by specifying, say, UTF-8 as our underlying character set (which is
the default, anyway).Also, we need to ensure, of course, that our data
repository can hold Unicode information.

■ Because Web Services usually run on either port 80 (HTTP) or port 443
(HTTPS), firewalls should not be a problem, and clients should be able
to establish a connection to our server. However, when designing the
service, we also need to ensure that the data we transport through SOAP
can easily be read by potential clients, particularly if they run on non-
Microsoft systems.We talk about this issue more when we go about
sending SQL record data through SOAP.

Building a Jokes Web Services • Chapter 12 671

167_C#_12.qxd 12/5/01 11:20 AM Page 671

672 Chapter 12 • Building a Jokes Web Services

Functional Application Design
Coming up with a good application design is critically important for the success
of any software application.The first step is to move top-down from goals to
design by starting to define (in still very general terms) the functionality exposed
by the Jokes service, and then developing a back-end schema that supports that
functionality from a data perspective. In a second step, we then create in more
detail an object model suitable to implement the services the Jokes application is
supposed to provide.At this juncture, it is also appropriate to make decisions
about security, state management, and error handling.

Defining Public Methods
Let’s start the application design process by writing down the specific methods
we think our Jokes Web Service should offer, and the categories that reflect their
function.The application needs methods dealing with user administration:

■ addUser Lets a user register to our service.

■ addModerator Lets a moderator add an existing user to become a
moderator.

■ checkUser Verifies that a user has previously registered with the ser-
vice. Refer to the “State Management” section to see why this is a useful
method for the service to expose.

Then, the application needs methods dealing with delivering and managing
jokes:

■ addJoke Lets a registered user add a joke.

■ getJokes: Delivers some randomly selected jokes, say up to 10 per
request, to our registered users.

■ addRating Lets our users add a rating to a joke, say on a scale of 1–5.

■ getUnmoderated Registered moderators can call this method to get
the jokes added by the users for moderation.

■ addModerated If moderators agree to add a joke to the database, they
can use this method.

■ deletedUnmoderated If a submitted joke is considered offensive, a
moderator should be able to delete it.

www.syngress.com

167_C#_12.qxd 12/5/01 11:20 AM Page 672

Building a Jokes Web Services • Chapter 12 673

Defining the Database Schema
Let’s define the database schema for the Jokes Web Service:The Jokes database
supports three basic data entities: users, jokes, and joke ratings.We therefore
define the corresponding tables as follows:

■ users A table containing user information.

■ jokes A table containing joke information.

■ ratings A table containing joke rating information.

To keep things simple, all we want to know about our users are their user-
names, their passwords, and whether they are moderators or not.We limit both
usernames and passwords to 20 Unicode characters.We add a primary key con-
straint to usernames to speed lookup access and to ensure that usernames are
unique.

For the jokes table, we record the username and the actual joke, which we
want to be 3,500 Unicode characters or less, keeping SQL Server 2000 limita-
tions on row size in mind.We give each joke a unique identifier though an iden-
tity column. Note that we don’t relate the users and the jokes table with each
other, because users may choose to unsubscribe from the service (but we sure
want to keep their jokes!).

Finally, we add a rating column to the ratings table and relate the jokes to the
ratings table through a one-to-many relationship on the unique joke identifier.
Let’s look at a visual representation of our jokes database (see Figure 12.1).

www.syngress.com

Figure 12.1 The Jokes Database Tables

167_C#_12.qxd 12/5/01 11:20 AM Page 673

674 Chapter 12 • Building a Jokes Web Services

Defining the Web Service Architecture
Typically, the actual Web Service layer will be a very small layer of your applica-
tion.You expose the Web Service methods to your clients, but leave the imple-
mentation of those methods to internal implementation classes.The advantage of
this architecture is that you can then always change the implementation of your
Web Services in the future, while keeping the Web Service interface stable.
Nothing is more annoying to consumers of your service (your business clients,
that is) than if a change in your server-side code requires them to rewrite their
applications.Also, typically, you will already have code on your servers that han-
dles most or all of the business logic required to process client requests; this could
be code to access legacy systems or enterprise data.You then simply wrap this
already existing code in a lean layer of Web Service access code.

In our example of the Jokes Web Service, we are going to define two Web
Services, one to handle the portal aspects of our application, that is managing
users and moderators, and a second one dealing with managing and retrieving
the actual jokes.We could, of course, collapse these two Web Services easily into
one larger service, and there are certainly good arguments for doing so, but
keeping the two services apart allows us to architect our application in a nice,
symmetric way.

We then define the two corresponding implementation classes, one for user
administration, and the other one for handling the jokes.Additionally, we need
classes for error management and database access, and a class that allows us to
return structured data containing our jokes to clients of our service.

To visualize the architecture, you can use a tool such as Microsoft Visual
Modeler.The UML diagram of the class structure looks as follows, ignoring
method signature and a few other details, such as destruction methods you don’t
care about too much at this point (see Figure 12.2).

Let’s first look at the details of the userAdmin Web Service (see Figure 12.3).
As you can see in the figure, the userAdmin class, which exposes the Web

Service of the same name, has methods to add a new user, make an existing user
become a moderator, and verify that a given user does in fact exist in the system.
The class userAdminImplement contains implementations of the corresponding
methods, and also contains methods that wrap the SQL stored procedures defined
in the previous section. Now take a look at the details of the Jokes Web Service
in Figure 12.4.

www.syngress.com

167_C#_12.qxd 12/5/01 11:20 AM Page 674

Building a Jokes Web Services • Chapter 12 675

www.syngress.com

Figure 12.2 UML Diagram of jokesService Middle Tier Architecture

Figure 12.3 Detailed UML Diagram of userAdmin Web Service

167_C#_12.qxd 12/5/01 11:20 AM Page 675

676 Chapter 12 • Building a Jokes Web Services

The jokes class, which exposes the Web Service of the same name, has
methods to add, manage, and retrieve jokes.The class jokesImplement contains
implementations of the corresponding methods, and also contains methods that
wrap the SQL stored procedures defined in the previous section. Before we con-
tinue, let’s briefly talk about security, state management, and error handling.

Security Considerations
As discussed in Chapter 11, the Web Service will be wide open to the world.
Because you would like to have control over who is accessing your application,
the first thing you have to do for each request is to check if the requesting client
is a registered user.That’s why all of the public methods have userName and pass-
word as arguments. User lookups are done in the userAdminImplement class, and
therefore the very first thing the jokesImplement class does is to call the
userAdminImplement class to check if the credentials passed match a credential in
the database.

www.syngress.com

Figure 12.4 Detailed UML Diagram of the Jokes Web Service

167_C#_12.qxd 12/5/01 11:20 AM Page 676

Building a Jokes Web Services • Chapter 12 677

Now, you can cheat a little bit and pretend the Web has state. For instance,
you can create a client application for the Jokes Web Service that will remember
the user’s credentials. Using the checkUser method in the userAdmin class, you can
let users log on, and then simply cache the username and password on the client.
Although that information still needs to be sent to the server with every single
request, at least clients don’t need to input it again during the duration of a “ses-
sion” with the Jokes application.

Obviously, this means that usernames and passwords are sent in clear text over
the wire. If this is of concern (it probably should be!), then you need to encrypt
either the whole data transfer (by using, for example, a secure channel over
HTTPS), or at least the confidential parts of the message (such as the password).
We leave this as an exercise for you (you can find more information on securing
Web Services in Chapter 11).

State Management
As we argued in Chapter 11, stateful Web Service applications should almost
always be avoided.The only reason for the Jokes Web Service to be stateful would
be to support client sessions in order to simplify authentication and authorization
to the service. However, a better way to deal with security for this particular
application is to store user credentials in the Web Service client, as described in
the preceding paragraph.

Error Handling
For error handling, you would probably like to have more control over what
happens during program execution than the standard System.Exception class gives
you; in particular, you will want to gather enough information so that you can
give meaningful, user-friendly error messages to your clients.The jokeException
class, which extends System.Exception, is designed to do exactly that.You will
encounter more details on proper error handling as you go about implementing
this class.

Implementing the Jokes Data Repository
Now that the structure of the Jokes Web Service is firmly in place, you can start
the work of actual implementation. It is usually a good idea to start with the
back end and spend a fair amount of time fleshing out the exact interface to store
and retrieve data.You can start off by installing the actual database system.You

www.syngress.com

167_C#_12.qxd 12/5/01 11:20 AM Page 677

678 Chapter 12 • Building a Jokes Web Services

will then set up the data tables using a SQL installation script before writing all
the stored procedures needed to manage the jokes in the database.

WARNING

Later changes in methods exposed by the back end almost always
requires major rewrites of the whole application, so it really pays to be
very careful when writing your back-end methods.

Installing the Database
The first step in working with a back end is of course to actually have a back
end to work with. Because you want to offer dynamic content, a simple flat-file
approach probably won’t scale very well. Instead, let’s use a relational database,
such as SQL Server 2000. If you don’t have a copy of this server, you’re in luck,
because the Microsoft .NET SDK Beta2 actually comes with its own copy of
Microsoft SQL Server Desktop Engine, a slightly scaled-down version of the full
server product, which is more than sufficient for our purposes.To install it, pro-
ceed as follows:

1. Open up %ProgramFiles%\Microsoft.NET\Microsoft.NET\
FrameworkSDK\Samples\setup\html\Start.htm.

2. Click Step 1: Install the .NET Framework Samples Database and
follow the instructions.

3. Verify in the list of services on your computer that the services
MSSQL$NetSDK and SQLAgent$NetSDK are up and running.

This will install the SQL Server Desktop Engine, and configure the NetSDK
database instance.

Note that SQL Server Desktop Engine does not come with any of the stan-
dard GUI client tools. But it does ship with osql, a command line utility, which is
certainly sufficient for what you are doing. Osql is described in detail in the
Visual Studio.NET Combined Help Collection, but all you really need to know
is how to execute a SQL command script, which is done as follows:

osql -S (local)\NetSDK -U sa -P -i myScript.sql

However, you can compensate for this lack of user friendliness by using the
Server Explorer tool in Visual Studio.NET, which we will get at soon.

www.syngress.com

167_C#_12.qxd 12/5/01 11:20 AM Page 678

Building a Jokes Web Services • Chapter 12 679

First, give yourself a database to work with, which you can fittingly call jokes.
Run the following SQL script:

create database jokes

go

Now you can go about setting up the data tables, as defined in Figure 12.5.
Also, to bootstrap the system, prepopulate the users database with a default mod-
erator, which you can call admin, with password secret.You can also include a first
joke, so that you can show your first user something. See Figure 12.5 for the
complete listing of the database installation script.

Figure 12.5 The Database Installation Script (installJokes.sql)

use jokes

go

/* object: table [dbo].[users] */

create table [dbo].[users] (

[userName] [nvarchar] (20) not null primary key,

[password] [nvarchar] (20) not null ,

[isModerator] [bit] not null

) on [primary]

go

/* object: table [dbo].[jokes] */

create table [dbo].[jokes] (

[jokeID] [int] identity(1,1) primary key ,

[joke] [nvarchar] (3500) not null ,

[userName] [nvarchar] (20) not null ,

[isModerated] [bit] not null ,

) on [primary]

go

/* object: table [dbo].[ratings] */

create table [dbo].[ratings] (

[jokeID] [int] not null references jokes(jokeID),

www.syngress.com

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 679

680 Chapter 12 • Building a Jokes Web Services

[rating] [tinyint] not null,

) on [primary]

go

create index "jokeID" on [dbo].[ratings](jokeID)

go

/* insert data into users table */

insert into users (userName,password, isModerator) values

("admin","secret", 1)

go

/* insert data into jokes table */

insert into jokes (joke,userName, isModerator) values

("Have you heard about the new sushi bar that caters exclusively

to lawyers? —It's called, Sosumi.","admin", 1)

go

Once you’ve created your Web Service project, you’ll be able to look at the
database right through the Visual Studio.NET IDE (from which the database dia-
gram in Figure 12.1 is taken).Also, if you don’t like working with SQL com-
mand-line scripts, you can create this database through the Visual Studio.NET
Server Explorer, but by doing so, you probably open yourself up to errors when
setting up your back end manually.Also, you can only write out SQL Create
Scripts from Visual Studio.NET if you have the SQL Server client tools installed,
which don’t come with the SQL Server Desktop Engine—you have to purchase
them separately.

Creating the Stored Procedures
Now that you have defined and implemented the database schema, you need to
develop the stored procedures to manage your data, which will be used by the
Web Service business components.You need to be able to add, modify, and pos-
sibly delete users, jokes, and joke ratings.The Jokes service is so simple that you
may be tempted to just hard code the corresponding SQL statements directly in
your business components, but of course, you know that is a beginner’s mistake,

www.syngress.com

Figure 12.5 Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 680

Building a Jokes Web Services • Chapter 12 681

and that you will never get away with doing that in a real-world application.
Because this example should show how to write a real application, you should do
things the right way and create the corresponding stored procedures.

Right from the start, you want to have a comprehensive error-handling
mechanism in place.Therefore, all the stored procedures have a return argument
that carries a string-valued return code determined by what’s happening during
execution of the stored procedures back to the calling function in the middle
tier.This return parameter is called, simply enough, return. In considering what
can possibly go wrong during a stored procedure call, you may come up with the
following values shown in Table 12.1.

Table 12.1 Uniform Stored Procedure Return Codes

Status/Error Code User-Friendly Message

S_OK Operation completed successfully.
F_ratingInvalid Joke rating must be between 1 and 5.
F_jokeDoesNotExist Joke selected does not exist in the system.
F_unknownAction Internal error when accessing the database.
F_userDoesNotExist This is not a registered user.
F_userExists Somebody has already registered under this name.
F_userInfoWrong You are not authorized to do this action. Change

username or password.
F_noJokes No matching jokes in the system at this moment in

time.

Make a note, then, that you will need a method that’s part of the common
error-handling procedure used by the middle tier that will translate error codes
coming from the database (and elsewhere) into user-friendly messages sent back
to the clients of the Web Service.

The errors defined in Table 12.1 are exceptions caught by your code—that’s
why you are able to return an error code in the first place. Errors may occur over
which you have little control, and which cause the stored procedure to abort. In
that case, all you can do is catch the exception in the middle tier and return an
“unknown system error” back to your clients (maybe adding your apologies).

Secondly, in order to minimize the amount of code, you can employ a mech-
anism by which you tell the stored procedure what action you want to have done
on a table, such as add, modify, or delete.That’s why three of the stored proce-
dures have an action input parameter indicating the action to perform.

www.syngress.com

167_C#_12.qxd 12/5/01 11:20 AM Page 681

682 Chapter 12 • Building a Jokes Web Services

In the upcoming section “Implementing the Jokes Middle Tier,” we talk more
about security. For now, let’s simply assume that all access checks happen before
program execution reaches a stored procedure, so that at this point you don’t
need to check on permissions anymore.To make the Jokes Web Service possible,
you need to define the following five stored procedures, which are detailed in
Tables 12.2, 12.3, 12.4, 12.5, and 12.6.

Table 12.2 Stored Procedure sp_manageUser

Name sp_manageUser

Purpose Allows you to add, modify, or delete a user.
Input parameters userName The username to add, modify, or delete.

password The corresponding password.
isModerator A Boolean value that tells you if this is a
moderator or not.
action What to do: add, or modify, or delete.

Output parameters return Status/error code.
Returns Standard SQL numerical return code.

Table 12.3 Stored Procedure sp_checkUser

Name sp_checkUser

Purpose Allows you to check the user information provided in
the arguments against information stored in the
database.

Input parameters userName The username to verify.
password The corresponding password.
isModerator A Boolean value that tells you if this is
supposedly a moderator or not.

Output parameters return Status/error code.
Returns Standard SQL numerical return code.

Table 12.4 Stored Procedure sp_manageJoke

Name sp_manageJoke

Purpose Allows you to add, modify, or delete a joke.
Input parameters userName The username of the registered user (used

when adding a joke).

www.syngress.com

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 682

Building a Jokes Web Services • Chapter 12 683

joke The actual joke (used when adding a joke).
isModerated A Boolean value that tells you if this joke
is moderated or not.
jokeID The unique identifier of the joke (used when
modifying or deleting a joke).
action What to do: add, modify, or delete.

Output parameters return Status/error code.
Returns Standard SQL numerical return code.

Table 12.5 Stored Procedure sp_manageRating

Name sp_manageRating

Purpose Allows you to add a rating for a joke.
Input parameters jokeID The unique identifier of the joke.

rating The rating, from 1 to 5, the joke gets.
action What to do: add or delete.

Output parameters return Status/error code.
Returns Standard SQL numerical return code.

Table 12.6 Stored Procedure sp_returnJokes

Name sp_returnJokes

Purpose Allows you to return jokes.
Input parameters howMany How many jokes you want to return.

isModerated A Boolean value that allows you to specify
whether you want moderated or unmoderated jokes
(or both, if null).
returnRandom A Boolean value that allows you to
specify whether you want to get randomly selected
jokes (for users) or not (for moderators when reviewing
unmoderated jokes).

Output parameters return Status/error code.
Returns A record set.

www.syngress.com

Table 12.4 Continued

Name sp_manageJoke

167_C#_12.qxd 12/5/01 11:20 AM Page 683

684 Chapter 12 • Building a Jokes Web Services

Some of the stored procedures have what amounts to optional parameters; for
example, in order to delete a joke, you need only pass the corresponding unique
identifier of the joke to delete, along with the action parameter set to delete to
sp_manageJoke. Because T-SQL does not allow you to overload stored procedure
calls, you can simply pass null references to the remaining input parameters, and
you need to remember to set up your middle tier code accordingly. Figure 12.6
shows the part of the SQL installation script that sets up the stored procedure
needed by the Jokes Web Service.

Figure 12.6 Setting Up the Stored Procedures (installJokes.sql)

use jokes

go

/* Create stored procedures */

create procedure sp_manageUser (

— add, modify, or delete a user

@@userName nvarchar(20),

@@password nvarchar(20),

@@isModerator bit,

@@action nvarchar(20), — one of 'add' or 'modify' or 'delete'

— returns:

— 'S_OK' : success

— 'F_userExists' : failed: user already exists

— 'F_userDoesNotExist': failed: user does not exist

— 'F_unknownAction' : action command unrecognized

@@return nvarchar(20) output

) as

declare @@userCount int

select @@userCount = count(*) from users where userName = @@userName

— sanity checks

if (@@userCount = 0 and ((@@action = 'modify') or

(@@action = 'delete')))

begin

www.syngress.com

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 684

Building a Jokes Web Services • Chapter 12 685

select @@return = 'F_userDoesNotExist'

return

end

if @@userCount = 1 and @@action = 'add'

begin

select @@return = 'F_userExists'

return

end

— start

if @@action = 'add'

begin

insert into users (userName,password,isModerator)

values (@@userName,@@password,@@isModerator)

select @@return = 'S_OK'

return

end

if @@action = 'delete'

begin

delete from users where userName = @@userName

select @@return = 'S_OK'

return

end

if @@action = 'modify'

begin

update users

set userName = @@userName,

isModerator = @@isModerator

where userName = @@userName

if @@password is not null

www.syngress.com

Figure 12.6 Continued

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 685

686 Chapter 12 • Building a Jokes Web Services

update users

set password = @@password

where userName = @@userName

select @@return = 'S_OK'

return

end

— otherwise

select @@return = 'F_unknownAction'

return

go

create procedure sp_checkUser (

— checks user information provided against information in

— the database

@@userName nvarchar(20),

@@password nvarchar(20),

@@isModerator bit,

— returns:

— 'S_OK' : information matches

— 'F_userInfoWrong' : information does not match

@@return nvarchar(20) output

) as

declare @@userCount int

— sanity checks

if @@userName is null

begin

select @@return = 'F_userInfoWrong'

return

end

www.syngress.com

Figure 12.6 Continued

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 686

Building a Jokes Web Services • Chapter 12 687

— start

if @@password is null and @@isModerator is null

begin

select @@userCount = count(*) from users where

userName = @@userName

goto checkCount

end

if @@isModerator is null

begin

select @@userCount = count(*) from users where

userName = @@userName and password = @@password

goto checkCount

end

if @@password is null

begin

select @@userCount = count(*) from users where

userName = @@userName and isModerator = @@isModerator

goto checkCount

end

select @@userCount = count(*) from users where userName = @@userName

and password = @@password and isModerator = @@isModerator

checkCount:

if @@userCount = 0

begin

select @@return = 'F_userInfoWrong'

return

end

select @@return = 'S_OK'

www.syngress.com

Figure 12.6 Continued

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 687

688 Chapter 12 • Building a Jokes Web Services

return

go

create procedure sp_manageRating (

— add a joke rating

@@jokeID int,

@@rating tinyint,

@@action nvarchar(20), — one of 'add' or 'delete'

— returns:

— 'S_OK' : success

— 'F_jokeDoesNotExist': failed: joke does not exist

— 'F_unknownAction' : action command unrecognized

@@return nvarchar(20) output

) as

— sanity checks on arguments done in middle tier

declare @@jokeCount int

— does the joke even exist?

select @@jokeCount = count(*) from jokes where jokeID = @@jokeID

if @@jokeCount = 0

begin

select @@return = 'F_jokeDoesNotExist'

return

end

if @@action = 'add'

begin

insert into ratings (jokeID,rating) values (@@jokeID,@@rating)

select @@return = 'S_OK'

return

www.syngress.com

Figure 12.6 Continued

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 688

Building a Jokes Web Services • Chapter 12 689

end

if @@action = 'delete'

begin

delete from ratings where jokeID = @@jokeID

select @@return = 'S_OK'

return

end

— otherwise

select @@return = 'F_unknownAction'

return

go

create procedure sp_manageJoke (

— add, modify, or delete a joke

@@userName nvarchar(20),

@@joke nvarchar(3500),

@@isModerated bit,

@@jokeID int,

@@action nvarchar(20), — one of 'add' or 'modify' or 'delete'

— returns:

— 'S_OK' : success

— 'F_jokeDoesNotExist': failed: joke does not exist

— 'F_unknownAction' : action command unrecognized

@@return nvarchar(20) output

) as

— sanity checks on arguments done in middle tier

declare @@jokeCount int

if @@action = 'add'

www.syngress.com

Figure 12.6 Continued

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 689

690 Chapter 12 • Building a Jokes Web Services

begin

insert into jokes (userName,joke,isModerated)

values (@@userName,@@joke,@@isModerated)

select @@return = 'S_OK'

return

end

if @@action = 'modify'

begin

select @@jokeCount = count(*) from jokes where jokeID = @@jokeID

if @@jokeCount = 0

begin

select @@return = 'F_jokeDoesNotExist'

return

end

if @@isModerated is not null

update jokes

set isModerated = @@isModerated

where jokeID = @@jokeID

if @@userName is not null

update jokes

set userName = @@userName

where jokeID = @@jokeID

if @@joke is not null

update jokes

set joke = @@joke

where jokeID = @@jokeID

select @@return = 'S_OK'

return

end

if @@action = 'delete'

begin

www.syngress.com

Figure 12.6 Continued

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 690

Building a Jokes Web Services • Chapter 12 691

select @@jokeCount = count(*) from jokes where jokeID = @@jokeID

if @@jokeCount = 0

begin

select @@return = 'F_jokeDoesNotExist'

return

end

declare @@dummy nvarchar(40)

execute sp_manageRating @@jokeID, null, 'delete', @@dummy output

delete from jokes where jokeID = @@jokeID

select @@return = 'S_OK'

return

end

— otherwise

select @@return = 'F_unknownAction'

return

go

create procedure sp_returnJokes (

— returns jokes

@@howMany int,

@@isModerated bit,

@@returnRandom bit

— returns a recordset containing jokeID, joke, and average rating

) as

— sanity checks on arguments done in middle tier

declare @@jokeCount int

declare @baseJokeID int

declare @baseJokeRelPos int

declare @cmd varchar(1000)

www.syngress.com

Figure 12.6 Continued

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 691

692 Chapter 12 • Building a Jokes Web Services

— random start position?

— note that in this case, we implicitly assume that

— * isModerated = 1

— * howMany <> null

if @@returnRandom = 1

begin

select @@jokeCount = count(*) from jokes where isModerated = 1

if @@jokeCount = 0

return

if @@jokeCount < @@howMany

set @@howMany = @@jokeCount

— get a random number between 0 and 1

declare @random decimal(6,3)

set @random = cast(datepart(ms, getdate()) as decimal(6,3))/1000

— set a random start position

set @baseJokeRelPos =

((@@jokeCount - @@howMany + 1) * @random) + 1

— get the corresponding jokeID

declare jokeTempCursor cursor scroll for select jokeID from

jokes where isModerated = 1 order by jokeID

open jokeTempCursor

fetch absolute @baseJokeRelPos from jokeTempCursor

into @baseJokeID

close jokeTempCursor

deallocate jokeTempCursor

end

— start building our command

set @cmd = 'select '

www.syngress.com

Figure 12.6 Continued

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 692

Building a Jokes Web Services • Chapter 12 693

if @@howMany is not null

set @cmd = @cmd + 'top ' + cast(@@howMany as varchar(10)) + ' '

set @cmd = @cmd + 'jokes.jokeID, left(ltrim(joke),3500) '

set @cmd = @cmd + ', cast(avg(cast(rating as decimal(5,4)))

as decimal(2,1)) '

set @cmd = @cmd + 'from jokes left outer join ratings on

jokes.jokeID = ratings.jokeID '

if @@isModerated is not null

begin

if @@isModerated = 1

begin

set @cmd = @cmd + 'where isModerated = 1 '

if @@returnRandom = 1

set @cmd = @cmd + 'and jokes.jokeID >= ' +

cast(@baseJokeID as varchar(10)) + ' '

end

if @@isModerated = 0

set @cmd = @cmd + 'where isModerated = 0 '

end

set @cmd = @cmd + 'group by jokes.jokeID, joke order by jokes.jokeID'

exec (@cmd)

go

That completes setting up the back-end infrastructure.You can find the com-
plete installation script in directory SQLSetup/ on the CD accompanying the
book.

You are now ready to start up Visual Studio.NET to begin working on the
meat of the Web Service, namely the Web Service itself.

www.syngress.com

Figure 12.6 Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 693

694 Chapter 12 • Building a Jokes Web Services

Implementing the Jokes Middle Tier
Now that you have the back-end database system in place, you can go about
implementing the actual Web Service that clients will be calling. Of course, you
will want to do this work in Visual Studio.NET. Note that you can find the com-
plete code for this project on the CD accompanying this book.

Setting Up the Visual Studio Project
Start the setup of the Visual Studio project by creating a new ASP.NET Web
Service project, called jokesService. Go to File | New | Project, choose the entry
ASP.NET Web Service under the Visual C# Projects folder, keep the default
Location, and enter jokesService as the Name of the project (see Figure 12.7).

This will set up a new virtual directory of the same name, configure the neces-
sary FrontPage server extensions, define an assembly, and create supporting project
files. Rather annoyingly, the ASP.NET Web Service Wizard creates a default Web
Service called Service1, which you may want to remove from the project right
away (or rename it later when you go about adding Web Services to the project).

Next, check on the database you created earlier: Click on Server Explorer,
which by default is on the upper left-hand corner of the window. Right-click
under Data Connections, and enter the connection information for the NetSDK
database as follows: under Server, enter (local)\NetSDK, the username is SA, no
password, and the Database you are interested in is jokes (see Figure 12.8).

www.syngress.com

Figure 12.7 Setting Up a New Web Project

167_C#_12.qxd 12/5/01 11:20 AM Page 694

Building a Jokes Web Services • Chapter 12 695

The connection is then added to Server Explorer, and you can go about
exploring your database, and, say, look at your users table (Figure 12.9).

www.syngress.com

Figure 12.8 Opening Up a Connection to the Jokes Database

Figure 12.9 Exploring the Jokes Database through Visual Studio.NET Server
Explorer

167_C#_12.qxd 12/5/01 11:20 AM Page 695

696 Chapter 12 • Building a Jokes Web Services

Now you are in a position to create the two Web Services: right-click the
jokesService project in the Solution Explorer and choose Add | Add New
Item. Choose Web Service from the list of available templates, and call it
userAdmin.asmx (see Figure 12.10). Note that apart from creating the ASMX
file, this will also create the corresponding C# class file userAdmin.asmx.cs, and
the resource file userAdmin.asmx.resx.

Perform the same step for the second service, called jokes.asmx.
Next, you need to set up the supporting classes.Again, right-click the

jokesService project in the Solution Explorer, and choose Add | Add New
Item, but this time select Class instead.You need to repeat this procedure five
times, for the five C# classes you need:

■ userAdminImplement.cs

■ JokesImplement.cs

■ databaseAccess.cs

■ jokeException.cs

■ xmlJokesReturn.cs

When looking at the Solution Explorer, and clicking the Select All Files
icon, your project should now look like the one shown in Figure 12.11.

Lastly, you need to instruct the C# compiler to automatically generate an
XML documentation file of your work for you (see the “Making Documentation

www.syngress.com

Figure 12.10 Adding a New Web Service

167_C#_12.qxd 12/5/01 11:20 AM Page 696

Building a Jokes Web Services • Chapter 12 697

a Part of Your Everyday Life” sidebar). Go to the Solution Explorer, right-click
on the jokesService project, and select Properties.A dialog will open, as shown
in Figure 12.12. Select the Build option under the Configuration Properties
folder, and enter jokesService.xml as the XML Documentation File name.

www.syngress.com

Figure 12.11 Overview of All Files Needed for the jokesService Web Service

Figure 12.12 Automatically Generating XML Documentation Output

167_C#_12.qxd 12/5/01 11:20 AM Page 697

698 Chapter 12 • Building a Jokes Web Services

Now you can code away. Note that you can find the complete code for the
Jokes Web Service in directory jokesService on the CD that comes with this
book.

Developing the Error Handler
Introducing error handling as you start to code is usually a good thing. However,
you need to have a good idea first as to what could possibly go wrong. In the
“Creating the Stored Procedures” section, we have already identified a number of
errors that you can catch at the database level. Because user input data validation
checking is done in the business components, you get two more possible excep-
tions, having to do with invalid ratings (should be between 1 and 5), and requests

www.syngress.com

Making Documentation a Part of Your Everyday Life
Documenting your work does not need to be an afterthought—in fact,
it should occupy center-stage of your work from the very beginning of a
project. The Visual Studio.NET environment supports this philosophy by
offering you a set of predefined XML elements allowing you to docu-
ment your code inside your source files as you are developing it.

This functionality is still rather limited, quite frankly, but it is a start.
Among others, there are currently tags defined to describe the function
of a class or method (<summary>), and what parameters (<param>)
and return values (<return>) a method has. But you are certainly free
to add your own set of tags, suitable for your needs. The C# compiler
then allows you to extract your XML documentation into a separate XML
output file, which you can then use for further processing, for instance
to create documentation in HTML format by applying a suitable XSLT
style sheet. The compiler validates some of the XML documentation tags
for you, such as those describing the method input parameters. You can
find more information in the XML Documentation Tutorial that’s part of
the Visual Studio.NET C# Programmer’s Reference.

Because documentation is vitally important for the success of any
software project, all of the code for the Jokes Web Service application
uses the C# documentation tags liberally.

Developing & Deploying…

167_C#_12.qxd 12/5/01 11:20 AM Page 698

Building a Jokes Web Services • Chapter 12 699

for “too many” jokes (should be between 1 and 10). Obviously, when you go
about creating a client for your Web Service, you will not allow the client appli-
cation to ask for, say, 10,000 jokes at once. But because your Web Service can
certainly be used by “unauthorized” client applications—it is an Internet service,
after all—you need to check for user data on the server, and you need to be able
to return meaningful information to your clients.

You can then simply set up a hash table errorCodes with internal error codes
and the corresponding nice messages for end users, and add a method,
getNiceErrorMessage(), that translates one into the other.The instance variable
failReason captures the error code and keeps it available as you travel back the call
stack after an exception has occurred.

Creating an entry in the server application event log whenever an error does
occur is probably a good idea, and that’s what the method writeEventLogEntry()
does. Putting everything together, see Figure 12.13 for the complete code of the
jokeException class (also on the CD as file jokeException.cs).

Figure 12.13 Custom Error Handling Class jokeException (jokeException.cs)

using System;

using System.Collections;

using System.Diagnostics;

namespace jokesService

{

/// <summary>

/// Custom error handling class

/// </summary>

/// <remarks>

/// Author: Adrian Turtschi; aturtschi@hotmail.com; Sept 2001

/// </remarks>

public class jokeException : Exception {

/// <value>

/// fail reason error code

/// </value>

public string failReason;

private static Hashtable errorCodes = new Hashtable();

private static bool isInit = false;

www.syngress.com
Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 699

700 Chapter 12 • Building a Jokes Web Services

/// <summary>

/// Public class constructor.

/// </summary>

/// <param name='failReason'

/// type='string'

/// desc='fail reason error code'>

/// </param>

protected internal jokeException(string failReason) {

this.failReason = failReason;

}

private static void initErrorCodes() {

errorCodes.Add("S_OK",

"Operation completed successfully!");

errorCodes.Add("F_System",

"An unknown system error occurred!");

errorCodes.Add("F_ratingInvalid",

"Joke rating must be between 1 and 5!");

errorCodes.Add("F_jokeDoesNotExist",

"Joke selected does not exist in the system!");

errorCodes.Add("F_unknownAction" ,

"Internal error when accessing the database!");

errorCodes.Add("F_userDoesNotExist",

"This is not a registered user!");

errorCodes.Add("F_userExists",

"Somebody has already registered under this name!");

errorCodes.Add("F_userInfoWrong",

"You are not authorized to do this action. Change " +

"user name or password!");

errorCodes.Add("F_noJokes",

"No matching jokes in the system at this moment in time!");

errorCodes.Add("F_10JokesMax",

www.syngress.com

Figure 12.13 Continued

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 700

Building a Jokes Web Services • Chapter 12 701

"You can only retrieve up to 10 jokes at one time!");

}

/// <summary>

/// The getNiceErrorMessage method converts an error code into

/// a user-friendly error message, returned through a SOAP

fault.

/// </summary>

/// <param name='errorCode'

/// type='string'

/// desc='error code'>

/// </param>

/// <returns>a friendly user error message</returns>

protected internal static string getNiceErrorMessage(

string errorCode) {

if (!isInit) {

// initialize error look up table once and for all

initErrorCodes();

isInit = true;

}

string temp = errorCodes[errorCode].ToString();

if(temp.Length < 1) {

// generic error, if error code unknown...

return errorCodes["F_System"].ToString();

} else {

return temp;

}

}

/// <summary>

/// The writeEventLogEntry method writes an error log entry

/// into the Application event log

/// </summary>

www.syngress.com

Figure 12.13 Continued

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 701

702 Chapter 12 • Building a Jokes Web Services

/// <param name='userName'

/// type='string'

/// desc='name of registered user'>

/// </param>

/// <param name='failReason'

/// type='string'

/// desc='fail reason error code'>

/// </param>

/// <returns>nothing</returns>

protected internal static void writeEventLogEntry(

string userName, string failReason) {

//Create the source, if it does not already exist.

if(!EventLog.SourceExists("jokeService")) {

EventLog.CreateEventSource("jokeService", "Application");

}

//Create an EventLog instance and assign its source.

EventLog eventLog = new EventLog();

eventLog.Source = "jokeService";

//Write an informational entry to the event log.

eventLog.WriteEntry(userName + ": " + failReason);

}

}

}

Developing the Database Access Component
The next task is to write a component that will take care of all back-end data
access and offer a single gateway to the database. Externalizing the database con-
nection string is good programming practice, and the .NET Framework offers a
good place to put it: the web.config file. Just add the appSettings element into the
web.config file, as shown in Figure 12.14.

www.syngress.com

Figure 12.13 Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 702

Building a Jokes Web Services • Chapter 12 703

Figure 12.14 Putting the Database DSN into Web.Config

<configuration>

<appSettings>

<add key="dsn" value="server=(local)\NetSDK;

database=Jokes;User ID=SA;Password=" />

</appSettings>

<system.web>

...standard settings...

</system.web>

</configuration>

The database access class (databaseAccess.cs) is a very simple class that just returns
a (closed) SQL connection object to the database. Unfortunately, class construc-
tors are not allowed to return objects, so you can add a single method to do just
that, called getConnection(). See Figure 12.15 for the complete code for the
databaseAccess class.

Figure 12.15 Database Access Class databaseAccess (databaseAccess.cs)

using System;

using System.Data.SqlClient;

namespace jokesService

{

/// <summary>

/// The databaseAccess sets up the connection to the

/// data repository.

/// </summary>

/// <remarks>

/// Author: Adrian Turtschi; aturtschi@hotmail.com; Sept 2001

/// </remarks>

public class databaseAccess {

private SqlConnection sqlConnection;

www.syngress.com

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 703

704 Chapter 12 • Building a Jokes Web Services

/// <summary>

/// Public class constructor.

/// </summary>

protected internal databaseAccess() {

sqlConnection = new SqlConnection(

ConfigurationSettings.AppSettings["dsn"]);

}

/// <summary>

/// The getConnection method sets up the database connection

/// </summary>

/// <returns>the (closed) SQL connection object</returns>

protected internal SqlConnection getConnection() {

return sqlConnection;

}

}

}

Developing the User Administration Service
Now that you have taken care of error handling and database access, you will
want to develop the core classes for managing users and jokes. Let’s first look at
how you will want to manage users: you need to be able to add new users,
change existing user information, and check if a user exists in the system, and you
also want to be able to promote an existing user to become a moderator.

Adding New Users
Going through the steps needed to add a new user to the system, you can start by
writing the method addUser() in userAdminImplement, the class that implements
user management functionality.The method takes a username and a password as
an argument, sets up the necessary infrastructure to call the SQL stored procedure
sp_manageUser(), gets a connection object from an instance of the class
databaseAccess, opens the connection, and calls the stored procedure. If everything
goes well, the stored procedure will return a status code S_OK, and control will

www.syngress.com

Figure 12.15 Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 704

Building a Jokes Web Services • Chapter 12 705

go back to the calling Web Service. If an exception occurred, you can create a
new custom exception object of type jokeException, remember the error code, and
throw the exception back to the caller.

The createSqlManageUser() method is the method that sets up the call to the
stored procedure sp_manageUser. It takes a username, a password, and a flag
denoting whether the user is a moderator as arguments. Note that all arguments
are of type string, even the Boolean flag.The reason for this is that some argu-
ments are in fact optional. For instance, when deleting a user, all you need to
know is the user’s username.You could certainly overload this method to do this,
but in the end not a lot would change.Also, because this is an internal method of
a class (and is therefore marked as protected internal) implementing functionality
exposed by another public class, type consistency is not really an issue. So you can
adopt the convention that all arguments to the methods that set up your SQL
calls take string arguments, and that an empty string passed will mean that a SQL
null value should be passed to the corresponding stored procedure. Note, though,
that you can’t just pass the keyword null to SQL; instead, you have to use
System.DBNull.value.

You can use the MS SQL Managed Provider created specially for high per-
formance access to MS SQL server database, which is found in the
System.Data.SqlClient namespace (which you declare in the declaration section of
your class).

Figure 12.16 shows the createSqlManageUser() method call that sets up the
SQL command object for the stored procedure sp_manageUser, which deals with
adding, updating, and deleting users and managers.

Figure 12.16 createSqlManageUser Method (userAdminImplement.cs)

/// <summary>

/// The createSqlManageUser method sets up the SQL command object

/// for the stored procedure sp_manageUser, which deals with

/// adding, updating, and deleting users and managers

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of registered user'>

/// </param>

/// <param name='password'

www.syngress.com

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 705

706 Chapter 12 • Building a Jokes Web Services

/// type='string'

/// desc='password of registered user (zero length if N/A)'>

/// </param>

/// <param name='isModerator'

/// type='string'

/// desc='true/false if this user is a moderator'>

/// </param>

/// <param name='action'

/// type='string'

/// desc='the action the SQL stored procedure should take

/// (see the stored procedure definition for allowed action

/// keywords)'>

/// </param>

/// <param name='sqlCommand'

/// type='SqlCommand'

/// desc='a reference to a SQL command object'>

/// </param>

/// <returns>the prepared SQL command object</returns>

protected internal void createSqlManageUser(

string userName, string password,

string isModerator, string action, SqlCommand sqlCommand) {

sqlCommand.CommandType = CommandType.StoredProcedure;

sqlCommand.CommandText = "sp_manageUser" ;

SqlParameter argUserName =

new SqlParameter("@@userName", SqlDbType.NVarChar, 20);

argUserName.Value = userName;

sqlCommand.Parameters.Add(argUserName);

SqlParameter argPassword =

new SqlParameter("@@password",SqlDbType.NVarChar, 20);

if(password.Length > 0) {

www.syngress.com

Figure 12.16 Continued

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 706

Building a Jokes Web Services • Chapter 12 707

argPassword.Value = password;

} else {

argPassword.Value = DBNull.Value;

}

sqlCommand.Parameters.Add(argPassword);

SqlParameter argIsModerator =

new SqlParameter("@@isModerator",SqlDbType.Bit);

argIsModerator.Value = bool.Parse(isModerator);

sqlCommand.Parameters.Add(argIsModerator);

SqlParameter argAction =

new SqlParameter("@@action",SqlDbType.NVarChar, 20);

argAction.Value = action;

sqlCommand.Parameters.Add(argAction);

SqlParameter argReturn =

new SqlParameter("@@return",SqlDbType.NVarChar, 20,

ParameterDirection.Output, true, 0, 0, "",

DataRowVersion.Current, "");

sqlCommand.Parameters.Add(argReturn);

}

After the SQL side of adding a new user has been taken care of in method
createSqlManageUser(), the implementation of the addUser() method is now
straightforward, as shown in Figure 12.17.

Figure 12.17 addUser Method (userAdminImplement.cs)

/// <summary>

/// The addUser method adds a new user to the database

/// </summary>

/// <param name='userName'

/// type='string'

www.syngress.com

Figure 12.16 Continued

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 707

708 Chapter 12 • Building a Jokes Web Services

/// desc='name of new user'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of new user'>

/// </param>

/// <returns>true</returns>

protected internal bool addUser(string userName, string password) {

try {

string retCode;

SqlCommand sqlCommand = new SqlCommand();

createSqlManageUser(

userName, password, "false", "add", sqlCommand);

databaseAccess myDatabase = new databaseAccess();

sqlCommand.Connection = myDatabase.getConnection();

sqlCommand.Connection.Open();

sqlCommand.ExecuteNonQuery();

sqlCommand.Connection.Close();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// catch problems within the stored procedure

if (retCode == "S_OK") {

return true;

} else {

throw new jokeException(retCode);

}

// catch problems with the database

} catch (Exception e) {

throw e;

}

}

www.syngress.com

Figure 12.17 Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 708

Building a Jokes Web Services • Chapter 12 709

Note that the code first inspects the return code set during execution of the
stored procedure. If things are not okay, say because the user has already registered
previously, you can remember the error code and throw a custom exception of
type jokeException. If an exception occurred over which you have no control, say
because the database is not accessible, you can’t do much more than throw an
ordinary exception of type System.Exception.

Checking Existing User Information
The next method you will want to add is checkUser(), which matches a set of
given credentials, consisting of a username, a password, and a flag indicating
whether this is a moderator, against the information in the database.You first
need to set up the createSqlCheckUser method, which wraps the call to the stored
procedure sp_checkUser(), shown in Figure 12.18 and also part of the CD file
userAdminImplement.cs.

Figure 12.18 createSqlCheckUser Method (userAdminImplement.cs)

/// <summary>

/// The createSqlCheckUser method sets up the SQL command object

/// for the stored procedure sp_checkUser, which verifies passed

/// user information with user information in the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of registered user (zero length if N/A)'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of registered user (zero length if N/A)'>

/// </param>

/// <param name='isModerator'

/// type='string'

/// desc='true/false if this user is a moderator

/// (zero length if N/A)'>

/// </param>

/// <param name='sqlCommand'

www.syngress.com

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 709

710 Chapter 12 • Building a Jokes Web Services

/// type='SqlCommand'

/// desc='a reference to a SQL command object'>

/// </param>

/// <returns>the prepared SQL command object</returns>

protected internal void createSqlCheckUser(

string userName, string password,

string isModerator, SqlCommand sqlCommand) {

sqlCommand.CommandType = CommandType.StoredProcedure;

sqlCommand.CommandText = "sp_checkUser" ;

SqlParameter argUserName =

new SqlParameter("@@userName", SqlDbType.NVarChar, 20);

if(userName.Length > 0) {

argUserName.Value = userName;

} else {

argUserName.Value = DBNull.Value;

}

sqlCommand.Parameters.Add(argUserName);

SqlParameter argPassword =

new SqlParameter("@@password",SqlDbType.NVarChar, 20);

if(password.Length > 0) {

argPassword.Value = password;

} else {

argPassword.Value = DBNull.Value;

}

sqlCommand.Parameters.Add(argPassword);

SqlParameter argIsModerator =

new SqlParameter("@@isModerator",SqlDbType.Bit);

if(isModerator.Length > 0) {

argIsModerator.Value = bool.Parse(isModerator);

www.syngress.com

Figure 12.18 Continued

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 710

Building a Jokes Web Services • Chapter 12 711

} else {

argIsModerator.Value = DBNull.Value;

}

sqlCommand.Parameters.Add(argIsModerator);

SqlParameter argReturn =

new SqlParameter("@@return",SqlDbType.NVarChar, 20,

ParameterDirection.Output, true, 0, 0, "",

DataRowVersion.Current, "");

sqlCommand.Parameters.Add(argReturn);

}

Next, you need to implement the actual method, checkUser(), that verifies
user’s credentials (see Figure 12.19).

Figure 12.19 createSqlCheckUser Method (userAdminImplement.cs)

/// <summary>

/// The checkUser method checks if a user or moderator is

/// already defined in the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of user or moderator'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of user or moderator'>

/// </param>

/// <param name='isModerator'

/// type='bool'

/// desc='check for moderator status (if false,

/// we do not check)'>

/// </param>

www.syngress.com

Figure 12.18 Continued

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 711

712 Chapter 12 • Building a Jokes Web Services

/// <returns>nothing</returns>

protected internal bool checkUser(

string userName, string password, bool isModerator) {

string retCode;

try {

SqlCommand sqlCommand = new SqlCommand();

if(isModerator) {

// check if user is a moderator...

createSqlCheckUser(userName, password, "true", sqlCommand);

} else {

// ... or a registered user

createSqlCheckUser(userName, password, "", sqlCommand);

}

databaseAccess myDatabase = new databaseAccess();

sqlCommand.Connection = myDatabase.getConnection();

sqlCommand.Connection.Open();

sqlCommand.ExecuteNonQuery();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// catch problems within the stored procedure

if (retCode == "S_OK") {

return true;

} else {

throw new jokeException(retCode);

}

// catch problems with the database

} catch (Exception e) {

throw e;

}

}

www.syngress.com

Figure 12.19 Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 712

Building a Jokes Web Services • Chapter 12 713

Adding Moderators
Lastly, you need to think about adding moderators to the system.You want to let
only moderators add moderators, and those new moderators already need to be
registered with the system as regular users.

So the addModerator method has to have three arguments: the username and
password of the moderator adding a new moderator, and the username of the user
who should become moderator.You need to first check that the credentials given
are indeed the ones of an existing moderator, for which you can use the checkUser()
method, and then you need to modify the entry in the user table for the new
moderator, which consists of simply changing her isModerator flag to True.

Even with this simple call, a lot of things can go wrong: the moderator
requesting the change may not be a moderator, or the user slated to become a
moderator may not exist in the database.Thankfully, you no longer need to
worry about these eventualities, because your error-handling system will handle
those exceptions automatically. Figure 12.20 shows the code for addManager()
(which is still part of the CD file userAdminImplement.cs).

Figure 12.20 addModerator Method (userAdminImplement.cs)

/// <summary>

/// The addModerator method sets a previously added user to become

/// a moderator

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of moderator making the call'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of moderator making the call'>

/// </param>

/// <param name='newModerator'

/// type='string'

/// desc='user name of registered user who will become

/// a moderator'>

/// </param>

www.syngress.com

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 713

714 Chapter 12 • Building a Jokes Web Services

/// <returns>true</returns>

protected internal bool addModerator(

string userName, string password, string newModerator) {

string retCode;

try {

// check if user is a moderator

SqlCommand sqlCommand = new SqlCommand();

createSqlCheckUser(userName, password, "true", sqlCommand);

databaseAccess myDatabase = new databaseAccess();

sqlCommand.Connection = myDatabase.getConnection();

sqlCommand.Connection.Open();

sqlCommand.ExecuteNonQuery();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// catch problems within the stored procedure

if (retCode != "S_OK") {

sqlCommand.Connection.Close();

throw new jokeException(retCode);

}

// make newModerator a moderator

sqlCommand.Parameters.Clear();

createSqlManageUser(

newModerator, "", "true", "modify", sqlCommand);

sqlCommand.ExecuteNonQuery();

sqlCommand.Connection.Close();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

www.syngress.com

Figure 12.20 Continued

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 714

Building a Jokes Web Services • Chapter 12 715

// catch problems within the stored procedure

if (retCode == "S_OK") {

return true;

} else {

throw new jokeException(retCode);

}

// catch problems with the database

} catch (Exception e) {

throw e;

}

}

Creating the Public Web Methods—Users
The implementation of the user administration service is now complete, and all
that remains to do is to expose this service to the world.To do this, you simply
add new (public!) Web methods to the userAdmin class, which is found in the file
userAdmin.asmx.cs on the CD. First, you need to add some custom initialization
code to the userAdmin Web Service class, as shown in Figure 12.21.

Figure 12.21 Code to Set Up the userAdmin Web Service (userAdmin.asmx.cs)

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

using System.Web.Services.Protocols;

using System.Xml;

namespace jokesService {

/// <summary>

/// The userAdmin class provides methods to manage users and

www.syngress.com

Figure 12.20 Continued

Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 715

716 Chapter 12 • Building a Jokes Web Services

/// moderators in the database.

/// </summary>

/// <remarks>

/// Author: Adrian Turtschi; aturtschi@hotmail.com; Sept 2001

/// </remarks>

[WebServiceAttribute(Description="The userAdmin web service " +

"provides methods to manage users and moderators in the database",

Namespace="urn:schemas-syngress-com-soap")]

public class userAdmin : System.Web.Services.WebService {

// SOAP error handling return document structure

/// <value>error document thrown by SOAP exception</value>

public XmlDocument soapErrorDoc;

/// <value>text node with user-friendly error message</value>

public XmlNode xmlFailReasonNode;

/// <summary>

/// Public class constructor.

/// </summary>

public userAdmin() {

InitializeComponent();

// initialize SOAP error handling return document

soapErrorDoc = new System.Xml.XmlDocument();

xmlFailReasonNode =

soapErrorDoc.CreateNode(XmlNodeType.Element, "failReason", "");

}

}

}

The code for the addUser() method that adds a new user to the database is
shown in Figure 12.22.

www.syngress.com

Figure 12.21 Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 716

Building a Jokes Web Services • Chapter 12 717

Figure 12.22 addUser Web Method (userAdmin.asmx.cs)

01: /// <summary>

02: /// The addUser method adds a new user to the database

03: /// </summary>

04: /// <param name='userName'

05: /// type='string'

06: /// desc='name of new user'>

07: /// </param>

08: /// <param name='password'

09: /// type='string'

10: /// desc='password of new user'>

11: /// </param>

12: /// <returns>nothing</returns>

13: [SoapDocumentMethodAttribute(Action="addUser",

14: RequestNamespace="urn:schemas-syngress-com-soap:userAdmin",

15: RequestElementName="addUser",

16: ResponseNamespace="urn:schemas-syngress-com-soap:userAdmin",

17: ResponseElementName="addUserResponse")]

18: [WebMethod(Description="The addUser method adds a new user to " +

19: "the database")]

20: public void addUser(string userName, string password) {

21: userAdminImplement userAdminObj = new userAdminImplement();

22: try {

23: userAdminObj.addUser(userName, password);

24: // catch jokeExceptions

25: } catch (jokeException e) {

26: throwFault("Fault occurred", e.failReason, userName);

27: }

28: // then, catch general System Exceptions

29: catch (Exception e) {

30 throwFault(e.Message, "F_System", userName);

31: }

32: }

www.syngress.com

167_C#_12.qxd 12/5/01 11:20 AM Page 717

718 Chapter 12 • Building a Jokes Web Services

Note how simple things suddenly become once you have set the stage cor-
rectly:You need just two lines to add a new user to the system. Note two things
in Figure 12.22:

■ First, some decorations were added to the Web method (which
Microsoft calls metadata).They specify the namespaces (lines 14 and 16)
and element names (lines 15 and 17) used by the SOAP protocol, as
described in Chapter 11.

■ Second, if an exception occurs, you call a custom error handler that
returns extended error information as part of a SOAP fault (lines 25
and 26).

Error Handling for the Public Web Methods
If you look at the code that adds users to the system, you’ll see that throwFault
(Figure 12.22, lines 26 and 30) is the name of the method that actually throws a
SOAP fault and ends execution of the Web Service method. But it does a whole
lot more:

■ The (internal) error code is replaced by a user-friendly error message.

■ A log entry is written to the Application event log.

■ The standard SOAP fault XML document is appended with a custom
element, called failReason, where client applications can find the error
message to display to users.

The details of the throwFault method are shown in Figure 12.23.

Figure 12.23 throwFault Method (userAdmin.asmx.cs)

/// <summary>

/// The throwFault method throws a SOAP fault and ends

/// execution of the Web Service method

/// </summary>

/// <param name='message'

/// type='string'

/// desc='start of text node of faultstring element in

/// SOAP fault message'>

/// </param>

/// <param name='failReason'

www.syngress.com
Continued

167_C#_12.qxd 12/5/01 11:20 AM Page 718

Building a Jokes Web Services • Chapter 12 719

/// type='string'

/// desc='text node for custom failReason element in SOAP

/// fault message'>

/// </param>

/// <param name='userName'

/// type='string'

/// desc='name of registered user'>

/// </param>

/// <returns>nothing</returns>

private void throwFault(string message, string failReason, string

userName) {

xmlFailReasonNode.AppendChild(soapErrorDoc.CreateTextNode(

jokeException.getNiceErrorMessage(failReason)));

jokeException.writeEventLogEntry(userName, failReason);

throw new SoapException(message, SoapException.ServerFaultCode,

Context.Request.Url.AbsoluteUri,null,

new System.Xml.XmlNode[]{xmlFailReasonNode});

}

For instance, if you try to add a user who is already registered, a SOAP fault
will be returned, as pictured in Figure 12.24.

www.syngress.com

Figure 12.23 Continued

Figure 12.24 A SOAP Fault Extended by a Custom XML Element

167_C#_12.qxd 12/5/01 11:20 AM Page 719

720 Chapter 12 • Building a Jokes Web Services

Creating the Public Web Methods—Administrators
The two other public Web methods of the userAdmin Web Service are very sim-
ilar in their structure to the addUser Web method; they are the Web method
addModerator(), which adds a new moderator to the database, and the Web method
checkUser(), which checks if a user or moderator is already defined in the database.
Those two methods are presented in Figures 12.25 and 12.26, respectively.

Figure 12.25 addModerator Web Method (userAdmin.asmx.cs)

/// <summary>

/// The addModerator method adds a new moderator to the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of moderator'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of moderator'>

/// </param>

/// <param name='newModerator'

/// type='string'

/// desc='user name of user who will become a moderator'>

/// </param>

/// <returns>nothing</returns>

[SoapDocumentMethodAttribute(Action="addModerator",

RequestNamespace="urn:schemas-syngress-com-soap:userAdmin",

RequestElementName="addModerator",

ResponseNamespace="urn:schemas-syngress-com-soap:userAdmin",

ResponseElementName="addModeratorResponse")]

[WebMethod(Description="The addModerator method adds a new " +

"moderator to the database")]

public void addModerator(

string userName, string password, string newModerator) {

userAdminImplement userAdminObj = new userAdminImplement();

try {

www.syngress.com
Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 720

Building a Jokes Web Services • Chapter 12 721

userAdminObj.addModerator(userName, password, newModerator);

// catch jokeExceptions

} catch (jokeException e) {

throwFault("Fault occurred", e.failReason, userName);

}

// then, catch general System Exceptions

catch (Exception e) {

throwFault(e.Message, "F_System", userName);

}

}

Figure 12.26 checkUser Web Method (userAdmin.asmx.cs)

/// <summary>

/// The checkUser method checks if a user or moderator is

/// already defined in the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of user or moderator'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of user or moderator'>

/// </param>

/// <param name='isModerator'

/// type='bool'

/// desc='check for moderator status (if false, we do

/// not check)'>

/// </param>

/// <returns>nothing</returns>

[SoapDocumentMethodAttribute(Action="checkUser",

RequestNamespace="urn:schemas-syngress-com-soap:userAdmin",

www.syngress.com

Figure 12.25 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 721

722 Chapter 12 • Building a Jokes Web Services

RequestElementName="checkUser",

ResponseNamespace="urn:schemas-syngress-com-soap:userAdmin",

ResponseElementName="checkUserResponse")]

[WebMethod(Description="The checkUser method checks if a user " +

"or moderator is already defined in the database")]

public void checkUser(

string userName, string password, bool isModerator) {

userAdminImplement userAdminObj = new userAdminImplement();

try {

userAdminObj.checkUser(userName, password, isModerator);

// catch jokeExceptions

} catch (jokeException e) {

throwFault("Fault occurred", e.failReason, userName);

}

// then, catch general System Exceptions

catch (Exception e) {

throwFault(e.Message, "F_System", userName);

}

}

Et voilà! You’re done with your first “real”Web Service: the userAdmin Web
Service, which is the user administration module for the Jokes application.

Testing the Public Web Methods
You can immediately check if things work properly by calling it from a Visual
Basic script, as described in Chapter 11.The VBS script shown in Figure 12.27
will add a new user.

Figure 12.27 A Simple Visual Basic Script to Test Adding a New User to the
Database

myWebService = "http://localhost/Jokes1/userAdmin.asmx"

myMethod = "addUser"

'** create the SOAP envelope with the request

www.syngress.com

Figure 12.26 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 722

Building a Jokes Web Services • Chapter 12 723

myData = ""

myData = myData & "<?xml version=""1.0"" encoding=""utf-8""?>"

myData = myData & "<soap:Envelope xmlns:soap=""http://schemas."

myData = myData & "xmlsoap.org/soap/envelope/"">"

myData = myData & " <soap:Body>"

myData = myData & " <addUser xmlns=""urn:schemas-syngress-"

myData = myData & "com-soap:userAdmin"">"

myData = myData & " <userName>newUser</userName>"

myData = myData & " <password>newPassword</password>"

myData = myData & " </addUser>"

myData = myData & " </soap:Body>"

myData = myData & "</soap:Envelope>"

msgbox(myData)

set requestHTTP = CreateObject("Microsoft.XMLHTTP")

msgbox("xmlhttp object created")

requestHTTP.open "POST", myWebService, false

requestHTTP.setrequestheader "Content-Type", "text/xml"

requestHTTP.setrequestheader "SOAPAction", myMethod

requestHTTP.Send myData

msgbox("request sent")

set responseDocument = requestHTTP.responseXML

msgbox(requestHTTP.status)

msgbox(responseDocument.xml)

If things go right, a new user should be added to the database, and a message
box depicting a SOAP return envelope should appear, as shown in Figure 12.28.

www.syngress.com

Figure 12.27 Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 723

724 Chapter 12 • Building a Jokes Web Services

Developing the Jokes Service
The second Web Service to develop is the jokes Web Service.The main feature of
this Web Service is that it lets registered users retrieve jokes.Additionally, it con-
tains methods to administer jokes, such as adding and removing jokes, approving
jokes submitted by users to be visible to other users, and giving users a way to
rate existing jokes. In many respects, things are set up in parallel from what you
have already seen in the userAdmin Web Service, which is the Web Service to
manage user information.

Best Practices for Returning Highly Structured Data
Compared with the userAdmin Web Service you have just developed, the jokes
Web Service has one key additional difficulty: how to return joke data.The
requirements are as follows:

■ Return anywhere from 1 to 10 jokes.

■ Along with each joke, return its average user rating and the joke identi-
fier (for future reference, if for example a user wants to rate that joke).

From the stored procedure sp_getJokes, you can get a SQL record set. One
possibility, then, is to simply return the jokes as “record sets” (the correct term
here is objects of type System.Data.DataSet).This magic works because the .NET
SOAP serializer, which is the piece of code that puts the data in XML format to
be sent back inside a SOAP return envelope, can indeed serialize that kind of
data out of the box. However, as we discussed in Chapter 11, returning serialized
DataSets may often not be a good idea because in practice it pretty much forces
your clients to run on a Microsoft .NET platform, counter to the idea of Web
Services to be an open standard.

www.syngress.com

Figure 12.28 A Successful Call to Add a New Registered User

167_C#_12.qxd 12/5/01 11:21 AM Page 724

Building a Jokes Web Services • Chapter 12 725

What alternatives do you have? Again, our advice is to use a simple structure
adapted to the problem at hand. If you want your clients to validate the XML
against a DTD or an XML Schema, you can always pass that information as a
URL (maybe to another Web Service!), but don’t pass that information by default
with every call to the client. In your case, you simply pass a structure that looks
essentially like everything above starting from the NewDataSet element; that is,
you want an XML element delineating rows of data, and additional XML ele-
ments delineating the fields of data within each row of data.

This is done very simply by creating a custom C# class, the xmlJokesReturn
class, which is designed to hold a single row of data, as shown in Figure 12.29. Of
course, if you prefer, you could achieve the same thing by using a structure.

Figure 12.29 The xmlJokesReturn Class That Holds the Jokes
(xmlJokesReturn.cs)

using System;

namespace jokesService

{

/// <summary>

/// The xmlJokesReturn class is the return type of all public

/// methods returning joke data.

/// </summary>

/// <remarks>

/// Author: Adrian Turtschi; aturtschi@hotmail.com; Sept 2001

/// </remarks>

public class xmlJokesReturn {

/// <value>ID of joke returned</value>

public string jokeID;

/// <value>the actual joke</value>

public string joke;

/// <value>average rating of the joke (can be empty)</value>

public string rating;

/// <summary>

/// Public class constructor.

www.syngress.com

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 725

726 Chapter 12 • Building a Jokes Web Services

/// </summary>

public xmlJokesReturn() {

}

}

}

Because you may return more than one row of data, of course, you can
simply set up the getJokes Web method to return an array of objects of type
xmlJokesReturn.The SOAP serializer does the rest automatically. In Figure 12.30,
you can see the definition of the getJokes Web method (note that we haven’t
talked about the corresponding implementation method yet).

Figure 12.30 getJokes Web method (jokes.asmx.cs)

[WebMethod]

public xmlJokesReturn[] getJokes(

string userName, string password, int howMany) {

jokesImplement jokesObj = new jokesImplement();

try {

xmlJokesReturn[] myJokes =

jokesObj.getJokes(userName, password, howMany);

return myJokes;

}

// error handler omitted

The SOAP object serializer does what it is supposed to do, that is it returns a
serialized array of xmlJokesReturn objects, and you retrieve a SOAP envelope on
the client that may look like the one in Figure 12.31, containing two jokes.

Figure 12.31 SOAP Response Envelope Containing Two Jokes as Serialized
xmlJokesReturn Objects

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

www.syngress.com

Figure 12.29 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 726

Building a Jokes Web Services • Chapter 12 727

<soap:Body>

<getJokesResponse xmlns="urn:schemas-syngress-com-soap:jokes">

<jokeData>

<jokeID>1</jokeID>

<joke>this is the first joke</joke>

<rating>3.5</rating>

</jokeData>

<jokeData>

<jokeID>2</jokeID>

<joke>this is the second joke</joke>

<rating />

</jokeData>

</getJokesResponse>

</soap:Body>

</soap:Envelope>

Setting Up Internal Methods to
Wrap the Stored Procedure Calls

Similar to the way you proceeded when developing the userAdmin Web
Service, you want to create internal methods to wrap calls to the stored proce-
dures that interface with the jokes in the database.You have three stored proce-
dures that deal with jokes:

■ sp_manageJoke

■ sp_manageRating

■ sp_returnJokes

The corresponding wrapping methods, part of file JokesImplement.cs, are
shown in detail in Figure 12.32 (createSqlManageJoke), Figure 12.33
(createSqlManageRating), and Figure 12.34 (createSqlReturnJokes).

www.syngress.com

Figure 12.31 Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 727

728 Chapter 12 • Building a Jokes Web Services

Figure 12.32 createSqlManageJoke Method (JokesImplement.cs)

/// <summary>

/// The createSqlManageJoke method sets up the SQL command object

/// for the stored procedure sp_manageJoke, which deals with

/// adding, updating, and deleting jokes

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of registered user (zero length if N/A)'>

/// </param>

/// <param name='joke'

/// type='string'

/// desc='the joke (zero length if N/A)'>

/// </param>

/// <param name='isModerated'

/// type='string'

/// desc='true/false if this is/is not a moderated joke

/// (zero length if N/A)'>

/// </param>

/// <param name='jokeID'

/// type='string'

/// desc='the joke ID for the joke (zero length if N/A)'>

/// </param>

/// <param name='action'

/// type='string'

/// desc='the action the SQL stored procedure should take

/// (see the stored procedure definition for allowed action

/// keywords)'>

/// </param>

/// <param name='sqlCommand'

/// type='SqlCommand'

/// desc='a reference to a SQL command object'>

/// </param>

/// <returns>the prepared SQL command object</returns>

www.syngress.com

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 728

Building a Jokes Web Services • Chapter 12 729

protected internal void createSqlManageJoke(

string userName, string joke, string isModerated,

string jokeID, string action, SqlCommand sqlCommand) {

sqlCommand.CommandType = CommandType.StoredProcedure;

sqlCommand.CommandText = "sp_manageJoke" ;

SqlParameter argUserName =

new SqlParameter("@@userName", SqlDbType.NVarChar, 20);

if(userName.Length > 0) {

argUserName.Value = userName;

} else {

argUserName.Value = DBNull.Value;

}

sqlCommand.Parameters.Add(argUserName);

SqlParameter argJoke =

new SqlParameter("@@joke",SqlDbType.NVarChar, 3500);

if(joke.Length > 0) {

argJoke.Value = joke;

} else {

argJoke.Value = DBNull.Value;

}

sqlCommand.Parameters.Add(argJoke);

SqlParameter argIsModerated =

new SqlParameter("@@isModerated",SqlDbType.Bit);

if(isModerated.Length > 0) {

argIsModerated.Value = bool.Parse(isModerated);

} else {

argIsModerated.Value = DBNull.Value;

}

sqlCommand.Parameters.Add(argIsModerated);

www.syngress.com

Figure 12.32 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 729

730 Chapter 12 • Building a Jokes Web Services

SqlParameter argJokeID =

new SqlParameter("@@jokeID",SqlDbType.Int);

if(jokeID.Length > 0) {

argJokeID.Value = Int32.Parse(jokeID);

} else {

argJokeID.Value = DBNull.Value;

}

sqlCommand.Parameters.Add(argJokeID);

SqlParameter argAction =

new SqlParameter("@@action",SqlDbType.NVarChar, 20);

argAction.Value = action;

sqlCommand.Parameters.Add(argAction);

SqlParameter argReturn =

new SqlParameter("@@return",SqlDbType.NVarChar, 20,

ParameterDirection.Output, true, 0, 0, "",

DataRowVersion.Current, "");

sqlCommand.Parameters.Add(argReturn);

}

Figure 12.33 createSqlManageRating Method (JokesImplement.cs)

/// <summary>

/// The createSqlManageRating method sets up the SQL command

/// object for the stored procedure sp_manageRating, which

/// deals with adding and deleting user joke ratings

/// </summary>

/// <param name='jokeID'

/// type='string'

/// desc='the joke ID for the joke we would like to rate'>

/// </param>

www.syngress.com

Figure 12.32 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 730

Building a Jokes Web Services • Chapter 12 731

/// <param name='rating'

/// type='string'

/// desc='the user rating for the joke (1-5)'>

/// </param>

/// <param name='action'

/// type='string'

/// desc='the action the SQL stored procedure should take

/// (see the stored procedure definition for allowed action

/// keywords)'>

/// </param>

/// <param name='sqlCommand'

/// type='SqlCommand'

/// desc='a reference to a SQL command object'>

/// </param>

/// <returns>the prepared SQL command object</returns>

protected internal void createSqlManageRating(

string jokeID, string rating, string action,

SqlCommand sqlCommand) {

sqlCommand.CommandType = CommandType.StoredProcedure;

sqlCommand.CommandText = "sp_manageRating" ;

SqlParameter argJokeID =

new SqlParameter("@@jokeID", SqlDbType.Int);

argJokeID.Value = Int32.Parse(jokeID);

sqlCommand.Parameters.Add(argJokeID);

SqlParameter argRating =

new SqlParameter("@@rating",SqlDbType.TinyInt);

argRating.Value = Int32.Parse(rating);

sqlCommand.Parameters.Add(argRating);

SqlParameter argAction =

www.syngress.com

Figure 12.33 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 731

732 Chapter 12 • Building a Jokes Web Services

new SqlParameter("@@action",SqlDbType.NVarChar, 20);

argAction.Value = action;

sqlCommand.Parameters.Add(argAction);

SqlParameter argReturn =

new SqlParameter("@@return",SqlDbType.NVarChar, 20,

ParameterDirection.Output, true, 0, 0, "",

DataRowVersion.Current, "");

sqlCommand.Parameters.Add(argReturn);

}

Figure 12.34 createSqlReturnJokes Method (JokesImplement.cs)

/// <summary>

/// The createSqlReturnJokes method sets up the SQL command object

/// for the stored procedure sp_returnJokes, which returns jokes

/// </summary>

/// <param name='howMany'

/// type='string'

/// desc='how many jokes we would like (zero length if N/A)'>

/// </param>

/// <param name='isModerated'

/// type='string'

/// desc='true/false if we are interested in (not) moderated

/// jokes (zero length if N/A)'>

/// </param>

/// <param name='returnRandom'

/// type='string'

/// desc='true/false if we are interested getting random jokes

/// (actually, only the starting position is random, from there

/// on we retrieve jokes in sequential order for practical

/// reasons)'>

/// </param>

www.syngress.com

Figure 12.33 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 732

Building a Jokes Web Services • Chapter 12 733

/// <param name='sqlCommand'

/// type='SqlCommand'

/// desc='a reference to a SQL command object'>

/// </param>

/// <returns>the prepared SQL command object</returns>

protected internal void createSqlReturnJokes(

string howMany, string isModerated, string returnRandom,

SqlCommand sqlCommand) {

sqlCommand.CommandType = CommandType.StoredProcedure;

sqlCommand.CommandText = "sp_returnJokes" ;

SqlParameter argHowMany =

new SqlParameter("@@howMany", SqlDbType.Int);

if(howMany.Length > 0) {

argHowMany.Value = Int32.Parse(howMany);

} else {

argHowMany.Value = DBNull.Value;

}

sqlCommand.Parameters.Add(argHowMany);

SqlParameter argIsModerated =

new SqlParameter("@@isModerated",SqlDbType.Bit);

if(isModerated.Length > 0) {

argIsModerated.Value = bool.Parse(isModerated);

} else {

argIsModerated.Value = DBNull.Value;

}

sqlCommand.Parameters.Add(argIsModerated);

SqlParameter argReturnRandom =

new SqlParameter("@@returnRandom",SqlDbType.Bit);

argReturnRandom.Value = bool.Parse(returnRandom);

www.syngress.com

Figure 12.34 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 733

734 Chapter 12 • Building a Jokes Web Services

sqlCommand.Parameters.Add(argReturnRandom);

}

Setting Up Internal Methods
to Manage Jokes and Ratings
Now that you can call the stored procedures that deal with jokes in the database,
you want to implement the business logic that deals with jokes.You have four
methods that either add or delete jokes and ratings:

■ addJoke() Checks that user is registered, and then adds the passed joke
as an unmoderated joke to the system.

■ addRating() Checks that user is registered, and then adds the passed
rating to the joke having the passed joke identifier to the system.

■ addModerated() Checks that user is a moderator, and then changes
the isModerated flag of the joke having the passed joke identifier to
the system.

■ deleteUnmoderated() Checks that user is a moderator, and then
removes the joke having the passed joke identifier, along with all its user
ratings, from the system.

Figure 12.35 shows the business logic for the addJoke method, and
Figures12.36, 12.37, and 12.38 deal with the addRating, addModerated, and
deleteUnmoderated methods, respectively.

Figure 12.35 addJoke Method (JokesImplement.cs)

/// <summary>

/// The addJoke method lets registered users add a joke

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of registered user'>

/// </param>

/// <param name='password'

www.syngress.com

Figure 12.34 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 734

Building a Jokes Web Services • Chapter 12 735

/// type='string'

/// desc='password of registered user'>

/// </param>

/// <param name='joke'

/// type='string'

/// desc='the joke we are adding'>

/// </param>

/// <returns>true</returns>

protected internal bool addJoke(

string userName, string password, string joke) {

string retCode;

try {

// check if user is registered

userAdminImplement myUser = new userAdminImplement();

SqlCommand sqlCommand = new SqlCommand();

myUser.createSqlCheckUser(userName, password, "", sqlCommand);

databaseAccess myDatabase = new databaseAccess();

sqlCommand.Connection = myDatabase.getConnection();

sqlCommand.Connection.Open();

sqlCommand.ExecuteNonQuery();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// exit, if user not registered

if (retCode != "S_OK") {

sqlCommand.Connection.Close();

throw new jokeException(retCode);

}

// add the joke (unmoderated, at this point)

www.syngress.com

Figure 12.35 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 735

736 Chapter 12 • Building a Jokes Web Services

sqlCommand.Parameters.Clear();

createSqlManageJoke(

userName, joke, "false", "", "add", sqlCommand);

sqlCommand.ExecuteNonQuery();

sqlCommand.Connection.Close();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// catch problems within the stored procedure

if (retCode == "S_OK") {

return true;

} else {

throw new jokeException(retCode);

}

// catch problems with the database

} catch (Exception e) {

throw e;

}

}

Figure 12.36 addRating Method (JokesImplement.cs)

/// <summary>

/// The addRating method lets registered users rate a joke

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of registered user'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of registered user'>

www.syngress.com

Figure 12.35 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 736

Building a Jokes Web Services • Chapter 12 737

/// </param>

/// <param name='rating'

/// type='int'

/// desc='the rating of the joke to rate (1-5)'>

/// </param>

/// <param name='jokeID'

/// type='int'

/// desc='the ID of the joke to rate'>

/// </param>

/// <returns>true</returns>

protected internal bool addRating(

string userName, string password, int rating, int jokeID) {

string retCode;

try {

// check if user is registered

userAdminImplement myUser = new userAdminImplement();

SqlCommand sqlCommand = new SqlCommand();

myUser.createSqlCheckUser(userName, password, "", sqlCommand);

databaseAccess myDatabase = new databaseAccess();

sqlCommand.Connection = myDatabase.getConnection();

sqlCommand.Connection.Open();

sqlCommand.ExecuteNonQuery();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// exit, if user not registered

if (retCode != "S_OK") {

sqlCommand.Connection.Close();

throw new jokeException(retCode);

}

www.syngress.com

Figure 12.36 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 737

738 Chapter 12 • Building a Jokes Web Services

// add the joke rating

sqlCommand.Parameters.Clear();

createSqlManageRating(

jokeID.ToString(), rating.ToString(), "add", sqlCommand);

sqlCommand.ExecuteNonQuery();

sqlCommand.Connection.Close();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// catch problems within the stored procedure

if (retCode == "S_OK") {

return true;

} else {

throw new jokeException(retCode);

}

// catch problems with the database

} catch (Exception e) {

throw e;

}

}

Figure 12.37 addModerated Method (JokesImplement.cs)

/// <summary>

/// The addModerated method sets a previously submitted joke

/// to become a moderated joke

/// (for moderators only)

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of moderator'>

www.syngress.com

Figure 12.36 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 738

Building a Jokes Web Services • Chapter 12 739

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of moderator'>

/// </param>

/// <param name='jokeID'

/// type='int'

/// desc='joke ID of joke'>

/// </param>

/// <returns>an XML representation (xmlJokesReturn)

/// of a single joke</returns>

protected internal bool addModerated(

string userName, string password, int jokeID) {

string retCode;

try {

// check if user is a moderator

userAdminImplement myUser = new userAdminImplement();

SqlCommand sqlCommand = new SqlCommand();

myUser.createSqlCheckUser(

userName, password, "true", sqlCommand);

databaseAccess myDatabase = new databaseAccess();

sqlCommand.Connection = myDatabase.getConnection();

sqlCommand.Connection.Open();

sqlCommand.ExecuteNonQuery();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// exit, if user not a moderator

if (retCode != "S_OK") {

sqlCommand.Connection.Close();

www.syngress.com

Figure 12.37 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 739

740 Chapter 12 • Building a Jokes Web Services

throw new jokeException(retCode);

}

// make the joke a moderated one

sqlCommand.Parameters.Clear();

createSqlManageJoke(userName, "", "true", jokeID.ToString(),

"modify", sqlCommand);

sqlCommand.ExecuteNonQuery();

sqlCommand.Connection.Close();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// catch problems within the stored procedure

if (retCode == "S_OK") {

return true;

} else {

throw new jokeException(retCode);

}

// catch problems with the database

} catch (Exception e) {

throw e;

}

}

Figure 12.38 deleteUnmoderated Method (JokesImplement.cs)

/// <summary>

/// The deleteUnmoderated method deletes a previously

/// submitted joke (unmoderated) joke

/// (for moderators only)

/// </summary>

/// <param name='userName'

www.syngress.com

Figure 12.37 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 740

Building a Jokes Web Services • Chapter 12 741

/// type='string'

/// desc='name of moderator'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of moderator'>

/// </param>

/// <param name='jokeID'

/// type='int'

/// desc='joke ID of joke'>

/// </param>

/// <returns>true</returns>

protected internal bool deleteUnmoderated(

string userName, string password, int jokeID) {

string retCode;

try {

// check if user is a moderator

userAdminImplement myUser = new userAdminImplement();

SqlCommand sqlCommand = new SqlCommand();

myUser.createSqlCheckUser(

userName, password, "true", sqlCommand);

databaseAccess myDatabase = new databaseAccess();

sqlCommand.Connection = myDatabase.getConnection();

sqlCommand.Connection.Open();

sqlCommand.ExecuteNonQuery();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// exit, if user not a moderator

www.syngress.com

Figure 12.38 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 741

742 Chapter 12 • Building a Jokes Web Services

if (retCode != "S_OK") {

sqlCommand.Connection.Close();

throw new jokeException(retCode);

}

// delete the joke

sqlCommand.Parameters.Clear();

createSqlManageJoke(

userName, "", "", jokeID.ToString(), "delete", sqlCommand);

sqlCommand.ExecuteNonQuery();

sqlCommand.Connection.Close();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// catch problems within the stored procedure

if (retCode == "S_OK") {

return true;

} else {

throw new jokeException(retCode);

}

// catch problems with the database

} catch (Exception e) {

throw e;

}

}

Setting Up Internal Methods to Return Jokes
Finally, you have two methods that return joke data:

■ getJokes() Check that user is registered, and then return one or more
moderated jokes, depending on an argument passed

www.syngress.com

Figure 12.38 Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 742

Building a Jokes Web Services • Chapter 12 743

■ getUnmoderated() Check that user is a moderator, and then return
one or more moderated jokes, depending on an argument passed

As mentioned earlier, you should forgo returning DataSets, and return instead
an array of type xmlJokesReturn. Figure 12.39 shows the code for the getJokes
method, and Figure 12.40 details the method getUnmoderated.

Figure 12.39 getJokes Method (JokesImplement.cs)

/// <summary>

/// The getJokes method returns howMany new jokes from

/// the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of registered user'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of registered user'>

/// </param>

/// <param name='howMany'

/// type='int'

/// desc='number of jokes to return (1-10)'>

/// </param>

/// <returns>an XML representation (xmlJokesReturn) of a

/// single joke</returns>

protected internal xmlJokesReturn[] getJokes(

string userName, string password, int howMany) {

string retCode;

try {

// check if user is registered

userAdminImplement myUser = new userAdminImplement();

SqlCommand sqlCommand = new SqlCommand();

www.syngress.com

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 743

744 Chapter 12 • Building a Jokes Web Services

myUser.createSqlCheckUser(userName, password, "", sqlCommand);

databaseAccess myDatabase = new databaseAccess();

sqlCommand.Connection = myDatabase.getConnection();

sqlCommand.Connection.Open();

sqlCommand.ExecuteNonQuery();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// exit, if user not registered

if (retCode != "S_OK") {

sqlCommand.Connection.Close();

throw new jokeException(retCode);

}

// retrieve a random joke

// maximum is 10 jokes

if((howMany < 1) || (howMany > 10)) {

throw new jokeException("F_10JokesMax");

}

sqlCommand.Parameters.Clear();

createSqlReturnJokes(

howMany.ToString(), "true", "true", sqlCommand);

sqlCommand.ExecuteNonQuery();

sqlCommand.Connection.Close();

SqlDataAdapter sqlDataAdapter = new SqlDataAdapter(sqlCommand);

DataTable dataTable = new DataTable("sqlReturn");

www.syngress.com

Figure 12.39 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 744

Building a Jokes Web Services • Chapter 12 745

sqlDataAdapter.Fill(dataTable);

// convert SQL table into xmlJokesReturn class

int rowCount = dataTable.Rows.Count;

xmlJokesReturn[] myJokes = new xmlJokesReturn[rowCount];

for(int i = 0; i < rowCount; i++) {

myJokes[i] = new xmlJokesReturn();

myJokes[i].jokeID = dataTable.Rows[i][0].ToString();

myJokes[i].joke = dataTable.Rows[i][1].ToString();

myJokes[i].rating = dataTable.Rows[i][2].ToString();

}

// catch problems within the stored procedure

if(rowCount > 0) {

return myJokes;

} else {

throw new jokeException("F_noJokes");

}

// catch problems with the database

} catch (Exception e) {

throw e;

}

}

Figure 12.40 getUnmoderated Method (JokesImplement.cs)

/// <summary>

/// The getUnmoderated method retrieves howMany jokes from

/// the database

/// (for moderators only)

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of moderator'>

www.syngress.com

Figure 12.39 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 745

746 Chapter 12 • Building a Jokes Web Services

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of moderator'>

/// </param>

/// <param name='howMany'

/// type='int'

/// desc='number of jokes to return'>

/// </param>

/// <returns>an XML representation (xmlJokesReturn)

/// of a single joke</returns>

protected internal xmlJokesReturn[] getUnmoderated(

string userName, string password, int howMany) {

string retCode;

try {

// check if user is a moderator

userAdminImplement myUser = new userAdminImplement();

SqlCommand sqlCommand = new SqlCommand();

myUser.createSqlCheckUser(

userName, password, "true", sqlCommand);

databaseAccess myDatabase = new databaseAccess();

sqlCommand.Connection = myDatabase.getConnection();

sqlCommand.Connection.Open();

sqlCommand.ExecuteNonQuery();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// exit, if user not a moderator

if (retCode != "S_OK") {

www.syngress.com

Figure 12.40 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 746

Building a Jokes Web Services • Chapter 12 747

sqlCommand.Connection.Close();

throw new jokeException(retCode);

}

// retrieve the first <howMany> unmoderated jokes

// maximum is 10 jokes

if((howMany < 1) || (howMany > 10)) {

throw new jokeException("F_10JokesMax");

}

sqlCommand.Parameters.Clear();

createSqlReturnJokes(

howMany.ToString(), "false", "false", sqlCommand);

sqlCommand.ExecuteNonQuery();

sqlCommand.Connection.Close();

SqlDataAdapter sqlDataAdapter = new SqlDataAdapter(sqlCommand);

DataTable dataTable = new DataTable("sqlReturn");

sqlDataAdapter.Fill(dataTable);

// convert SQL table into xmlJokesReturn class

int rowCount = dataTable.Rows.Count;

xmlJokesReturn[] myJokes = new xmlJokesReturn[rowCount];

for(int i = 0; i < rowCount; i++) {

myJokes[i] = new xmlJokesReturn();

myJokes[i].jokeID = dataTable.Rows[i][0].ToString();

myJokes[i].joke = dataTable.Rows[i][1].ToString();

myJokes[i].rating = dataTable.Rows[i][2].ToString();

}

// catch problems within the stored procedure

www.syngress.com

Figure 12.40 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 747

748 Chapter 12 • Building a Jokes Web Services

if(rowCount > 0) {

return myJokes;

} else {

throw new jokeException("F_noJokes");

}

// catch problems with the database

} catch (Exception e) {

throw e;

}

}

Creating the Public Web Methods
You are now finished with the internal methods, and you can now go about
implementing the public Web methods for the jokes Web Service. Remember
that you put all of those Web methods in the jokes class (the file on the CD is
jokes.asmx.cs). Figures 12.41 through 12.46 detail the code for those public Web
methods.

Figure 12.41 addJoke Web Method (jokes.asmx.cs)

/// <summary>

/// The addJoke method adds a new joke to the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of registered user'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of registered user'>

/// </param>

/// <param name='joke'

/// type='string'

/// desc='the joke'>

www.syngress.com

Figure 12.40 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 748

Building a Jokes Web Services • Chapter 12 749

/// </param>

/// <returns>nothing</returns>

[SoapDocumentMethodAttribute(Action="addJoke",

RequestNamespace="urn:schemas-syngress-com-soap:jokes",

RequestElementName="addJoke",

ResponseNamespace="urn:schemas-syngress-com-soap:jokes",

ResponseElementName="addJokeResponse")]

[WebMethod(Description="The addJoke method adds a new joke " +

"to the database")]

public void addJoke(

string userName, string password, string joke) {

jokesImplement jokesObj = new jokesImplement();

try {

jokesObj.addJoke(userName, password, joke);

// catch jokeExceptions

} catch (jokeException e) {

throwFault("Fault occurred", e.failReason, userName);

}

// then, catch general System Exceptions

catch (Exception e) {

throwFault(e.Message, "F_System", userName);

}

}

Figure 12.42 getJokes Web Method (jokes.asmx.cs)

/// <summary>

/// The getJokes method gets howMany (moderated) jokes

/// from the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of registered user'>

www.syngress.com

Figure 12.41 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 749

750 Chapter 12 • Building a Jokes Web Services

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of registered user'>

/// </param>

/// <param name='howMany'

/// type='int'

/// desc='how many jokes we would like'>

/// </param>

/// <returns>an XML representation (xmlJokesReturn)

/// of howMany jokes</returns>

[SoapDocumentMethodAttribute(Action="getJokes",

RequestNamespace="urn:schemas-syngress-com-soap:jokes",

RequestElementName="getJokes",

ResponseNamespace="urn:schemas-syngress-com-soap:jokes",

ResponseElementName="getJokesResponse")]

[WebMethod(Description="The getJokes method gets <howMany> " +

"(moderated) jokes from the database")]

[return: XmlElementAttribute("jokeData", IsNullable=false)]

public xmlJokesReturn[] getJokes(

string userName, string password, int howMany) {

jokesImplement jokesObj = new jokesImplement();

try {

xmlJokesReturn[] myJokes =

jokesObj.getJokes(userName, password, howMany);

return myJokes;

// catch jokeExceptions

} catch (jokeException e) {

throwFault("Fault occurred", e.failReason, userName);

return null; // code never reached, but needed by compiler

}

// then, catch general System Exceptions

catch (Exception e) {

www.syngress.com

Figure 12.42 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 750

Building a Jokes Web Services • Chapter 12 751

throwFault(e.Message, "F_System", userName);

return null; // code never reached, but needed by compiler

}

}

Figure 12.43 addRating Web Method (jokes.asmx.cs)

/// <summary>

/// The addRating method lets a user add a rating

/// for a joke to the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of registered user'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of registered user'>

/// </param>

/// <param name='rating'

/// type='int'

/// desc='rating of the joke (1-5)'>

/// </param>

/// <param name='jokeID'

/// type='int'

/// desc='ID of the joke'>

/// </param>

/// <returns>nothing</returns>

[SoapDocumentMethodAttribute(Action="addRating",

RequestNamespace="urn:schemas-syngress-com-soap:jokes",

RequestElementName="addRating",

ResponseNamespace="urn:schemas-syngress-com-soap:jokes",

ResponseElementName="addRatingResponse")]

www.syngress.com

Figure 12.42 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 751

752 Chapter 12 • Building a Jokes Web Services

[WebMethod(Description="The addRating method lets a user add a " +

"rating for a joke to the database")]

public void addRating(

string userName, string password, int rating, int jokeID) {

jokesImplement jokesObj = new jokesImplement();

try {

if((rating < 1) && (rating > 5)) {

throwFault("Fault occurred", "F_ratingInvalid", userName);

} else {

jokesObj.addRating(userName, password, rating, jokeID);

}

// catch jokeExceptions

} catch (jokeException e) {

throwFault("Fault occurred", e.failReason, userName);

}

// then, catch general System Exceptions

catch (Exception e) {

throwFault(e.Message, "F_System", userName);

}

}

Figure 12.44 getUnmoderated Web Method (jokes.asmx.cs)

/// <summary>

/// The getUnmoderated method lets a moderator retrieve

/// howMany unmoderated jokes from the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of moderator'>

/// </param>

/// <param name='password'

/// type='string'

www.syngress.com

Figure 12.43 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 752

Building a Jokes Web Services • Chapter 12 753

/// desc='password of moderator'>

/// </param>

/// <param name='howMany'

/// type='int'

/// desc='how many jokes we would like'>

/// </param>

/// <returns>an XML representation (xmlJokesReturn)

/// of howMany jokes</returns>

[SoapDocumentMethodAttribute(Action="getUnmoderated",

RequestNamespace="urn:schemas-syngress-com-soap:jokes",

RequestElementName="getUnmoderated",

ResponseNamespace="urn:schemas-syngress-com-soap:jokes",

ResponseElementName="getUnmoderatedResponse")]

[WebMethod(Description="The getUnmoderated method lets a " +

"moderator retrieve <howMany> unmoderated jokes from " +

"the database")]

[return: XmlElementAttribute("jokeData", IsNullable=false)]

public xmlJokesReturn[] getUnmoderated(

string userName, string password, int howMany) {

jokesImplement jokesObj = new jokesImplement();

try {

xmlJokesReturn[] myJokes =

jokesObj.getUnmoderated(userName, password, howMany);

return myJokes;

// catch jokeExceptions

} catch (jokeException e) {

throwFault("Fault occurred", e.failReason, userName);

return null; // code never reached, but needed by compiler

}

// then, catch general System Exceptions

catch (Exception e) {

throwFault(e.Message, "F_System", userName);

return null; // code never reached, but needed by compiler

www.syngress.com

Figure 12.44 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 753

754 Chapter 12 • Building a Jokes Web Services

}

}

Figure 12.45 addModerated Web Method (jokes.asmx.cs)

/// <summary>

/// The addModerated method lets a moderator set a joke to be

/// 'moderated', i.e. accessible to regular users

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of moderator'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of moderator'>

/// </param>

/// <param name='jokeID'

/// type='int'

/// desc='ID of joke'>

/// </param>

/// <returns>nothing</returns>

[SoapDocumentMethodAttribute(Action="addModerated",

RequestNamespace="urn:schemas-syngress-com-soap:jokes",

RequestElementName="addModerated",

ResponseNamespace="urn:schemas-syngress-com-soap:jokes",

ResponseElementName="addModeratedResponse")]

[WebMethod(Description="The addModerated method lets a " +

"moderator set a joke to be 'moderated', i.e. accessible " +

"to regular users")]

public void addModerated(

string userName, string password, int jokeID) {

jokesImplement jokesObj = new jokesImplement();

www.syngress.com

Figure 12.44 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 754

Building a Jokes Web Services • Chapter 12 755

try {

jokesObj.addModerated(userName, password, jokeID);

// catch jokeExceptions

} catch (jokeException e) {

throwFault("Fault occurred", e.failReason, userName);

}

// then, catch general System Exceptions

catch (Exception e) {

throwFault(e.Message, "F_System", userName);

}

}

Figure 12.46 deleteUnmoderated Web Method (jokes.asmx.cs)

/// <summary>

/// The deleteUnmoderated method lets a moderator delete a

/// (unmoderated) joke from the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of moderator'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of moderator'>

/// </param>

/// <param name='jokeID'

/// type='int'

/// desc='ID of joke'>

/// </param>

/// <returns>nothing</returns>

[SoapDocumentMethodAttribute(Action="deleteUnmoderated",

RequestNamespace="urn:schemas-syngress-com-soap:jokes",

www.syngress.com

Figure 12.45 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 755

756 Chapter 12 • Building a Jokes Web Services

RequestElementName="deleteUnmoderated",

ResponseNamespace="urn:schemas-syngress-com-soap:jokes",

ResponseElementName="deleteUnmoderatedResponse")]

[WebMethod(Description="The deleteUnmoderated method lets a " +

"moderator delete a (unmoderated) joke from the database")]

public void deleteUnmoderated(

string userName, string password, int jokeID) {

jokesImplement jokesObj = new jokesImplement();

try {

jokesObj.deleteUnmoderated(userName, password, jokeID);

// catch jokeExceptions

} catch (jokeException e) {

throwFault("Fault occurred", e.failReason, userName);

}

// then, catch general System Exceptions

catch (Exception e) {

throwFault(e.Message, "F_System", userName);

}

}

And you need to either add the same error-handling routine, throwFault, as
you did for the userAdmin Web Service, or you simply reference that method (in
which case you need to modify its access scope).

This completes the Web Service section of the jokes Web Service.As men-
tioned before, you can find the complete code for the Jokes Web Service in the
directory jokesService on the CD accompanying this book.

Let’s quickly review what you have done so far.You have implemented two
out of three tiers of a complex Web application that delivers jokes to users using
Web Services technology.You have set up a database back-end system to hold
user and joke information, you have created business logic components to
manage users and jokes, and you have implemented a data access mechanism
using Web Services.Although you could now go ahead and publish your Web
Service in a UDDI registry and wait for clients out there to consume your Web
Service, you should make an additional step and build a portal application that
lets users interface with the jokes application through Windows forms.

www.syngress.com

Figure 12.46 Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 756

Building a Jokes Web Services • Chapter 12 757

www.syngress.com

Creating Human Readable Documentation
As you set up the Web Service project, you instructed the C# compiler
to automatically create an XML documentation output file (see Figure
12.12). If you now have a look at that file, you’ll see something similar
to Figure 12.47.

Although all comments appear as they should, this document
needs some improvement to be truly useful for human consumption.
Unfortunately, the Beta2 does not contain style sheets to work with the
ML documentation files.

However, Dan Vallejo was kind enough to make an XSLT style sheet
(www.conted.bcc.ctc.edu/users/danval/CSharp/CSharp_Code_Files/doc.xsl)
publicly available on his C# Web site at www.conted.bcc.ctc.edu/users/
danval/ that generates a nice looking HTML documentation file. Although

Developing & Deploying…

Figure 12.47 XML Documentation Generated by the C# Compiler

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 757

758 Chapter 12 • Building a Jokes Web Services

Creating a Client Application
Let’s go ahead and develop a simple Windows Forms–based client for the Jokes
Web Service.The complete code for this application is on the CD in the direc-
tory jokesClient. Start by opening up Visual Studio.NET. Go to File | New |
Project, choose the entry Windows Application under the Visual C#
Projects folder, keep the default Location, and enter jokesClient as the Name
of the project, as indicated in Figure 12.49.This will set up a new form and
create supporting project files.

www.syngress.com

not quite as functionally rich as the documentation generated by, say, the
javadoc tool in the Java world, it is a first step in the right direction. The
XSLT file was originally conceived by Anders Hejlsberg. We use it by per-
mission of the author.

After applying that style sheet, your documentation will look sim-
ilar to Figure 12.48.

Figure 12.48 HTML Documentation after Applying a Style Sheet

167_C#_12.qxd 12/5/01 11:21 AM Page 758

Building a Jokes Web Services • Chapter 12 759

Next, add a reference to the Jokes Web Server. Right-click on the
jokesClient project in the Solutions Explorer and select Add Web Reference.
At the Address input box, enter http://localhost/Jokes1/userAdmin.asmx,
as shown in Figure 12.50.

www.syngress.com

Figure 12.49 Creating the jokesService Client as a Windows Forms Application

Figure 12.50 Adding a Web Reference to the Web Service

167_C#_12.qxd 12/5/01 11:21 AM Page 759

760 Chapter 12 • Building a Jokes Web Services

Once you verify that everything is fine, click Add Reference. Do the same
for the Jokes Web Service, which is at the URL http://localhost/jokesService/
jokes.asmx.

As described in Chapter 11, these references create the necessary proxy classes
for your client to access the Jokes application. Keep in mind that those references
are static, and as you change the Web Service public Web methods, you need to
manually refresh the Web references. (You don’t need to do this if you change the
internal implementation classes, which was, after all, one of the reason you cre-
ated them in the first place.)

The rest is just simply an exercise in Windows Forms programming.Things to
keep in mind are the following:

■ Even though Web Services are stateless, you can let your users “log on”
by asking for their credentials once, checking them against the user
database with the checkUser Web method, and then caching them locally
on the client.

■ The Web Service throws SOAP exceptions if things go wrong.You can
extract a user-friendly message by looking at the failReason custom XML
element in the SOAP exception return envelope.

Look at Figures 12.51, 12.52, and 12.53 to see how the client application looks.

www.syngress.com

Figure 12.51 The Web Service Client at Startup

167_C#_12.qxd 12/5/01 11:21 AM Page 760

Building a Jokes Web Services • Chapter 12 761

www.syngress.com

Figure 12.52 The Web Service Client after Logging On as a User, Retrieving
Some Jokes, and Adding a User Joke Rating

Figure 12.53 The Web Service Client after Logging On as a Moderator,
Retrieving One Unmoderated Joke, and Accepting It to Become Moderated

167_C#_12.qxd 12/5/01 11:21 AM Page 761

762 Chapter 12 • Building a Jokes Web Services

Figure 12.54 shows the code for the Jokes Client, ignoring code generated
through the form designer. For the complete code, see the file jokesClient.cs on
the CD.

Figure 12.54 Jokes Client Application (jokesClient.cs)

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.Web.Services.Protocols;

using System.Xml;

namespace jokesClient

{

/// <summary>

/// Form f_jokeClient.

/// </summary>

/// <remarks>

/// Author: Adrian Turtschi; aturtschi@hotmail.com; Sept 2001

/// </remarks>

public class f_jokeClient : System.Windows.Forms.Form

{

// placeholders for Web Service objects

private userAdmin.userAdmin userAdminObj ;

private jokes.jokes jokesObj;

// remember if objects have been created

private bool userAdminObjCreated = false;

private bool jokesObjCreated = false;

// remember username and password, and moderator status

private string userName = "";

private string password = "";

private bool isModerator = false;

www.syngress.com
Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 762

Building a Jokes Web Services • Chapter 12 763

// hold jokes

private jokes.xmlJokesReturn[] myJokes;

private int jokesReturned = 0;

private int currentJoke = 0;

// are we looking at moderated jokes or not?

private bool moderatedJokes = false;

// IGNORE setting up of form elements

public f_jokeClient() {

InitializeComponent();

}

public void InitializeComponent() {

// IGNORE

}

protected override void Dispose(bool disposing) {

if(disposing)

{

if (components != null)

{

components.Dispose();

}

}

base.Dispose(disposing);

}

[STAThread]

static void Main() {

Application.Run(new f_jokeClient());

www.syngress.com

Figure 12.54 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 763

764 Chapter 12 • Building a Jokes Web Services

}

private void displayJoke(

string joke, int jokeNumber, int totalJokes, decimal rating,

bool moderatedJokes) {

this.l_statusMessage.Text = "";

if(totalJokes == 0) {

this.gb_jokes.Enabled = false;

this.tb_jokesJoke.Text = "";

this.nud_jokesRating.Value = 3;

this.l_jokesNumber.Text = "(no jokes)";

this.l_jokesRating.Text = "(no rating)";

return;

}

if(totalJokes > 0) {

this.gb_jokes.Enabled = true;

if (!moderatedJokes) {

this.b_jokesAddModerated.Enabled = true;

this.b_jokesRemove.Enabled = true;

this.nud_jokesRating.Enabled = false;

this.b_jokesAddRating.Enabled = false;

} else {

this.b_jokesAddModerated.Enabled = false;

this.b_jokesRemove.Enabled = false;

this.nud_jokesRating.Enabled = true;

this.b_jokesAddRating.Enabled = true;

}

}

if(totalJokes > 1) {

if(jokeNumber == 1) {

www.syngress.com

Figure 12.54 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 764

Building a Jokes Web Services • Chapter 12 765

this.b_jokesNext.Enabled = true;

this.b_jokesPrev.Enabled = false;

} else {

if(jokeNumber == totalJokes) {

this.b_jokesNext.Enabled = false;

this.b_jokesPrev.Enabled = true;

} else {

this.b_jokesNext.Enabled = true;

this.b_jokesPrev.Enabled = true;

}

}

} else {

this.b_jokesNext.Enabled = false;

this.b_jokesPrev.Enabled = false;

}

this.tb_jokesJoke.Text = joke;

this.l_jokesNumber.Text = "Joke " + jokeNumber.ToString()

+ " of " + totalJokes.ToString();

this.l_jokesRating.Text = "Avg. rating: " + rating.ToString();

}

private void logon(bool isModerator, bool register) {

string userName = this.tb_logonUserName.Text;

string password = this.tb_logonPassword.Text;

if((userName.Length > 0) && (password.Length > 0)

&& (userName.Length <= 20) && (password.Length <= 20)) {

if(!this.userAdminObjCreated) {

this.userAdminObj = new userAdmin.userAdmin();

this.userAdminObjCreated = true;

}

try {

// register new user?

www.syngress.com

Figure 12.54 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 765

766 Chapter 12 • Building a Jokes Web Services

if(register) {

// Call our Web Service method addUser

this.userAdminObj.addUser(userName, password);

} else {

// Call our Web Service method checkUser

this.userAdminObj.checkUser(

userName.Substring(0,Math.Min(userName.Length, 20)),

password.Substring(0,Math.Min(password.Length, 20)),

isModerator);

}

// OK

this.userName = userName;

this.password = password;

this.isModerator = isModerator;

if(isModerator) {

this.gb_moderatorMenu.Enabled = true;

} else {

this.gb_moderatorMenu.Enabled = false;

}

this.gb_userMenu.Enabled = true;

this.gb_userInfo.Enabled = false;

this.l_statusMessage.Text = "";

displayJoke("", 0, 0, 0, this.isModerator);

if(register) {

this.l_statusMessage.Text = "OK: you have successfully " +

"registered with the system!";

}

} catch (SoapException ex) {

XmlNode[] customErrorMsgs = ex.OtherElements;

if(customErrorMsgs.Length > 0) {

XmlNode customErrorMsg = customErrorMsgs[0];

if (customErrorMsg.InnerText.Length > 0) {

this.l_statusMessage.Text = "Error: " +

www.syngress.com

Figure 12.54 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 766

Building a Jokes Web Services • Chapter 12 767

customErrorMsg.InnerText;

return;

}

}

} catch (Exception ex) {

this.l_statusMessage.Text = "Error: " + ex.Message;

}

}

}

private void getJokes(int howMany, bool moderatedJokes) {

try {

if(!this.jokesObjCreated) {

this.jokesObj = new jokes.jokes();

this.jokesObjCreated = true;

}

// Call our Web Service method getJokes

if(moderatedJokes) {

myJokes = this.jokesObj.getJokes(

userName, password, howMany);

} else {

myJokes = this.jokesObj.getUnmoderated(

userName, password, howMany);

}

// OK

this.jokesReturned = myJokes.Length;

if(this.jokesReturned == 0) {

displayJoke("", 0, 0, 0, this.isModerator);

} else {

this.currentJoke = 1;

displayJoke(

myJokes[this.currentJoke - 1].joke,

this.currentJoke,

www.syngress.com

Figure 12.54 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 767

768 Chapter 12 • Building a Jokes Web Services

this.jokesReturned,

// need leading zero in case NULL is returned from

// the database, i.e. joke unrated (which

// will come back as zero length string)

Decimal.Parse(

"0" + myJokes[this.currentJoke - 1].rating),

moderatedJokes);

}

} catch (SoapException ex) {

XmlNode[] customErrorMsgs = ex.OtherElements;

if(customErrorMsgs.Length > 0) {

XmlNode customErrorMsg = customErrorMsgs[0];

if (customErrorMsg.InnerText.Length > 0) {

this.l_statusMessage.Text =

"Error: " + customErrorMsg.InnerText;

return;

}

}

} catch (Exception ex) {

this.l_statusMessage.Text = "Error: " + ex.Message;

}

}

private void b_logonUserLogOn_Click(

object sender, System.EventArgs e) {

logon(false, false);

}

private void b_logonModeratorLogOn_Click(

object sender, System.EventArgs e) {

logon(true, false);

}

www.syngress.com

Figure 12.54 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 768

Building a Jokes Web Services • Chapter 12 769

private void b_logonRegisterNow_Click(

object sender, System.EventArgs e) {

logon(false, true);

}

private void b_moderatorMakeModerator_Click(

object sender, System.EventArgs e) {

displayJoke("", 0, 0, 0, this.isModerator);

string newModeratorUserName =

this.tb_moderatorNewModeratorUserName.Text;

if(newModeratorUserName.Length > 0) {

newModeratorUserName = newModeratorUserName.Substring(

0,Math.Min(newModeratorUserName.Length, 20));

if(!this.userAdminObjCreated) {

this.userAdminObj = new userAdmin.userAdmin();

this.userAdminObjCreated = true;

}

try {

// Call our Web Service method addModerator

this.userAdminObj.addModerator(

this.userName, this.password, newModeratorUserName);

// OK

this.l_statusMessage.Text =

"OK: " + newModeratorUserName + " is now a moderator";

} catch (SoapException ex) {

XmlNode[] customErrorMsgs = ex.OtherElements;

if(customErrorMsgs.Length > 0) {

XmlNode customErrorMsg = customErrorMsgs[0];

if (customErrorMsg.InnerText.Length > 0) {

this.l_statusMessage.Text =

"Error: " + customErrorMsg.InnerText;

return;

}

www.syngress.com

Figure 12.54 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 769

770 Chapter 12 • Building a Jokes Web Services

}

} catch (Exception ex) {

this.l_statusMessage.Text = "Error: " + ex.Message;

}

}

}

private void b_userGetJokes_Click(

object sender, System.EventArgs e) {

displayJoke("", 0, 0, 0, this.isModerator);

this.moderatedJokes = true;

getJokes((int)this.nud_userHowMany.Value, this.moderatedJokes);

}

private void b_moderatorGetUnmoderated_Click(

object sender, System.EventArgs e) {

displayJoke("", 0, 0, 0, this.isModerator);

this.moderatedJokes = false;

getJokes(

(int)this.nud_moderatorHowMany.Value, this.moderatedJokes);

}

private void b_jokesPrev_Click(object sender, System.EventArgs e) {

// displayJoke() ONLY enables this button if there are jokes

// to display, so we don't need a sanity check here.

this.currentJoke = this.currentJoke - 1;

displayJoke(

myJokes[this.currentJoke - 1].joke,

this.currentJoke,

this.jokesReturned,

Decimal.Parse("0" + myJokes[this.currentJoke - 1].rating),

this.moderatedJokes);

}

www.syngress.com

Figure 12.54 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 770

Building a Jokes Web Services • Chapter 12 771

private void b_jokesNext_Click(object sender, System.EventArgs e) {

// displayJoke() ONLY enables this button if there are jokes

// to display, so we don't need a sanity check here.

this.currentJoke = this.currentJoke + 1;

displayJoke(

myJokes[this.currentJoke - 1].joke,

this.currentJoke,

this.jokesReturned,

Decimal.Parse("0" + myJokes[this.currentJoke - 1].rating),

this.moderatedJokes);

}

private void b_jokesAddRating_Click(

object sender, System.EventArgs e) {

try {

if(!this.jokesObjCreated) {

this.jokesObj = new jokes.jokes();

this.jokesObjCreated = true;

}

// Call our Web Service method addRating

this.jokesObj.addRating(

userName,

password,

(int)this.nud_jokesRating.Value,

Int32.Parse(this.myJokes[this.currentJoke-1].jokeID));

// OK

// try to tell user not to rate the joke again...

this.b_jokesAddRating.Enabled = false;

this.l_statusMessage.Text = "Note: New rating is " +

"reflected only once joke has been reloaded!";

} catch (SoapException ex) {

XmlNode[] customErrorMsgs = ex.OtherElements;

www.syngress.com

Figure 12.54 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 771

772 Chapter 12 • Building a Jokes Web Services

if(customErrorMsgs.Length > 0) {

XmlNode customErrorMsg = customErrorMsgs[0];

if (customErrorMsg.InnerText.Length > 0) {

this.l_statusMessage.Text =

"Error: " + customErrorMsg.InnerText;

return;

}

}

} catch (Exception ex) {

this.l_statusMessage.Text = "Error: " + ex.Message;

}

}

private void b_jokesAddModerated_Click(object sender,

System.EventArgs e) {

try {

if(!this.jokesObjCreated) {

this.jokesObj = new jokes.jokes();

this.jokesObjCreated = true;

}

// Call our Web Service method addRating

this.jokesObj.addModerated(

userName,

password,

Int32.Parse(this.myJokes[this.currentJoke-1].jokeID));

// OK

this.l_statusMessage.Text =

"OK: Joke is now available for registered users!";

} catch (SoapException ex) {

XmlNode[] customErrorMsgs = ex.OtherElements;

if(customErrorMsgs.Length > 0) {

XmlNode customErrorMsg = customErrorMsgs[0];

if (customErrorMsg.InnerText.Length > 0) {

www.syngress.com

Figure 12.54 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 772

Building a Jokes Web Services • Chapter 12 773

this.l_statusMessage.Text =

"Error: " + customErrorMsg.InnerText;

return;

}

}

} catch (Exception ex) {

this.l_statusMessage.Text = "Error: " + ex.Message;

}

}

private void b_jokesRemove_Click(

object sender, System.EventArgs e) {

try {

if(!this.jokesObjCreated) {

this.jokesObj = new jokes.jokes();

this.jokesObjCreated = true;;

}

// Call our Web Service method addRating

this.jokesObj.deleteUnmoderated(

userName,

password,

Int32.Parse(this.myJokes[this.currentJoke-1].jokeID));

// OK

this.l_statusMessage.Text = "OK: Joke has been removed!";

} catch (SoapException ex) {

XmlNode[] customErrorMsgs = ex.OtherElements;

if(customErrorMsgs.Length > 0) {

XmlNode customErrorMsg = customErrorMsgs[0];

if (customErrorMsg.InnerText.Length > 0) {

this.l_statusMessage.Text =

"Error: " + customErrorMsg.InnerText;

return;

}

www.syngress.com

Figure 12.54 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 773

774 Chapter 12 • Building a Jokes Web Services

}

} catch (Exception ex) {

this.l_statusMessage.Text = "Error: " + ex.Message;

}

}

private void b_userAddJoke_Click(

object sender, System.EventArgs e) {

displayJoke("", 0, 0, 0, this.isModerator);

string newJoke = this.tb_userJoke.Text;

if(newJoke.Length > 0) {

newJoke = newJoke.Substring(

0,Math.Min(newJoke.Length, 3500));

try {

if(!this.jokesObjCreated) {

this.jokesObj = new jokes.jokes();

this.jokesObjCreated = true;

}

// Call our Web Service method addRating

this.jokesObj.addJoke(

userName,

password,

newJoke);

// OK

this.l_statusMessage.Text = "OK: Joke has been " +

"submitted for consideration to the system!";

this.tb_userJoke.Text = "";

} catch (SoapException ex) {

XmlNode[] customErrorMsgs = ex.OtherElements;

if(customErrorMsgs.Length > 0) {

XmlNode customErrorMsg = customErrorMsgs[0];

if (customErrorMsg.InnerText.Length > 0) {

this.l_statusMessage.Text =

www.syngress.com

Figure 12.54 Continued

Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 774

Building a Jokes Web Services • Chapter 12 775

"Error: " + customErrorMsg.InnerText;

return;

}

}

} catch (Exception ex) {

this.l_statusMessage.Text = "Error: " + ex.Message;

}

}

}

}

}

Some Ideas to Improve the Jokes Web Service
If you like the idea of the Jokes application, you may want to think about
expanding it a little bit. It would be nice, for example, to get to know the users
and to have a logging and reporting subsystem to identify who submits jokes, and
which jokes are the most popular.Another idea would be to add additional meta-
data to the jokes. For instance, you could add joke categories, such as language
categories, or categories that describe the joke subject matter.Along those lines,
you may want to have an additional Web Service that lets moderators manage
those categories and add new ones.You could also delve into the internationaliza-
tion classes that the .NET Framework has built in and localize status and error
messages. Let us know what interesting ideas you came up with!

www.syngress.com

Figure 12.54 Continued

167_C#_12.qxd 12/5/01 11:21 AM Page 775

776 Chapter 12 • Building a Jokes Web Services

Summary
In this chapter, we have set out to develop a real-world Web Service application,
namely a service that delivers jokes to the Internet community.We started out by
gathering requirements, such that we want to know our users, that our users
should be able to submit their own jokes and rate other user’s jokes, and that
there should be an administrative module in place to manage both users and
jokes.

Our choice of developing this application as a Web Service was reinforced by
the fact that Web Services make our application universally accessible, even for
users behind corporate firewalls, and that Web Services give us support for non-
English languages for free because they are based on XML and Unicode.

We started out our design by using a visual modeling tool in order to get a
clear road map for our back-end and middle-tier application architecture.We
designed the various components of our application in such a way that we had a
clear separation between a thin Web Service “front end” layer, and implementa-
tion classes where the business logic of our application sits.We abstracted access
to the Microsoft SQL Server database by providing for wrapper methods for the
SQL stored procedures and by creating a separate data access class.We also
designed a security and error-handling mechanism, and we made the first steps in
implementing an application logging system based on interaction with the
machine Event Log.

Once we had the database schema and the middle tier object model firmly in
place, we started implementing the various pieces in a methodical way, starting at
the back end. Because the various layers of our application are clearly separated, it
would have been possible to create our project in a team of developers, say one
person writing the back end infrastructure, one person writing the business logic,
and a third person writing the actual Web Service itself.

Apart from encountering a very methodical way towards application develop-
ment in general, we have seen a number of best practices in the area of Web
Services:

■ Don’t put a lot of business logic into your Web Service classes! Have
implementation classes do the heavy lifting.This way, you also don’t limit
yourself to Web Services as the only way to access your application; there
may be instances where you want Internet users to access your applica-
tion through Web Services, whereas it may be better for intranet users to
use COM/DCOM or .NET Remoting.

www.syngress.com

167_C#_12.qxd 12/5/01 11:21 AM Page 776

Building a Jokes Web Services • Chapter 12 777

■ Put special emphasis on how the XML should look like between Web
Service client and server. But don’t limit yourself to the best case, rather
decide from the very start how error information should be communi-
cated to the client, particularly if the error can be corrected by the
client.The SOAP Fault mechanism is a good start, but it has the disad-
vantage that it is an all-or-nothing mechanism.You may want to think
about a scheme where the server can communicate to the client that part
of the information it received was all right, but not all of it.

■ There are alternatives to sending relation data through SOAP using
.NET DataSets. If you think your clients will not all be running on
Microsoft’s .NET platform, you may want to create an alternative (and
simpler!) schema to bring such data to your clients.

■ Because of inherent limitations of state management in Web Services,
there are currently probably few alternatives other than sending user
authentication information to the server with every single Web Service
request.

■ Pay special attention to add documentation comments in your code
throughout the project from the very start.You can then utilize the
.NET feature to automatically generate project documentation files in
XML format for you.You can use those files to generate your API docu-
mentation as a set of, say, HTML pages.

Lastly, we developed a client application based on Windows Forms to use our
service.

Solutions Fast Track

Motivations and Requirements
for the Jokes Web Service

Internet-based applications must be universally accessible; on a technical
level, which means they should work well with corporate firewalls, and
on a user level, they have to support an international audience.You can
achieve both by employing Web Service technology.

www.syngress.com

167_C#_12.qxd 12/5/01 11:21 AM Page 777

778 Chapter 12 • Building a Jokes Web Services

Functional Application Design

Security, state management, and error handling are critical elements of
application architecture that need to be considered first.

Implementing the Jokes Data Repository

Visual Studio.NET includes a fully working copy of Microsoft’s SQL
Server Desktop Engine.

Visual Studio.NET’s Server Explorer lets you interface with data
repositories such as Microsoft SQL Server, including both reading and
writing database schemas and data.

Starting the application development process by implementing the back
end first is usually a good idea.

Implementing the Jokes Middle Tier

Visual Studio.NET continues in the tradition of the Visual Studio
product line in being a very comfortable and efficient environment for
application development.

It is often a good idea to extend the System.Exception class to add custom
error-handling mechanisms, such as additional logging functionality.

When throwing a new exception in a Web Service context, the .NET
runtime will automatically send a SOAP Fault back to the client
application.

The .NET Framework allows you to extend SOAP Faults to include
custom XML elements, such as user-friendly status or error information.

Web Service security can either be implemented using the standard
ASP.NET security mechanisms, or using a custom authentication and
authorization scheme.We have chosen the latter method and
implemented a stateless security system for the Jokes Web Service.

Creating a Client Application

Web Service clients that run on the .NET Framework can be very easily
created through employing Web References.

www.syngress.com

167_C#_12.qxd 12/5/01 11:21 AM Page 778

Building a Jokes Web Services • Chapter 12 779

Caching user credentials on the client is one way to address state
management and security.

Q: My back end data repository is not Microsoft SQL Server. How do I go
about accessing my data?

A: One solution is to use the data access classes provided in the
System.Data.OleDb namespace, which allow you to open data connections to
essentially all the data sources that have OLEDB providers, such as Microsoft
Office files or Oracle databases. However, because the .NET Framework is
still very new, you may run into problems if you stray too far from the main-
stream. For instance, those classes don’t currently work well with Microsoft’s
own Exchange 2000 Web Storage System, particularly if you are dealing with
multivalued fields.Your last recourse is to use straight OLEDB or straight
ADO through the .NET COM Interoperability layer.

Q: How do I deploy the Jokes Web Service?

A: Deploying an ASP.NET application is as easy as creating a new IIS virtual
directory on a production machine and copying all the application files into
the new location. Be sure, though, to compile your application in Release
mode.

Q: Do I need .NET on the client to use the Jokes application?

A: No, not at all.Although the client application we created in this chapter does
in fact run only on a machine that has the .NET Framework installed, this is
not a prerequisite.Any client that allows you to call a Web Service will do;
specifically, all you need is a client that can send data over HTTP—so you
can certainly go ahead and write a client that runs in a Web browser, as we
did in Chapter 11.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

167_C#_12.qxd 12/5/01 11:21 AM Page 779

167_C#_12.qxd 12/5/01 11:21 AM Page 780

781

Index
A
abstract keyword, 95
AcceptSocket() method, 218
access modifiers (fig.), 41
Activator.GetObject method, 309
Active Server Pages (ASP)in

.NET Framework, 496
ActiveX controls, 194
Active X Data Objects

(ADO), 384
adding

comments, 45
controls, 142–144
controls at runtime, 147
custom information to list view

items, 176
functionality to controls, 182
ListView controls, 172
methods to forms, 152
new forms, 157
properties, 182
splitter bars, 177
subitems to ListViewItem

(fig.), 173
TabControls, 164
tree view controls, 175

addMessage procedure, 533
addModerator method, 713
Address class, 182
Address.cs, 181
Add Web Reference Window

(fig.), 621
ADO, classic vs.ADO.NET,

384, 386
ADO.NET

architecture, 386
classic ADO and, 384, 386
command objects, using, 391
Connection object, using, 388
connection pooling, 389
Connection strings, building, 389
DataReaders, DataSets,

DataAdapters, 396
DataView objects, using, 406
embedded SQL statements, 418
introduction, 384–386
namespaces (table), 387
Odbc.NET, working with, 422
SQL.NET, working with, 418
stored procedures, 419–422, 429

System.Data.OleDb, working
with, 408

Advanced Research Projects
Agency (ARPA), 204

AirportWeather.wsdl, 643
al.exe, 18
AllowAutoRedirect property, 290
anchoring controls, 166
APIs

Remoting, 300
Reflection, 19
See also specific API

Application Domains, remoting
across, 300

applications
asynchronous, creating, 376
console. See console applications
creating ASP.NET Web, 130
creating C# ASP.NET Web, 513
interoperability of, 576
Intranet, creating, 321–334
message queuing. See message

queuing applications
MSMQ, debugging, 363
reflection described, 17
remoting. See remoting

applications
SDI (fig.), 158
service-based, creating, 334–339
Web.config file, 511
Windows Forms, creating, 140
Windows Service. See Windows

Service applications
architecture

ADO.NET, 386, 497
distributed, 10–11
file sharing peer example

(fig.), 271
IP-based communication

(fig.), 205
MSMQ, 348
.NET platform, 4
news client (fig.), 244
simplified remoting (fig.), 270
user interface example (fig.),

214, 215
Web Service, Jokes, 674
Windows, and development for

Internet, 138
ARPAnet, 204
ArrayList, 68
ASP 3.0, and ASP.NET, 496

ASP.NET, 3, 119
architecture (fig.), 497
custom controls, 510
deploying applications, 779
deploying Web Services, 601
enabling debugging (fig.), 590
introduction, 496–497
.NET and, 14
Response and Request

support, 528
server controls, 497–500
setting up new Web Service

(fig.), 583
user controls, 501
Web applications and Web

Services, 588
Web.config file, 511
Web Forms, working with,

513–529
Web Service Wizard, 694
working with, 529

ASPX pages. See Web Forms
(ASPX pages)

assemblies
described, 8, 16
and modules, 17
.NET security system, 12
shared (strong) name, 17

assembly caches, 18
Assembly generation tool, 18
asynchronous applications,

creating, 376
attributes in XML documents, 433
authentication

state information in
cookies, 651

Web site requests, 291
automatic memory

management, 7–8
aynchronous communication, 243

B
backwards compatibility, 8
Base.cs, 222, 231, 233
Base.dll, 221
Basic Dialog form (fig.), 161
BCL

described, 3
.NET base classes, 15
security and, 13

BeginReceive method,
MessageQueue object, 376

167_C#_index.qxd 12/5/01 11:43 AM Page 781

782 Index

Berkeley Sockets, 205
binding, ports and, 211
Bitmap class, 187
BodyStream property, 355, 360
boxing feature, 49
breakpoints, setting in projects,

132
break statement, 50, 52
Brush class (table), 184
buffer overruns, 12
building

an ImageList, 170
projects, 131

button1, 150
button control properties,

setting, 520

C
caches, assembly, 18
callbacks

delegates and events, 69–70
functions and events, 79
when to use, 343

Cascading Style Sheet (CSS),
123, 499

case statement, 50
catalog.cs, 127, 556
catch block, 89
C# development, projects

available, 130
channels and remoting code, 308
chat application example

chat client after short session
(fig.), 268

ChatClient class, 265
chat client/server behavior

(fig.), 252
chat protocol, 260
ChatServer class, 256
compiling and running, 268
connect request to

communication (fig.), 251
P2P, unicasting, 250
TCPServer class, 256
TCPServerSession class, 253

ChatClient class
constructor (fig.), 267
OnClosed() method, 268
OnConnect() event handler, 265
OnDisconnect() (fig.), 266
OnSend() event handler

(fig.), 266
SendMessage() method (fig.), 267

ChatClient.cs, 265
ChatServer class

class field (fig.), 261
Close() method (fig.), 262

constructor, 261
Execute() method (fig.), 262

ChatServer.cs, 260
Checked property, 157
checkUser() method, 709
C# language

boxing, unboxing, 49
creating a program in, 37
data types, 47–49
introduction, 34
strings, immutable, 60
writing programs in, 35

class and class member visibility
access modifiers (fig.), 41

classes
built-in, finding locations, 119
core (table), 140
defining, 40
friend, 107
reference types, 48
System.Net (table), 212
types, and namespaces, 43
warning for uncommented

(fig.), 129
Web access, 283–291
XML (table), 437–438

class keyword, 40
class libraries, creating, 185
class view, 119
client applications, Jokes Web

Service, 758
ClientRectangle, 186
clients, message queuing, 348
client server, creating, 303–321
Clipboard Ring, 116
Close method, 162, 221, 223

ChatServer class (fig.), 262
TCPServerSession class (fig.), 255
UDPPeer class (fig.), 238

CLR
debugging across languages, 6
described, 3
interoperability with

unmanaged code, 11
JIT compilation, 19

code
leasing and sponsorship, 329
messaging, understanding, 353
remoting, understanding,

308–309
writing text editor

walkthrough, 154
code-behind

displaying file, 519
display of pages in ASP.NET

project, 573
feature described, 496

pages described, 497
code completion technology, 122
code cycle described, 21–24
Code Editor, adding controls

programatically, 147
Code view (fig.), 114
code window, 113
collections

controls, using, 151
populating ComboBox (fig.), 144

Color struct (table), 184
columns, adding to controls, 173
COM

interoperability issue, 11
versioning problems, 8

Combine method, 79
ComboBox controls, 147, 321
command line window (fig.), 35
command objects, 391
command processor

TCP command transmission,
processing example
(fig.), 215

TCP remote, 220
CommandType.StoredProcedure, 419
CommandType.Text (fig.), 421
comments

adding, 45
XML document, adding to C#

pages, 127
XML embedded commenting,

127
Common Object Request Broker

Architecture. See CORBA
common type system, .NET

applications, 15
communication layers stack

(fig.), 208
CompanyListHost2.cs, 310
CompanyListHost.cs, 305
CompanyLists class, 303
compiler, command line, 38
compiling

chat application example, 268
Just In Time (JIT), 19
programs, 38
projects (fig.), 132
TCP command transmission

and processing example,
226

TCP P2P file sharing
application example,
269, 283

UDP command transmission
and processing
example, 234

167_C#_index.qxd 12/5/01 11:43 AM Page 782

Index 783

UDP multicasting news ticker
example, 250

Web access example, 289
Component class, 138, 140
components

adding programmatically, 148
VS.NET, 112–122

configuration files
including multiple versions

in, 337
Microsoft standard, 315
and remoting, 313
updating, 318
Web.config file, 511

Configure method,
RemotingConfiguration
class, 314

configuring label controls, 143
connecting

to databases, 114
dialog forms, 167
to servers, 114

Connection object, 388
connection pooling, 389
connection requests, 258
connections, creating DSN, 423
Connection string, 389, 390, 423
connect request to client/server

(fig.), 251
console applications

creating, 37
creating VersionHost project, 336
debugging, 46
hosting remoting objects

from, 319
introduction, 34

Console class, debugging
using, 170

constructors
ChatServer class, 261
RemoteFileStreamServer class, 272
TCPRemoteCommandProcessor

class (fig.), 22
TCPServer class, 256
TCPServerSession class, 253
UDP command transmission

and processing
example, 232

UDPNewsClient class, 247
UDPNewsServer class (fig.), 241
UDPPeer class, 237
WebAccessClient class (fig.), 286

content lookup, 270
context menus, 174
continue statement, 53
Control class, core class (table), 140
controls

ActiveX, 194
adding, 142–144, 147
adding at runtime (fig.), 149
adding properties, functionality,

182
anchoring, 166
button, setting properties (fig.),

520
collections, using, 151
ComboBox, 147
context menus, attaching, 174
creating, 181–188
custom, 510
dialog forms, 160
enhancing, 189
HTML Server (table), 498
ListBox, 147
ListView, adding, 172
menus, using, 156
reparenting to another

collection, 151
splitter bars, adding, 177
subclassing, 191–193
TabControls, using, 165
testing, 187
tree view, adding, 175
user, creating, 181
user, working with, 501
using textboxes, 144
Web server, validation, 499
writing custom, 183

Controls property, 151
control structures, 49–55
converting numeric type to

string, 108
CookieContainer property, 291
cookies

described, 291
state information in, 651

CORBA, 270
C or C++, memory management

under, 8
cordbg.exe, 46
core classes (table), 140
Corel, 7
corporate intranets, gaining speed

with TCP channel, 321
CountClient project, 326
CountHost project, 325
CountServer project, 322
CountServer.sln, 322
C# programming

accessing lists with indexers, 60
introduction, 34

C# programs, environmental
variables, 39

CreateXmlDeclaration method,
XmlDocument class, 442

creating
asynchronous applications, 376
client application for remoting

client server, 306
controls, 181
C# programs, 37–47
custom tokens, 122
dialog forms, 160
directories for your

programs, 35
documentation, 757
DrawingReceiver project, 373
DrawingSender project, 369
DSN connections, 423
hosting application for remoting

client server, 305
ImageList components, 170
interfaces, 41–42
Intranet application, 321–334
Jokes Web Service client

application, 758
main menu (fig), 155
menus, 155
MSMQGraphics drawing

library, 366
new hosting service, 319
news ticker using UDP

multicasting, 235
New Windows Forms project

(fig.), 142
projects, 130–132
remote server object, 303
remoting client server, 303–321
service-based applications,

334–339
simple Web Form, 513
SOAP client application, 619
textboxes, 144
user controls, 501
Virtual Directory, 193
Web Service, 581
Web Services (fig.), 584
Windows Forms application,

140
XML DOM documents, 442
XML poll, 517

cross-language inheritance, 6
cryptographic functions included

in .NET Framework, 13
csc.exe (command line compiler),

38
CSS. See Cascading Style Sheet

(CSS)
custom controls, 510

drawing with GDI+, 186

167_C#_index.qxd 12/5/01 11:43 AM Page 783

784 Index

in Designer (fig.), 188
enhancing, 189
in Internet Explorer, 193
testing, 187
writing, 183

Customer objects, 332
customizing, Dynamic Help, 120
cycles, code, 21

D
DAL (Data Access Layer), 388, 424
dataaccess.cs, 551
Data Access Layer (DAL), 388
DataAdapters, 396
databases

connecting to, 114
and XML documents, 439
See also DataSets

database schemas, Jokes Web
service, 673

database view (fig.), 115
data caching, shopping cart

application (fig.), 562
DataColumn class

properties (table), 399
methods (table), 401
objects, 398

DataFormats class, 178, 179
datagram sockets, 205
data hiding, 56
DataReaders, 385, 429

populating ComboBox with
(fig.), 413

understanding, 396
using, 408
vs. DataSet model, 405

DataRelation, 493
DataRow class

methods (table), 403–405
properties (table), 403
objects, 402

DataSet class, 385, 493
schemas and, 461
traversing relations in, 464
vs. DataReader, 429
XML and, 456

DataSet object model and possible
collections (fig.), 397

DataSets, 396, 414
DataTable objects, 398
data types

boxing, unboxing, 49
generally, 47–49
passing complex, 611
primitive (table), 47

DataView class, objects, 406–407
debugging

console applications, 46
e-mail code, 343
MSMQ applications, 363
new IDE end-to-end

debugging, 18
projects, 132
remoting applications, 331
under Windows DNA, 6
using Console class, 170
Web Service, 589
XSL stylesheets, 489

defining classes, 40
delegate instances, 153
delegates

multicast, 75
rationale for, 153
single cast, 74
using, 69–70

Delegates.cs program listing (fig.),
70

Designer
custom control in (fig.), 188
subclassed buttons in (fig.), 193
UserControl in, 182

design window, 112–113
destructors, 42, 107, 162
detaching event handlers, 199
Details view

columns, adding with, 173
at runtime (fig.), 174

deterministic destructors, 41
dialog forms

connecting, 167
creating, 160

digital signatures, 663
directories

ASP.NET Web Service structure
(fig.), 586

creating, 35
Virtual, creating, 193

DISCO
described, 608
discovery file with WSDL

description (fig.), 609
displaying available Web

Services, 622
disconnection, network, public

queues and, 378
discovery, and finding peers, 269
Dispose method, using, 162
distributed applications and Web

Services, 579
distributed architecture, 10–11
Distributed COM (DCOM), 300
distributed processing, and

MSMQ, 347

‘DLL Hell,’ 8
DLLs

.NET modules, 18
versioning support, 8

DNS and UDP, 210
docked Help windows (fig.), 121
docking windows, 117
documentation

creating human readable, 757
documenting your code, 698
files, XML, 127
generation, 127

documents, XML DOM. See
XML DOM documents

DoDragDrop, 178, 180
Domain Name System. See DNS
DOM API, capabilities, 435
DOM extensions in .NET, 445
do while statement, 52
drag and drop, implementing,

178–181
DragEvent event, 179
dragging into tree view, 180
DragMove event, 179
drawing custom controls with

GDI+, 186
Drawing Library project, 366
Drawing object, 365
DrawingReceiver project, 373
DrawingReciever.exe, 375
DrawingSender project, 369
DSN connections, using, 423
Dynamic Help, 120
Dynamic Link Libraries. See DLLs
Dynamic SQL, 418

E
echo Web method, 582, 603
ECMA

described, 9
draft standards, 25

EditForm.cs, 169
EditForm menu structure

(fig.), 158
editors

Notepad. See Notepad
source code, 36
text, tab size setting, 136
TreeNode (fig.), 176

elements in XML documents, 433
embedded SQL statements, 418
Employee class, 40, 100
<Employee> element, 453
Enumerable.cs, 69
environment variables,

compiling, 39
error handling

167_C#_index.qxd 12/5/01 11:43 AM Page 784

Index 785

adding to hosting application,
310

Jokes Web Service, 677, 698
via exceptions, 5
Web Services, 614

error messages, environment
variables improperly set
up, 39

errors, debugging projects, 132
EventArgs objects, 146
EventHandler delegate, 153
event handlers

adding to forms, 145
attaching at runtime, 152
detaching, 199
OnConnect() method, ChatClient

class (fig.), 265
event logging, adding to hosting

application, 310
event model, 79
events

and delegates, 69
handling, vs. overriding

protected methods, 183
introduction, 79
and methods, 145, 183

Events.cs program listing (fig.), 80
examples

calculating payroll, 92
command-line debugger, 46
comments, 45
DISCO discovery file (fig.), 608
Employee class extended to

support interface, 41
Hello World, 15
ildasm.exe (disassembly tool)

output, 22
instantiating object of class, 48
Jokes Web Services, 670
message queuing applications,

349, 365
news ticker using UDP

multicasting, 235–250
program using foreach keyword,

68
scrolling text banner, 189
System.Data.OleDb, 408
TCP command transmission

and processing, 214–227
TCP P2P file sharing

application, 269–283
UDP client server chat

application, 250–269
UDP command transmission

and processing, 227–234
Web access classes, 283–289

XML document, 433
exception handling, using, 85–90
exceptions

after attempt to reuse port
(fig.), 306

error handling with, 5
handling, 85–90
in server code,Web Services,

617
Exceptions.cs, 85
ExecuteCommand() delegate

(fig.), 253
Execute() method, 221, 224, 232

ChatServer class (fig.), 262
UDPRemoteCommandProcessor in

Base.cs (fig.), 233
executing programs, 38
expressions

Regular Expression Editor
dialog (fig.), 539

symbols (table), 517
XPath, 477

Extensible Markup Language.
See XML

extensions,ASP, commonly used,
496–497

F
features of .NET platform, 5–14
files, storing within messages, 360
file sharing application example,

269–283
FileSharingPeer class

class fields (fig.), 279
Close() method (fig.), 280
constructor (fig.), 279
Copy() method (fig.), 281
Download(), Upload() methods

(fig.), 282
Run() method (fig.), 280

File Transfer Protocol. See FTP
Finalize method, 107
finally block, 89
firewalls, remoting applications

and, 317
FirstCSharpProgram, compiling

and executing (fig.), 39
FirstCSharpProgram.cs, 37
floating window (fig.), 117
Flow Layout and Grid, 573
FlowLayout property, 500
flow-of-control statements. See

control structures
flushing streams, 223
Flush() method, 223
Font class (table), 184

fonts and textbox controls, 200
foreach keyword, 68
foreach operator, 151
formats, message, 355
formatters and message streams,

356
formatting XML document (fig.),

124
Form class, 140, 151
form inheritance, 162
Forms

adding event handlers, 145
adding methods to, 152
adding new, 157
adding TabControl, 164
Basic Dialog (fig.), 161
creating for editing text, 17
making sizable, 166
modeless, 158
resizing, 166
reusable, 163
See also Windows Forms

for statement, 51
friend classes, 107
FTP and TCP, 207

G
GAC, 335
garbage collection, 20–21

calling Dispose method, 162
See also memory management

GDI+
drawing custom controls with,

186
helper types, commonly used

(table), 184
instantiating helper types

(table), 184
.NET library component, 138
painting controls with, 183
Windows Forms and (fig.), 139

German version of Windows
2000, multicasting, 297,
298

get accessor, 59
getCounterInfo Web method,

626, 629
GetCustomers() method (fig.), 411
get method, 56, 99
GetOrders implementation

(fig.), 417
getPayroll method, 93, 95
Get Started Start page, 112
GIF files, using in ImageList

controls, 171
Global.asa, Global.asax, 513

167_C#_index.qxd 12/5/01 11:43 AM Page 785

786 Index

Global Assembly Cache
(GAC), 335

Gnutella, 269
goto statement, 55
graphics in ImageList controls, 171
Graphics objects, 183
Grid and Flow Layout, 573
grid control, using columns

for, 173
GroupBox control, 152

H
Hailstorm project (Microsoft), 3,

579
Help, docked windows (fig.), 121
Help, Dynamic, 120
helper types, 149

commonly used GDI+ (table),
184

for positioning, sizing (table),
150

HTML, 123, 194
HTML page source viewer, 285,

289
HTML server controls, 497
HTTP specifications, 290
HttpApplication class, 513
HttpChannel class, 309
HTTP headers, state information

in, 651
HTTP/TCP and Remoting API,

300
HttpWebRequest class, 290
Hypertext Transfer

Protocol/Transmission
Control Protocol
(HTTP/TCP), 300

I
icons, adding to menu items, 200
IDE

customizing, 129
project listing in (fig.), 131

IETF (Internet Engineering Task
Force), 13

if-else statement, 50
if statement, 49
IIS, setting up, 193
IL

described, 15
disassembly tool ildasm.exe, 21

ildasm.exe, 21
ImageList

creating components, 170
populating (fig.), 171

immutable strings, 60

implementing drag and drop,
178–181

indexers
accessing lists with, 60
described, 56

Indexers.cs program listing
(fig.), 61

inheritance
ADO.NET classes, 387
best object-oriented design, 163
cross-language, 6
form, using, 162
multiple, in C#, 304
understanding, 90–103
and Windows Forms, 138
Windows Forms and GDI+

classes (fig.), 139
Inheritance Picker (fig.), 164
InitializeComponent method, 147
InnerText property, XmlDocument,

XmlElement classes, 445
InputOutput parameter, 394
Input parameter, 393
installing MSMQ, 349
instantiating GDI+ helper types

(table), 184
IntelligSense, 122–124
IntelliSense

screen shot (fig.), 626
using (fig.), 123

Interface Definition Language
(IDL), 5

interface inheritance, 163
interfaces

creating, 42–43
message board (fig.), 530
Multiple Document Interface

(MDI), 159
single document (fig.), 158

internal keyword, 107
Internet clients access via proxy

(fig.), 284
Internet Engineering Task Force

(IETF), 13
Internet Explorer, custom controls

in, 193
Internet Information Services

(IIS), 193
interoperability with unmanaged

code, 11
inter-process communication, 204
Intranet applications, creating,

321–334
IPEndPoint, 236
IP protocol, 207
ItemDrag event, 178

Items property, 146

J
Java

and C++,Windows Forms, 193
environment, 14

JavaScript, 119
JIT (Just in Time), compilation

described, 19
Join() method, 242
JoinMulticastGroup() method, 236
Jokes Web Service

architecture, 674
deploying, 779
adding users, 704
administrator public Web

methods, 720
creating client application,

758–775
creating public Web methods,

748
developing jokes service, 724
error handler, developing, 698
error handling public Web

methods, 718
functional application design,

672–677
implementing jokes data

repository, 677–694
implementing jokes middle tier,

694–758
improving, 775
introduction, requirements, 670
managing jokes and ratings, 734
moderators, adding, 713
security, 676

Just In Time (JIT) compilation, 19

K
keyboard shortcuts, Designer,

Code Editor navigation,
167

L
label controls, adding and

configuring (fig.), 143
languages

multilanguage development, 5
.NET cross-language features, 6
object-oriented, 34
WSDL, 602
XPath, 435

late binding, 19
leasing

controlling object lifetime
(fig.), 330

and sponsorship code, 329

167_C#_index.qxd 12/5/01 11:43 AM Page 786

Index 787

leasing, and object lifetime, 321
libraries, organizing with

namespaces, 43
line numbering support, 136
Lines property, 144
ListBox controls, 147
listener pattern, 79
ListHost.exe, 307
lists

accessing with indexers, 60
setting and getting item

values, 67
ListServer.cs, 313
ListServer.dll, 306
ListView controls, using, 170
ListViewItem, adding subitems to

(fig.), 173
Load XML Without Schema

(fig.), 454
localhost, 303
location paths, 477
logAddRequest method, 78

M
Main method, 43, 167
managed code described, 14
Managed Providers described,

385–386
mark and sweep implementation,

20
MarshalByRefObject class, 304, 324
MDI, (fig.), 159
MdiChildren collection, 169
memory management

automatic, 7
garbage collection, 20

MenuItem components, 156
menus

adding context, 174
adding icons to items, 200
and controls, 156
creating, 155

message boards
ASPX page overview (table),

546
boardlist overview (table), 537
building with SQL, 529
interface (fig.), 530
login interface (fig.), 537
processes (table), 530

Message class, 353
message formats, 355
MessageQueue class, 382
message queues, 70, 74
message queuing applications

creating complex, 365–376
creating simple, 349–365

DrawingSender, DrawingReceiver
(fig.), 376

hiding message details, 368
introduction, 346
setting queue options, 364

Message Queuing Services,
installation (fig.), 349

messages
complex object, 359
with complex objects, 356
custom, 355
described, 348
event log, 312
expired, sending to dead-letter

queue, 364
sending and receiving from

queues, 353
SOAP support, 577
storing files within, 360
tracking chat room, 264
trapping window, 201

messaging code, understanding,
353

metadata described, 16
methods

adding to forms, 152
and events, 183
parent class, 136
warning for uncommented

(fig.), 129
See also specific method

Microsoft Management Console
(MMC), .NET
configuration, 318

Microsoft Message Queue. See
MSMQ

Microsoft.NET Framework SDK,
35

Microsoft Paint, 171
Microsoft Passport, 13, 648
Microsoft Word, 179
MIME-encoded attachments, 580
modal forms, 160
modeless forms, 158, 160
models

DataReader versus DataSet, 405
DataSet object (fig.), 397
event, 79
Single Threaded Apartment

threading, 178
moderators, Jokes Web Service,

713
modules and assemblies, 17
Moore, M., 663
MouseDown, MouseMove events,

178

mouse position, determining, 200
Mozilla project, 500
MSDN Help files, loading, 121
MSIL. See IL
MSMQ

architecture, 348
and distributed processing, 347
installing, 349
introduction, 346

MSMQ applications
hiding message details, 368
improving performance of, 382
network disconnection, using

public queues, 378
MSMQGraphics class library, 366
multicast delegates, 75
multicasting

described, 70, 297
and UDP (fig.), 210

Multicasting.cs program listing
(fig.), 75

multilanguage development, 5–6
multiline comments, 45
Multiple Document Interface

(MDI), 159
multiple inheritance in C#, 304
My Profile Start page, 111
myServices, 579

N
namespace keyword, 44
namespaces

ADO.NET core (table), 387
name conflicts, 44
ODBC, 422
organizing libraries with, 43
System.Xml, 439
Web Services application, 592

naming conflicts, and namespaces,
44

Napster, 269
native code, code cycle (fig.), 24
navigating Code Editor, Designer,

167
.NET applications, code cycle

described, 21–24
.NET base classes, 15
.NET Base Class Libraries. See

BCL
.NET Common Language

Runtime. See CLR
.NET Framework

ADO.NET and, 384
architecture components, 14–21
configuration tool, 318
cryptographic functions

included in, 13

167_C#_index.qxd 12/5/01 11:43 AM Page 787

788 Index

delegate definitions, 153
described, 3
DOM extensions, 445
exception handling, 85–90
performance and scalability, 14
security, 12
versioning, side-by-side

deployment of different,
334

Web Services and, 578
XML classes in, 437–438, 493
XML support, 432

.NET Framework Configuration
tool (fig.), 318

.NET platform
application development

and, 138
architecture, 2–5
architecture (fig.), 4
automatic memory

management, 7–8
components, 2–3
distributed architecture and, 10
error handling, 5
features of, 5–14
introduction, 2
platform and processor

independence, 7
remoting applications on,

317–318
security, 12–13
versioning support described, 8

.NET Runtime, 14

.NET services described, 3
Netscape

4.x,ASP.NET server control
display problems, 500

VS.NET display, 573
network disconnection, using

public queues, 378
networking, introduction, 204
networks, ports and, 211
new keyword, 48
news client (fig.), 235
newsgroups

MSMQ technology, 382
remoting, 343
Windows Forms, 201

news server (fig.), 235
news ticker example, 235–250

client programming, 243
needed .NET classes, 236
server programming, 24
UDP multicasting, 235

nodes and XML documents, 434
Nodes collection, 175

Notepad
configuration files, updating

with, 318
as source code editor, 36

Notify() delegate, 243
numeric types, converting to

strings, 108

O
Object Browser, 119, 120
Object class, core class (table), 140
object lifetime

controlling with leases and
sponsors (fig.), 330

leasing, and reference counting,
321

objects
lease time, 321–322
sending and receiving messages

with complex, 356
ODBC

DAL (fig.), 424
and Odbc.NET, 422

ODBC Data Source
Administrator, 423

Odbc.NET, working with, 422
OleDb Managed Provider, 429
OnClosed() method, 246

ChatClient class (fig.), 268
UDPNewsHandler class (fig.),

243
OnConnect() event handler,

ChatClient class (fig.), 265
OnDisconnect() method, ChatClient

class (fig.), 266
OnKeyPress method, 183
OnMouseDown method, 183
OnPaint method, 192
OnSend() method, ChatClient

class, 266
Open Database Connectivity. See

ODBC
open standards, support for, 9
order, tab- and z-, 200
Output parameter, 393
output parameters, 430
override keyword, 93
overriding protected methods, 183

P
P2P. See peer-to-peer
Paint, Microsoft, 171
panel control, 152
parameter directions, 393
parameters, output, when to

use, 430

parent class methods, 136
paths

location, 477
message queues, modifying, 350

payroll, calculating, 92
payroll.cs, 99
peer-to-group. See multicasting
peer-to-peer (P2P) applications,

269
Pen class (table), 184
performance, .NET Framework,

14
PerformanceCounter class, 631
Performance Viewer, debugging

message queuing
applications with, 363

ping command, 210
PInvoke, 108
platform and processor

independence, 7
Platform Invoke, 108
platforms, .NET. See .NET

platform
pointers, 48
Point struct (table), 150
Policy–Driven Trust Model Using

Code Evidence, 12
polls

building XML, 517
displaying current statistics, 526
updateFile method, 525
updateXPoll method, 523

polymorphism, 90, 91, 94, 100
ports

binding to sockets, 211
described, 210–212
exception generated after

attempt to reuse (fig.), 306
primitive data types (table), 47
program listings

Delegates.cs (fig.), 70
Events.cs (fig.), 80
Indexers.cs (fig.), 61
Multicasting.cs (fig.), 75
Properties.cs, 56

programming models, .NET
platform, 5

programs, compiling and
executing, 38

projects
adding references, 131
building, 131
creating, 130–132
creating CountClient, 326
creating CountHost, 325
creating CountServer, 322

167_C#_index.qxd 12/5/01 11:43 AM Page 788

Index 789

creating for Windows Forms
application development,
141

creating from templates, 141
creating VersionClient, 337
debugging, 132
Drawing Library (fig.), 366
DrawingReceiver, 373
DrawingSender, 369
listing in IDE (fig.), 131
organizing Web Services, 585
renaming, 199
setting up new Web (fig.), 694
simple text editor, starting, 154
starting, 10
starting Web Services (fig.), 590

properties
adding, 182
Connection string (table), 390
described, 56
looking up, 136
warning for uncommented

(fig.), 129
Properties Explorer, described,

117–118
Properties window events view

(fig.), 145
protocols

chat, 260
communication protocol stack

(fig.), 206
IP, 207
remote file stream, 271
TCP, 206
TCP/IP, 205
UDP, 208

proxies
use described, 284
Web Service (fig.), 623

proxy objects, creating with
soapsuds tool, 312

public methods, Jokes Web
Service, 672

Public variable, 128
publishing Web Services, 610
publish/subscribe model, 79

Q
queries

running XPath, 470
summary, 478

Query Analyzer, setting up
message board database,
535

queues
and delegates, 70
described, 348

managing with Visual Studio,
349

path modification, 350
programmatcally listing, 382
Server Explorer showing

available (fig.), 350
setting options, 364
using public while disconnected

from network, 378
Quote of the Day (quotd)

Internet service, 670

R
Rapid Application Development

(RAD), 117
raw sockets, 205
ReadLine() method, 218
Receive() method, 228, 239
Recordset object, 384
Rectangle struct (table), 150
redirection, described, 290
reference counting, 321
reference counting (memory

management), 7
references, adding to projects, 131
reference types, 48–49
reflection described, 17, 19
Reflection API, 19
@Register directive, 510
registering channels, 309
RegisterWellKnownServiceType

method, 305, 308
Registry and .NET components,

10
Regular Expression Editor dialog

(fig.), 539
relational data

passing,Web Services, 631
XML and, 452

RelationalForm.cs, 452
RemoteFileStreamProxy class

Close() method (fig.), 278
constructor (fig.), 277
introduction, 276
Read() method (fig.), 277, 278

RemoteFileStreamServer class
CLOSE command processing

(fig.), 276
constructor (fig.), 272
OPEN command processing

(fig.), 274
READ command processing

(fig.), 275
Run() method (fig.), 273
WRITE command processing

(fig.), 276
remote procedure call (RPC), 578

remoting
architecture (fig.), 270
building versioned remoting

applications, 334
changing hosting application to

a service, 319
channels and, 308
classes, considering suitability

for, 333
configuration files and, 313
creating a remoting client

server, 303–321
creating Intranet application,

321–334
creating service-based

application, 334–339
introduction, 300
leasing and sponsorship code,

329
SOAP definition of remoting

class (fig.), 310
testing side-by-side execution of

objects, 339
understanding code, 308–309

Remoting API, 300
remoting applications

building versioned, 334
configuring versioned (fig.), 336
debugging, 331
on .NET platform, 317

RemotingConfiguration class,
Configure method, 314

Remove method, 79, 151
renaming projects, 199
Renew Lease button, 329
Request method, 290
resizing forms, 166
Response and Request support in

ASP.NET, 528
return statement, 54
ReturnValue parameter, 394
reusable forms, 163
rich clients, 138
Richter, Jeffrey, 21
RMI, 270
Run() method, 244, 254
running

chat application example, 268
TCP command transmission

and processing example,
226

TCP P2P file sharing
application example, 269,
283

167_C#_index.qxd 12/5/01 11:43 AM Page 789

790 Index

UDP command transmission
and processing example,
234

UDP multicasting news ticker
example, 250

Web access example, 289
RunTicker() method, 246
runtime

adding controls at (fig.),
147, 149

adding menu items at, 156
attaching event handlers at, 152
Details view at (fig.), 174

S
safe execution, 15
samples

XML and relational data, 452
XML DOM program (fig.), 440
XPath program (fig.), 469
XSL program (fig.), 480

saving files in Notepad (fig.), 36
SAX (Simple API for XML), 451
scalability in .NET Framework,

14
schemas

creating, 124–125
and DataSet class, 461
XML, 437, 462

ScrollBars property, 144
scrolling text banner, 189, 191
SDK, Microsoft.NET Framework,

35
security

chat room messages, tracking,
264

Jokes Web Service, 676
.NET platform, 12–13
SOAP and, 662

sending messages, 353
Send() method, 228, 239
Server Explorer, 114
servers, connecting to, 114
service-based applications,

creating, 334–339
service packs,VS.NET, 110
services,Web. See Web Services
sessionTest_soapHeader Web

method, 659
SetMessage() method, ChatClient

class (fig.), 267
set method, 56
SetNews() method, 243
set property, 59
shared name, 17
shopping cart example

application level data caching
(fig.), 562

building, 549
catalog.cs, building, 556
database schema (fig.), 551
sample containing 3 books

(fig.), 567
SimpleCart interface, processes,

550
XmlShoppingCart.cs, building,

553
ShowDialog method, 161, 162
shutdown code, news server, 242
Simple API for XML (SAX), 451
Simple Network Management

Protocol. See SNMP
Simple Object Access Protocol.

See SOAP
single cast delegates, 74
Single Document Interface (SDI)

applications, 158
single-line comments, 45
Single Threaded Apartment

threading model, 178
Singleton objects

leases and sponsors, 330
and multiple clients, 343

Size struct (table), 150
Sleep() method, Thread class, 241
SNMP and UDP, 210
SOAP, 4

exceptions in server code, 617
headers, 646
headers, state information, 653
Interoperability Lab’s URL, 668
introduction, 577–579
malformed requests, 614
passing objects, 626
passing relational data, 631
passing XML documents, 635
security, 662
Web Service requests, responses,

596–599
wiring protocol, 581
writing client application, 619
wrong argument types, 617

soapsuds.exe tool
command line options, 313
using, 312

Socket class, 212
sockets, introduction to, 204–205
Solution Explorer, 119, 378, 519
Solution Properties (fig.), 119
source code

code cycle (fig.), 24
documentation comments, 45

editors, 36
Source Safe, 121
specifications

Common Language, 14
HTTP, 290
Microsoft Common

Language, 6
XML Digital Signature, 13

splitter bars, adding, 177
split window view (fig.), 113
sponsorship, and leasing code, 329
SQL

building message boards, 529
embedded statements, 418
statements vs. stored procedures,

429
SqlClient classes, 531, 573
SqlCommand object, 123
SqlConnection object, 389
SQL Managed Provider, 429, 531
SQL.NET, working with,

418–422
stacks

communication layers (fig.), 208
communication protocol (fig.),

206
standardization history, 24–25
starting

C# command line session, 35
projects, 10
Web Services (fig.), 590

state, maintaining in Web Service
applications, 647–662

static methods, 43
Stats.xslt (fig.), 527
STAThread attribute, 178
stored procedures

Jokes Web Service, 680
for message board example, 532
output options (table), 418
and SQL.NET, 418
SQL statements and, 429
uniform return codes (table),

681
using, 419

storing files within messages, 360
StreamReader class, 218
streams

flushing, 223
and message queues, 360

stream sockets, 205
String Builder class, 547
string operators, using overloaded

concatenation operations,
60

strings

167_C#_index.qxd 12/5/01 11:43 AM Page 790

Index 791

converting numeric types to,
108

immutable, 60
strong names, 12, 17, 334
structured text, 433
stylesheets, XSL, 479, 486, 489
subclassed buttons in Designer

(fig.), 193
subclassing controls, 191–193
<summary> tag, 46
switch statement, 50
symbols, regular expressions

(table), 517
System.Data.DataSet class, 452
System.Data.OleDb namespace,

408, 779
System.Data.SqlClient namespace,

531
System.Diagnostics namespace, 626
System.Diagnostics.Process class, 488
System.Event delegate, 79
System.Net classes (table), 212–213
System.Net namespace, 212
System.Net.NetworkCredential class,

285
System.Net.Sockets classes (table),

213
System.Net.Sockets namespace, 213
System.Net.Sockets.SetSocketOption()

method, 211
System.Net.Sockets.Socket class,

205, 44
System.Net.Sockets.TcpClient

class, 216
System.Net.Sockets.TcpListener

class, 216
System.Net.Sockets.UdpClient class,

228, 236
System.Net.WebProxy class, 283
System.Net.WebRequest class, 283
System.Net.WebResponse class, 283
System.Text.StringBuilder class, 60
System.Windows.Forms.Form class,

142, 240
System.Xml namespace, 439
System.Xml.XmlDataDocument

class, 464

T
TabControls, 164, 165
tab-order and z-order, 200
TabPage control, 152
TabPages, 165
tab size setting in text editor, 136
Tag property, 176
target schema, selecting (fig.), 126
targetSchema drop-down (fig.), 125

Task List Explorer, 121
Task List (fig.), 122
TCP

advantages of, 207
command transmission and

processing example,
214–227

described, 297
difference from UDP, 228
introduction, 206
P2P file sharing application

example, 269–283
versus UDP, 209

TCPCommandProcessor class, 252
TCP command transmission and

processing example
architecture (fig.), 214–215
client programming, 220
compiling and running, 226
compiling and running (fig.),

227
needed .NET classes, 216
server programming, 217

TCPHelloWorldClient.cs,
TCPHellowWorldClienet
listing (fig.), 225

TCPHelloWorldServer.cs example
command processing (fig.), 219
needed namespaces (fig.), 217
server initialization (fig.), 218
server shutdown, 220

TCP/Internet Protocol. See
TCP/IP

TCP/IP, introduction, 205
TCP P2P file sharing application

example
architecture (fig.), 270, 271
compiling and running, 283
FileSharingPeer class, 279
introduction, 269
remote file stream protocol, 271
RemoteFilestreamProxy class, 276
RemoteFileStreamServer class, 272

TCPServer class, 252
class fields (fig.), 256
Close() method (fig.), 259
constructor (fig.), 256
Run() method (fig.), 258

TCPServerSession class, class fields
(fig.), 252–253

TcpTunnelGui, 625
Telnet, 207
templates, utilizing in applications,

162
testing

custom controls, 187

public Web methods, 722
side-by-side execution of

remote objects, 339
Web Services, 589
Web Services with client script,

595
Web Service using Web

reference, 601
test pages, writing, 194
textbox controls, more than one

font, color, 200
textboxes

creating with more than one
line, 144

fonts, colors in, 200
screening input, 200

TextChanged events, 182
text editors

setting tab size in, 136
writing simple, 154

threads, news server processing,
241

throwFault method (fig.), 718
throwing exceptions, 89
throw keyword, 89
ticker thread, news client, 248
Timer, using for scrolling text

banner, 189
tokens, creating custom, 122
Toolbox described, 116
tool, .NET Framework

configuration (fig.), 318
Transmission Control Protocol.

See TCP
trapping windows messages, 201
TraversalForm.cs, 452
TreeNode editor (fig.), 176
TreeView controls, 170, 175, 180
try block, 89
try-catch-finally block, 89
tunneling echo Web Service to

inspect SOAP traffic, 626
Turtschi,A., 663
types, helper, 149

U
UDDI

described, 9, 610
registration, 667
working with, 639

UDL Wizard, 114
UDP

client server chat application
example, 250–269

command transmission and
processing example,
227–234

167_C#_index.qxd 12/5/01 11:43 AM Page 791

792 Index

described, 297
difference from TCP, 228
introduction, 208
multicasting and, 210
versus TCP, 209

UDPCommandProcessor class, 231
UDP command transmission and

processing example
client programming, 231
compiling and running, 234
needed .NET classes, 228
server programming, 229

UDPHelloWorldServer.exe, 234
UDPMulticastClient class, 243, 244
UDP multicasting, news ticker,

235
UDPNewsClient.cs, 247, 248
UDPPeer class, 237, 240
unicast constructors, 237
Universal Data Link. See UDL
Universal Description, Discovery,

and Integration. See UDDI
Unix, FreeBSD version, 7
unmanaged code, 11, 14
UPD

multicasting (fig.), 210
news ticker example, 235–250

updateFile method, 525
updateXPoll method, 523
UPDHellowWorldClient.cs,

command processor
instantiation (fig.), 231

UPDHellowWorldServer.cs
receiving a command in (fig.),

230
result sending (fig.), 231
server initialization (fig.), 229

URL mangling, 648
URLs

airport codes, 643
Microsoft partners supporting

.NET, 2
.NET garbage collection,

articles on, 21
SOAP digital signature

information, 663
UDDI service access points,

610
vendors supporting .NET, 6
Web Services information, 668
Windows Forms newsgroup,

201
WSDL standard, 603
Ximian’s Mono project, 7
XSLT style sheet, 757

Usenet, 204

userAdminImplement.cs, 709
user administration service, Jokes

Web Services, 704
UserControl in Designer (fig.), 182
user controls

creating, 181
and custom controls, 510
working with, 501

User Datagram Protocol. See
UDP

user interface (UI), presentation
layer (fig.), 214

using Directive, 123
using keyword, 44, 45
uspGetOrdersByCustID (fig.), 421

V
Validating events, 182
validation controls, 499
value types, 47
variables

environment. See environment
variables

warning for uncommented
(fig.), 129

VB. SeeVisual Basic (VB)
vendors supporting .NET, 2
VersionClient project, 337
version compatibility, 19
VersionHost project, 336
versions

assembly cache, multiple
versions, 19

side-by-side deployment, 334
viewers, HTML page source

(fig.), 285
viewing XML document in Data

Mode (fig.), 126
Virtual Directory, creating, 193
virtual keyword, 93, 95
visibility, access modifiers

(table), 41
Visual Basic (VB), SendKeys

function, 300
Visual Studio

creating projects from
templates, 141

inheriting user controls and
custom controls, 192

Jokes Web Service project, 694
queue management with, 349

Visual Studio.NET
CodeSwap site, 668
creating Web Service with, 582
debugging with, 589
documenting your work, 698

vsdh.xsd, 121

VSDISCO files, 608
VS.NET

components of, 112–122
cross-language debugging, 6
features, 122–129
IntelliSense support, 123
introduction, 110
line numbering support, 136
Properties window (fig.), 539
service packs, 110
Start pages, 110–112
validating form input, 538

W
W3C (World Wide Web

Corsortium), 13
warning for uncommented public

variables, properties,
methods, classes (fig.), 129

Web access classes, 283–291
WebAccessClient class

class field (fig.), 286
constructor (fig.), 286
Get() method (fig.), 287

WebAccessClientForm class, KeyUp
event handler (fig.), 288

Web.config, 511
Web Forms (ASPX pages)

building XML poll, 517–529
creating simple, 513
described, 496
server controls, adding, 497
validating input using VS.NET,

538
validation controls, adding, 499
Web server controls, adding,

499
XMLpoll, adding RadioButtons

(fig.), 518
Web methods

descriptions (fig.), 612
passing complex data types, 611

Web pages, redirecting, 290
Web Reference, 131
WebRequest class, 212
WebRequest.Create() method, 285
WebResponse class, 212
Web server controls (table), 499
Web Service standards (fig.), 580
Web Service proxy (fig.), 623
Web Services

adding (fig.), 696
adding Web reference (fig.), 758
advanced, 646
binary data, passing, 667
calling, ways of, 593

167_C#_index.qxd 12/5/01 11:43 AM Page 792

Index 793

consuming in other languages,
667

creating, 581
creating with Visual

Studio.NET (fig.), 584
deploying, 601
DISCO, 608
display of available using

DISCO, 622
echo method (fig.), 594
error handling, 614
exposing performance

information, 630
introduction, 576, 579
Jokes. See Jokes Web Service
maintaining state, 647–662
page design and page code, 588
publishing, 610
running your, 589
SOAP. See SOAP
standards, 581
starting in debug mode, 591
testing with client script, 595
testing with Web reference, 601
UDDI, working with, 639

Web Services Description
Language. See WSDL

Web Services proxy, 624
Web Service Wizard, 694
What’s New Start page (fig.), 111
while statement, 52
Win32 API

functions, calling from C#, 108
Windows Forms and, 138

windows
docked Help (fig.), 121
docking, 117
IDE, 129

Windows 2000
installation engine, 9
German version, and UDP

multicasting, 297
Windows DNA

debugging under, 6
described, 3

Windows Explorer, ListView and
TreeView controls, 170

Windows Forms, 3
creating applications, 140
creating new project (fig.), 142
and GDI+ classes (fig.), 139
inheritance and, 138–139
introduction, 138
Java and, 193

newgroup URL, 201
setting up new application, 620
See also Forms

Windows NT 4, German version,
and UDP unicast, 298

Windows Service applications,
setting properties (fig.), 320

wiring protocol, 581
wizards, using for setup and

deployment projects, 10
WM-PASTE, 201
WndProc method, 201
Word, Microsoft, 179
World Wide Web Corsortium

(W3C), 13
WriteLine method, 170
Write method, 170
writing

component test pages, 194
custom controls, 183
text editor, 154
Windows Forms application,

141
WSDL described, 602

X
Ximiam’s Mono project, 7
XML

2001 W3C schema, 124
and ADO.NET, 384
APIs, and SAX, 451
configuration files and, 313
DataSet class, 456
embedded commenting, 127
to HTML code transformation

(fig.), 488
introduction, 432–434
relational data and, 452–468
relational sample, 453–455
source code comments, 45
XML DOM. See XML DOM
XPath and XSL

transformations, 469–489
and XSLT, 543

XmlDataDocument class, 464, 493
XML Digital Signature

specification, 13
XmlDocument class,

CreateXmlDeclartion
method, 442

XML documents
adding element to, 443
as databases, 439
deleting elements in, 450

elements and attributes,
433–434

example, 433
formatting (fig.), 124
loading, saving, 451
nodes and, 434
passing,Web Services, 635
traversing data with relational

calls, 464–468
updating elements in, 446
viewing from Data mode, 125

XML DOM
classes, frequently used

(table), 439
described, 434
documents, creating empty, 442
sample program (fig.), 440
working with, 439–451

XML editor
described, 124
tag completion for XSLTs, 110

XmlInclude attribute, 357, 368
XML parser, 434
XML Schema Definition

(XSD), 437
XML schemas, 437
XmlShoppingCart.cs, 553
xmlTester Web method, 635–639
XPath

described, 435–436
expressions, 477
and XSL transformations, 469

XPathForm.cs, 469
XPathForm.cs (fig.), 471
XPathNavigator class, 476
XSD schema, 124
XSL

described, 436
sample program (fig.), 480
sample stylesheets, 486
stylesheets, 479
transformations, and XPath, 469
working with, 479

XSL Formatting Objects
(XSL-FO), 436

XSLT
debugging XSL stylesheets, 489
and XML, 543

Z
zones, and security, 12
z-order and tab-order, 200

167_C#_index.qxd 12/5/01 11:43 AM Page 793

SYNGRESS SOLUTIONS…

soluti o ns @ s y n g r e s s . c o m

VB .NET Developer’s Guide
The introduction of VB .NET has sent many Visual Basic gurus back to
the drawing board! VB .NET introduces a new set of standards, proto-
cols, and syntax that previous users of Visual Basic will need to learn to
regain their guru status and be positioned to create enterprise-critical
applications. VB .NET Developer’s Guide will help you master VB .NET!
Includes Wallet CD
ISBN: 1-928994-48-2

Price: $49.95 USA, $77.95 CAN

AVAILABLE NOW
ORDER at
www.syngress.com

.NET Mobile Web Developer’s Guide

.NET Mobile Web Developer’s Guide provides readers with a solid guide
to developing mobile applications using Microsoft technologies. This
book focuses on using ASP .NET and the .NET mobile SDK. Includes
Wallet CD.
ISBN: 1-928994-56-3

Price: $49.95 US, $77.95 CAN

AVAILABLE JANUARY 2002
ORDER at
www.syngress.com

ASP .NET Web Developer’s Guide
Since 1996, ASP programmers have faced one upgrade after another, often with
no visible advantages until version 3.x. Now you have the first significant
improvement in ASP programming within your grasp—ASP .NET. Your reliance on
a watered-down version of Visual Basic has been alleviated now that ASP .NET
pages may be programmed in both Microsoft’s new version of Visual Basic or the
latest version of C++: C#. ASP .NET allows programmers and developers to work
with both VB.NET and C# within the same ASP .NET page. This book will show
you how.
ISBN: 1-928994-51-2

Price: $49.95 US, $77.95 CAN

AVAILABLE DECEMBER 2001
ORDER at
www.syngress.com

167_C#_index.qxd 12/5/01 11:43 AM Page 794

http://www.syngress.com/catalog/sg_main.cfm?pid=1531
http://www.syngress.com/catalog/sg_main.cfm?pid=1660
http://www.syngress.com/book_catalog/175_mobile_dev/

	Cover
	Foreword
	Table of Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Index
	Related Titles

